CN108573869B - 鳍式场效应管及其形成方法 - Google Patents

鳍式场效应管及其形成方法 Download PDF

Info

Publication number
CN108573869B
CN108573869B CN201710130837.1A CN201710130837A CN108573869B CN 108573869 B CN108573869 B CN 108573869B CN 201710130837 A CN201710130837 A CN 201710130837A CN 108573869 B CN108573869 B CN 108573869B
Authority
CN
China
Prior art keywords
fin
doped region
inversion
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710130837.1A
Other languages
English (en)
Other versions
CN108573869A (zh
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201710130837.1A priority Critical patent/CN108573869B/zh
Priority to US15/909,285 priority patent/US10361288B2/en
Publication of CN108573869A publication Critical patent/CN108573869A/zh
Priority to US16/439,339 priority patent/US11114551B2/en
Application granted granted Critical
Publication of CN108573869B publication Critical patent/CN108573869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/047Making n or p doped regions or layers, e.g. using diffusion using ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Abstract

本发明提供一种鳍式场效应管及其形成方法,所述鳍式场效应管的形成方法包括:提供衬底,所述衬底上具有多个分立的鳍部;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁,位于所述栅极结构底部的鳍部区域为沟道区;对栅极结构两侧的鳍部进行轻掺杂离子注入,形成轻掺杂区;对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区;在所述反型离子注入之后,对栅极结构两侧的鳍部进行源漏掺杂,形成源漏掺杂区。本发明形成的鳍式场效应管的轻掺杂区中形成有反型掺杂区,改善了鳍式场效应管的栅诱导漏极泄漏电流问题,从而提高了鳍式场效应管的可靠性。

Description

鳍式场效应管及其形成方法
技术领域
本发明涉及半导体制造技术领域,特别涉及一种鳍式场效应管及其形成方法。
背景技术
随着半导体技术的飞速发展,半导体器件的特征尺寸不断缩小,使得集成电路的集成度越来越高,这对器件的性能也提出了更高的要求。
目前,随着金属-氧化物半导体场效应晶体管(MOSFET)的尺寸不断变小。为了适应工艺节点的减小,只能不断缩短MOSFET场效应管的沟道长度。沟道长度的缩短具有增加芯片的管芯密度、增加MOSFET场效应管的开关速度等好处。
然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,这样一来栅极对沟道的控制能力变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阀值漏电现象,即短沟道效应(SCE:short-channel effects)成为一个至关重要的技术问题。
因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面MOSFET晶体管向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET具有很好的沟道控制能力。
然而,鳍式场效应管器件工作时容易发生栅诱导漏极泄漏电流(GIDL,Gated-induce Drain Leakage)的问题。因此,如何解决鳍式场效应管的栅诱导漏极泄漏电流问题,提高鳍式场效应管的可靠性,成为亟需解决的问题。
发明内容
本发明解决的问题是提供一种鳍式场效应管及其形成方法,改善鳍式场效应管的栅诱导漏极泄漏电流问题,提高鳍式场效应管的可靠性。
为解决上述问题,本发明提供一种鳍式场效应管的形成方法,包括:提供衬底,所述衬底上具有多个分立的鳍部;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁,位于所述栅极结构底部的鳍部区域为沟道区;对栅极结构两侧的鳍部进行轻掺杂离子注入,形成轻掺杂区;对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区;在所述反型离子注入之后,对栅极结构两侧的鳍部进行源漏掺杂,形成源漏掺杂区。
可选的,对栅极结构两侧的鳍部进行轻掺杂离子注入的步骤中,离子注入方向与鳍部顶部表面法线的夹角为7度至30度,且与栅极结构延伸方向的夹角为40度至50度。
可选的,对远离所述沟道区的部分轻掺杂区进行反型离子注入的步骤中,离子注入方向与鳍部顶部表面法线的夹角为7度至30度。
可选的,对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区的离子浓度为:1.0E18atom/cm3至1.0E20atom/cm3
可选的,对栅极两侧的鳍部进行轻掺杂离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为8kev至20kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为15kev至30kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2
可选的,对远离所述沟道区的部分轻掺杂区进行反型离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为2kev至10kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为5kev至15kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2
可选的,反型离子注入之后,形成所述源漏掺杂区之前,所述形成方法还包括:进行第一退火工艺。
可选的,所述第一退火工艺为尖峰退火工艺,所述尖峰退火工艺的参数包括:退火温度范围为950摄氏度至1050摄氏度。
可选的,形成所述源漏掺杂区的步骤包括:刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,使剩余反型掺杂区位于凹槽和轻掺杂区之间;形成填充所述凹槽的源漏外延掺杂层;对所述源漏外延掺杂层进行离子注入,形成源漏掺杂区。
可选的,刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽的步骤包括:刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,在沿鳍部延伸方向上,使剩余反型掺杂区位于凹槽和轻掺杂区之间;或者刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,在沿鳍部延伸方向以及垂直于鳍部延伸方向上,使剩余反型掺杂区位于凹槽和轻掺杂区之间。
可选的,对所述源漏外延掺杂层进行离子注入之后,所述形成方法还包括:进行第二退火工艺。
可选的,所述第二退火工艺为尖峰退火工艺,所述尖峰退火工艺的参数包括:退火温度范围为1000摄氏度至1100摄氏度。
可选的,所述第二退火工艺使第二退火后的源漏掺杂区的离子浓度为:5.0E19atom/cm3至1.0E21atom/cm3
可选的,对所述源漏外延掺杂层进行离子注入的工艺参数包括:当注入离子为砷离子时,所述砷离子注入能量为2kev至10kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为2kev至5kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2
可选的,所述栅极结构为多晶硅栅极结构或金属栅极结构。
相应地,本发明还提供一种鳍式场效应管,包括:衬底,所述衬底上具有多个分立的鳍部;横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁;位于鳍部中的轻掺杂区;位于所述栅极结构两侧的鳍部中的源漏掺杂区;所述鳍式场效应管还包括反型掺杂区,所述反型掺杂区位于轻掺杂区和源漏掺杂区之间。
可选的,所述鳍式场效应管还包括反型掺杂区,在沿鳍部延伸方向上,所述反型掺杂区位于轻掺杂区和源漏掺杂区之间;或者在沿鳍部延伸方向以及垂直于衬底方向上,所述反型掺杂区位于轻掺杂区和源漏掺杂区之间。
可选的,所述源漏掺杂区的离子浓度为:5.0E19atom/cm3至1.0E21atom/cm3
可选的,所述栅极结构为多晶硅栅极结构或金属栅极结构。
与现有技术相比,本发明的技术方案具有以下优点:
本发明提供的鳍式场效应管形成方法的技术方案中,在对栅极结构两侧的鳍部进行轻掺杂离子注入,形成轻掺杂区的步骤之后,在对栅极结构两侧的鳍部进行源漏掺杂,形成源漏掺杂区的步骤之前,对远离沟道区的部分轻掺杂区还进行反型离子注入,形成反型掺杂区。由于位于源漏掺杂区的高浓度离子与位于反型掺杂区的掺杂离子发生相互扩散,降低了源漏掺杂区的离子浓度。因此,离子分布在源漏掺杂区和轻掺杂区之间的过渡陡峭程度减小,即在源漏掺杂区和轻掺杂区之间容易形成缓变结,从而改善了鳍式场效应管的栅诱导漏极泄漏电流现象,提高了鳍式场效应管的可靠性。
可选方案中,本发明提供的鳍式场效应管的形成方法中,对所述源漏外延掺杂层进行离子注入之后,还进行第二退火工艺。所述第二退火工艺能够修复并激活源漏掺杂区中的离子,还使得位于所述源漏掺杂区中的离子进一步向反型掺杂区中扩散,由于源漏掺杂区的离子与反型掺杂区的离子是反型的,因此降低了所述源漏掺杂区中的离子浓度。
附图说明
图1至图4是一种鳍式场效应管形成方法各个步骤对应的剖面结构示意图;
图5至图13是本发明鳍式场效应管一实施例形成方法各个步骤对应的剖面结构示意图;
图14是本发明鳍式场效应管一实施例的结构示意图。
具体实施方式
根据背景技术形成的鳍式场效应管的可靠性有待提高。
现结合一种鳍式场效应管的形成过程对鳍式场效应管的可靠性有待提高的原因进行分析。
图1至图4为一种鳍式场效应管形成方法各个步骤对应的剖面结构示意图。
参考图1,提供衬底100,所述衬底100上具有多个分立的鳍部110;在所述鳍部110露出的衬底100上形成隔离结构120,所述隔离结构120覆盖所述鳍部110的部分侧壁,且所述隔离结构120顶部低于所述鳍部110顶部;形成横跨所述鳍部110的栅极结构130,所述栅极结构130覆盖鳍部110的部分顶部和侧壁;在所述栅极结构130的两侧形成侧墙150;形成侧墙150的步骤之后,进行离子注入形成轻掺杂区(图未示)。
参考图2,刻蚀位于栅极结构130两侧的鳍部110,在所述栅极结构130两侧的鳍部110中形成凹槽160。
参考图3,形成填充所述凹槽160(见图2)的源漏外延掺杂层170。
参考图4,形成源漏外延掺杂层170的步骤之后,对栅极结构130两侧的鳍部进行离子注入形成源漏掺杂区180;形成所述源漏掺杂区180之后,进行退火处理。
上述形成方法形成的鳍式场效应管的可靠性有待提高。
经分析发现,导致鳍式场效应管的可靠性有待提高的原因包括:由于形成所述源漏掺杂区180的步骤中所掺杂的离子浓度很高,源漏掺杂区180的离子浓度与轻掺杂区的离子浓度差大,因此,离子分布在源漏掺杂区180和轻掺杂区之间的过渡是陡峭的,即在源漏掺杂区180和轻掺杂区之间容易形成突变结,从而使得形成的鳍式场效应管容易发生栅诱导漏极泄漏电流现象,进而导致鳍式场效应管的可靠性降低。
为了解决上述技术问题,本发明提供一种鳍式场效应管的形成方法,包括:提供衬底,所述衬底上具有多个分立的鳍部;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁,位于所述栅极结构底部的鳍部区域为沟道区;对栅极结构两侧的鳍部进行轻掺杂离子注入,形成轻掺杂区;对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区;在所述反型离子注入之后,对栅极结构两侧的鳍部进行源漏掺杂,形成源漏掺杂区。
由于源漏掺杂区与反型掺杂区的离子发生相互扩散,且源漏掺杂区的掺杂离子类型与反型掺杂区的离子类型不同,降低了源漏掺杂区的离子浓度,使得离子分布在源漏掺杂区与轻掺杂区之间的过渡陡峭程度减小,从而改善了鳍式场效应管的栅诱导漏极泄漏电流现象,提高了鳍式场效应管的可靠性。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图5至图13是本发明鳍式场效应管一实施例形成方法各个步骤对应的剖面结构示意图。
参考图5,提供衬底200,所述衬底200上具有多个分立的鳍部210。
为了便于图示和说明,图5中仅示出了一个鳍部210。
本实施例中,所述衬底200的材料为硅。在本发明其他实施例中,所述衬底200的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。在其他实施例中,所述衬底200还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底。
本实施例中,所述鳍部210的材料为硅。在本发明其他实施例中,所述鳍部210的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。
本实施例中,所述衬底200上还具有隔离结构220,所述隔离结构220覆盖所述鳍部210的部分侧壁表面,且所述隔离结构220顶部低于所述鳍部210顶部。
所述隔离结构220可以起到电学隔离相邻鳍部210的作用。
本实施例中,所述隔离结构220的材料为氧化硅。在本发明其他实施例中,所述隔离结构220的材料还可以为氮化硅或氮氧化硅。
本实施例中,形成所述衬底200、鳍部210的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的硬掩膜层;以所述硬掩膜层为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底200,位于衬底200表面的凸起作为鳍部210。
保留所述位于鳍部210顶部的硬掩膜层;所述位于鳍部210顶部的硬掩膜层在后续形成所述隔离结构220的工艺中可以起到保护鳍部210的作用。
形成所述隔离结构220的工艺步骤包括:在所述衬底200上形成覆盖所述鳍部210的隔离膜,所述隔离膜顶部高于所述鳍部210顶部;对所述隔离膜顶部进行平坦化处理;在所述平坦化处理之后,回刻蚀去除部分厚度的隔离膜,形成位于所述衬底200上的所述隔离结构220,在回刻蚀去除部分厚度的隔离膜的过程中去除所述位于鳍部210顶部的硬掩膜层。
本实施例中,形成所述隔离结构220之后,还可以在隔离结构220露出的鳍部210表面形成氧化层(图未示),所述氧化层的材料为氧化硅。
参考图6,形成横跨所述鳍部210的栅极结构230,所述栅极结构230覆盖鳍部210的部分顶部和侧壁,位于所述栅极结构230底部的鳍部区域为沟道区。
形成所述栅极结构230的步骤包括:形成覆盖所述衬底200和所述鳍部210的栅极层;在所述栅极层上形成硬掩膜层,所述硬掩膜层定义出待形成的栅极结构230的图形;以所述硬掩膜层为掩膜刻蚀所述栅极层,形成横跨所述鳍部210的栅极结构230;在形成所述栅极结构230之后,去除位于栅极结构230顶部的硬掩膜层。
所述栅极结构230为多晶硅栅极结构或金属栅极结构。
本实施例中,在形成所述栅极结构230的步骤之后,所述形成方法还包括:在所述栅极结构230的侧壁形成侧墙240。所述侧墙240用于定义后续工艺中形成的轻掺杂区的位置。所述侧墙240的材料为:氮化硅。
参考图7,对栅极结构230两侧的鳍部210进行轻掺杂离子注入,形成轻掺杂区250。
所述轻掺杂区250的作用是用于抑制后续工艺中形成的源漏掺杂区发生离子扩散,从而抑制结漏电流。
当形成的鳍式场效应管为NMOS管时,所述轻掺杂离子注入的注入离子为N型离子,N型离子包括磷、砷或者锑;当形成的鳍式场效应管为PMOS管时,所述轻掺杂离子注入的注入离子为P型离子,P型离子包括硼、镓或者铟。
本实施例中,轻掺杂区250进行离子注入的步骤中,离子注入方向与鳍部210顶部表面法线的夹角既不能过大也不能过小,控制离子注入方向与鳍部210顶部表面夹角的作用是为了使形成的轻掺杂区250靠近所述沟道区。若夹角过大,则会造成鳍式场效应管的遮蔽效应较严重;若夹角过小,则会导致离子注入的深度不够。
本实施例中,所述轻掺杂离子注入的步骤中,离子注入方向与鳍部210顶部表面法线的夹角为7度至30度,且与栅极结构230延伸方向的夹角是40度至50度。
本实施例中,对栅极结构230两侧的鳍部210进行轻掺杂离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为8kev至20kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为15kev至30kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2
参考图8,对远离所述沟道区的部分轻掺杂区250进行反型离子注入,在所述轻掺杂区250中形成反型掺杂区260。
所述反型离子掺杂区260的作用是为了降低后续工艺中源漏掺杂区的高离子浓度。具体地,由于后续工艺中形成源漏掺杂区的步骤之后,会进行第二退火处理,使得位于源漏掺杂区的高浓度离子与位于反型掺杂区260的离子发生相互扩散,从而降低了源漏掺杂区的离子浓度,进而使得离子分布在源漏掺杂区和轻掺杂区250之间的过渡陡峭程度减小。因此改善了鳍式场效应管的栅诱导漏极泄漏电流现象。
若所述源漏掺杂区的离子浓度与所述轻掺杂区250的离子浓度相差较大,则容易导致离子分布在源漏掺杂区和轻掺杂区250的过渡是陡峭的,容易形成突变结,这样会使得鳍式场效应管的栅诱导漏极泄漏电流问题变得更为严重。
所述反型离子掺杂区260的掺杂离子类型与所述轻掺杂区250的掺杂离子类型不同。具体地,当形成的鳍式场效应管为NMOS管时,所述轻掺杂离子注入的注入离子为N型,则所述反型离子掺杂区的掺杂离子为P型;当形成的鳍式场效应管为PMOS管时,所述轻掺杂离子注入的注入离子为P型,则所述反型离子掺杂区的掺杂离子为N型。
本实施例中,反型掺杂区260进行离子注入的步骤中,离子注入方向与鳍部210顶部表面法线的夹角既不能过大也不能过小,控制离子注入方向与鳍部210顶部表面夹角的作用是为了使形成的反型掺杂区260位于远离所述沟道区的轻掺杂区250中。若夹角过大,则会造成鳍部场效应管的遮蔽效应较严重;若夹角过小,则会导致离子注入的深度不够。
本实施例中,所述反型离子掺杂区260进行离子注入的步骤中,离子注入方向与鳍部210顶部表面法线的夹角为7度至30度。
本实施例中,所述反型离子掺杂区260的离子浓度既不能过大也不能过小。若所述反型掺杂区260的离子浓度过大,则会导致后续形成的源漏掺杂区的离子浓度过小;若所述反型掺杂区260的离子浓度过小,则会导致后续形成的源漏掺杂区的离子浓度过大,进而导致源漏掺杂区与轻掺杂区250之间的离子浓度梯度较大。
本实施例中,所述反型离子掺杂区260的离子浓度为1.0E18atom/cm3至1.0E20atom/cm3
对远离所述沟道区的部分轻掺杂区250进行反型离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为2kev至10kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为5kev至15kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2
本实施例中,在反型离子注入之后,所述形成方法还包括:进行第一退火工艺。所述第一退火工艺的参数包括:退火温度范围为950摄氏度至1050摄氏度。所述第一退火工艺的作用是用于修复并激活位于轻掺杂区250和反型掺杂区260的离子,使得轻掺杂区250和反型掺杂区260形成过程中产生的晶格缺陷得到减小,从而提高后续工艺中形成的源漏掺杂区的质量。
参考图9至图12,在所述反型离子注入之后,对栅极结构230两侧的鳍部210进行源漏掺杂,形成源漏掺杂区280(见图12)。
以下将结合附图对形成所述源漏掺杂区280(见图12)的工艺步骤进行详细说明。
参考图9,刻蚀位于所述栅极结构230两侧反型掺杂区260的部分鳍部210,形成凹槽(图未示),使所述反型掺杂区260位于凹槽(图未示)和轻掺杂区250之间。
所述凹槽的作用是为后续工艺形成源漏外延掺杂层提供空间位置。
形成所述凹槽的步骤包括:刻蚀位于所述栅极结构230两侧反型掺杂区260的部分鳍部210,形成凹槽,至少保留位于所述凹槽侧壁上的所述反型掺杂区,使所述反型掺杂区260位于凹槽和轻掺杂区250之间。
本实施例中,所述反型掺杂区260位于所述凹槽(图未示)和轻掺杂区250之间,这样做的目的是为了使后续工艺中填充所述凹槽(图未示)形成的源漏掺杂区的高浓度离子可以向所述反型掺杂区260中扩散。通过控制刻蚀所述位于栅极结构230两侧反型掺杂区260的部分鳍部210的刻蚀量大小,可以控制后续工艺中源漏掺杂区的高浓度离子向所述反型掺杂区260中扩散的程度大小。所述刻蚀量越大,则所述反型离子掺杂区260的离子越少,所述扩散程度也越小;所述刻蚀量越小,则所述反型掺杂区260的离子越多,则所述扩散程度也越大。
本实施例中,刻蚀位于所述栅极结构230两侧反型掺杂区260的部分鳍部210,形成凹槽(图未示)的步骤包括:刻蚀位于所述栅极结构230两侧的侧墙240露出的反型掺杂区260的部分鳍部210,形成凹槽(图未示),在沿鳍部延伸方向,使剩余反型掺杂区260位于凹槽(图未示)和轻掺杂区250之间。
所述刻蚀的工艺为干法刻蚀工艺,所述干法刻蚀工艺的参数包括:刻蚀气体为CF4、CH3F和O2的混合气体,CF4的气体流量为5sccm至100sccm,CH3F的气体流量为8sccm至50sccm,O2的气体流量为10sccm至100sccm,压强为10mtorr至2000mtorr,刻蚀时间为4s至50s,RF功率为50至300W,电压为30V至100V。
在另一实施例中,参考图10,刻蚀位于所述栅极结构230两侧反型掺杂区260的部分鳍部210,形成凹槽(图未示)的步骤包括:部分刻蚀位于所述栅极结构230两侧的侧墙240露出的反型掺杂区260的部分鳍部210,形成凹槽(图未示),在沿鳍部延伸方向以及垂直于衬底200方向上,使剩余反型掺杂区260位于凹槽(图未示)和轻掺杂区250之间。
所述刻蚀的工艺为干法刻蚀工艺,所述干法刻蚀工艺的参数包括:刻蚀气体为He、CH3F和O2的混合气体,He的气体流量为50sccm至200sccm,CH3F的气体流量为100sccm至500sccm,O2的气体流量为5sccm至315sccm,刻蚀时间为5s至100s;温度为20摄氏度至55摄氏度。
参考图11,形成填充所述凹槽的源漏外延掺杂层270。
本实施例中,所述形成填充凹槽的源漏外延掺杂层270的工艺为外延生长工艺,在外延生长过程中进行原位离子掺杂,所述原位离子掺杂的工艺参数包括:
当源漏外延掺杂层270的材料为N型掺杂的SiP时,温度为650摄氏度至850摄氏度,压强为10torr至600torr,反应气体为H2、HCL、SiH2Cl2、PH3的混合气体,H2的气体流量为2000sccm至20000sccm,HCL的气体流量为30sccm至150sccm,DCS的气体流量为50sccm至1000sccm,PH3的气体流量为10sccm至2000sccm。
当源漏外延掺杂层270的材料为P型掺杂的SiGe时,温度为600摄氏度至850摄氏度,压强为8torr至300torr,反应气体为H2、HCL、SiH2Cl2、GeH4和B2H6的混合气体,H2的气体流量为1000sccm至30000sccm,HCL的气体流量为10sccm至200sccm,DCS的气体流量为20sccm至2000sccm,GeH4的气体流量为10sccm至500sccm,B2H6的气体流量为5sccm至100sccm。
参考图12,对所述源漏外延掺杂层270(见图11)进行离子注入,形成源漏掺杂区280。
所述离子注入的作用是为了改变鳍式场效应管器件的串联电阻和接触电阻。
所述源漏掺杂区280的离子类型与所述反型掺杂区260的掺杂离子类型不同。具体地,当形成的鳍式场效应管为NMOS管时,所述源漏掺杂区280的离子类型为N型,则所述反型离子掺杂区的掺杂离子为P型;当形成的鳍式场效应管为PMOS管时,所述源漏掺杂区280的离子类型为P型,则所述反型离子掺杂区的掺杂离子为N型。
本实施例中,对所述源漏外延掺杂层270进行离子注入的工艺参数包括:当注入离子为砷离子时,所述砷离子注入能量为2kev至10kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为2kev至5kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2
所述源漏掺杂区280与所述反型掺杂区260的离子发生相互扩散,且源漏掺杂区280与反型掺杂区260的离子类型不同,降低了源漏掺杂区280的离子浓度。由于位于源漏掺杂区280中的离子浓度降低,使得位于源漏掺杂区280中的离子浓度和轻掺杂区250中的离子浓度之间的浓度差变小,进而使得鳍式场效应管的离子分布在源漏掺杂区280和轻掺杂区250之间的过渡陡峭程度降低,改善了鳍式场效应管的栅诱导漏极泄漏电流问题,提高了鳍式场效应管的可靠性。
参考图13,对所述源漏外延掺杂层270进行离子注入之后,所述形成方法还包括:进行第二退火工艺。
所述第二退火工艺的作用是用于修复并激活源漏掺杂区280中的离子;还使得位于所述源漏掺杂区280中的离子向反型掺杂区260中进一步扩散,位于反型掺杂区260中的离子同时也向源漏掺杂区280中进一步扩散,由于源漏掺杂区280的离子与反型掺杂区260的离子是反型的,因此扩散之后的位于源漏掺杂区280以及位于反型掺杂区260的离子浓度都同时降低。
所述第二退火工艺的退火温度既不能过高也不能过低。若退火温度过高,则会导致鳍式场效应管的短沟道效应较为严重;若退火温度过低,则会造成形成源漏掺杂区280步骤中的晶格缺陷修复的效果较差,且导致源漏掺杂区280的离子以及反型掺杂区260的离子相互扩散的程度较低。
本实施例中,所述第二退火工艺的参数包括:退火温度范围为1000摄氏度至1100摄氏度。
本实施例中,采用第二退火工艺处理所述源漏掺杂区280之后,所述源漏掺杂区260的离子浓度为:5.0E19atom/cm3至1.0E21atom/cm3
相应地,本发明还提供一种鳍式场效应管,参考图14,所述鳍式场效应管包括:衬底300,所述衬底300上具有多个分立的鳍部310;横跨所述鳍部310的栅极结构330,所述栅极结构330覆盖鳍部310的部分顶部和侧壁,位于所述栅极结构330底部的鳍部310区域为沟道区;位于鳍部310中的轻掺杂区350;位于所述栅极结构330两侧的鳍部中的源漏掺杂区370,所述鳍式场效应管还包括反型掺杂区360,所述反型掺杂区360位于轻掺杂区350和源漏掺杂区370之间。
以下将结合附图14对本实施例提供的鳍式场效应管进行详细说明。
本实施例中,所述衬底300的材料为硅。在本发明其他实施例中,所述衬底300的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。在其他实施例中,所述衬底300还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底。
本实施例中,所述鳍部310的材料为硅。在本发明其他实施例中,所述鳍部310的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。
本实施例中,所述衬底300上还具有隔离结构320,所述隔离结构320覆盖所述鳍部310的部分侧壁表面,且所述隔离结构320顶部低于所述鳍部310顶部。
所述隔离结构320可以起到电学隔离相邻鳍部310的作用。
本实施例中,所述隔离结构320的材料为氧化硅。在本发明其他实施例中,所述隔离结构320的材料还可以为氮化硅或氮氧化硅。
本实施例中,所述栅极结构330为多晶硅栅极结构或金属栅极结构。所述栅极结构330两侧还具有侧墙340,所述侧墙340用于定义轻掺杂区350的位置,所述轻掺杂区350的作用是用于抑制源漏掺杂区370发生离子扩散,抑制结漏电流。
本实施例中,所述鳍式场效应管还包括反型掺杂区360,在沿鳍部310延伸方向上,所述反型掺杂区360位于轻掺杂区350和源漏掺杂区370之间;在另一实施例中,所述反型掺杂区360在沿鳍部310延伸方向以及垂直于鳍部310延伸方向上,所述反型掺杂区360位于轻掺杂区350和源漏掺杂区370之间。
本实施例中,所述源漏掺杂区360的离子浓度为5.0E19atom/cm3至1.0E21atom/cm3。所述反型离子掺杂区360的作用是为了降低源漏掺杂区370的高离子浓度。若源漏掺杂区370的离子浓度高,则容易导致离子分布在源漏掺杂区370和轻掺杂区350的过渡是陡峭的,即容易形成突变结,这样会使得鳍式场效应管的栅诱导漏极泄漏电流问题变得较为严重。而形成的反型掺杂区360可以降低源漏掺杂区370的高离子浓度,从而减缓了鳍式场效应管的栅诱导漏极泄漏电流问题,提高了鳍式场效应管的可靠性。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更正与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (18)

1.一种鳍式场效应管的形成方法,其特征在于,包括:
提供衬底,所述衬底上具有多个分立的鳍部;
形成横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁,位于所述栅极结构底部的鳍部区域为沟道区;
对栅极结构两侧的鳍部进行轻掺杂离子注入,形成轻掺杂区;
对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区;
在所述反型离子注入之后,对栅极结构两侧的鳍部进行源漏掺杂,形成源漏掺杂区;
形成源漏掺杂区之后,所述形成方法还包括:进行第二退火工艺,使位于源漏掺杂区的高浓度离子与位于反型掺杂区的掺杂离子发生相互扩散,以降低源漏掺杂区和轻掺杂区之间离子分布过渡的陡峭程度。
2.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,对栅极结构两侧的鳍部进行轻掺杂离子注入的步骤中,离子注入方向与鳍部顶部表面法线的夹角为7度至30度,且与栅极结构延伸方向的夹角为40度至50度。
3.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,对远离所述沟道区的部分轻掺杂区进行反型离子注入的步骤中,离子注入方向与鳍部顶部表面法线的夹角为7度至30度。
4.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,对远离所述沟道区的部分轻掺杂区进行反型离子注入,在所述轻掺杂区中形成反型掺杂区的离子浓度为:1.0E18atom/cm3至1.0E20atom/cm3
5.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,对栅极两侧的鳍部进行轻掺杂离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为8kev至20kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为15kev至30kev,注入剂量为1.0E14atom/cm2至1.0E16atom/cm2
6.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,对远离所述沟道区的部分轻掺杂区进行反型离子注入的工艺参数包括:当注入离子为磷离子时,所述磷离子注入能量为2kev至10kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为5kev至15kev,注入剂量为1.0E14atom/cm2至1.0E15atom/cm2
7.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,反型离子注入之后,形成所述源漏掺杂区之前,所述形成方法还包括:进行第一退火工艺。
8.如权利要求7所述的鳍式场效应管的形成方法,其特征在于,所述第一退火工艺为尖峰退火工艺,所述尖峰退火工艺的参数包括:退火温度范围为950摄氏度至1050摄氏度。
9.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,形成所述源漏掺杂区的步骤包括:
刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,使剩余反型掺杂区位于凹槽和轻掺杂区之间;
形成填充所述凹槽的源漏外延掺杂层;
对所述源漏外延掺杂层进行离子注入,形成源漏掺杂区。
10.如权利要求9所述的鳍式场效应管的形成方法,其特征在于,刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽的步骤包括:
刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,在沿鳍部延伸方向上,使剩余反型掺杂区位于凹槽和轻掺杂区之间;
或者刻蚀位于所述栅极结构两侧反型掺杂区的部分鳍部,形成凹槽,在沿鳍部延伸方向以及垂直于鳍部延伸方向上,使剩余反型掺杂区位于凹槽和轻掺杂区之间。
11.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述第二退火工艺为尖峰退火工艺,所述尖峰退火工艺的参数包括:退火温度范围为1000摄氏度至1100摄氏度。
12.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述第二退火工艺使第二退火后的源漏掺杂区的离子浓度为:5.0E19atom/cm3至1.0E21atom/cm3
13.如权利要求9所述的鳍式场效应管的形成方法,其特征在于,对所述源漏外延掺杂层进行离子注入的工艺参数包括:当注入离子为砷离子时,所述砷离子注入能量为2kev至10kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2;当注入离子为硼离子时,所述硼离子注入能量为2kev至5kev,注入剂量为2.0E15atom/cm2至5.0E15atom/cm2
14.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述栅极结构为多晶硅栅极结构或金属栅极结构。
15.一种鳍式场效应管,其特征在于,包括:
衬底,所述衬底上具有多个分立的鳍部;
横跨所述鳍部的栅极结构,所述栅极结构覆盖鳍部的部分顶部和侧壁;
位于鳍部中的轻掺杂区;
位于所述栅极结构两侧的鳍部中的源漏掺杂区;
所述鳍式场效应管还包括反型掺杂区,所述反型掺杂区位于远离沟道区的部分轻掺杂区中,且位于轻掺杂区和源漏掺杂区之间,位于源漏掺杂区的高浓度离子与位于反型掺杂区的掺杂离子经退火工艺发生相互扩散,以降低源漏掺杂区和轻掺杂区之间离子分布过渡的陡峭程度。
16.如权利要求15所述的鳍式场效应管,其特征在于,在沿鳍部延伸方向上,所述反型掺杂区位于轻掺杂区和源漏掺杂区之间;或者在沿鳍部延伸方向以及垂直于衬底方向上,所述反型掺杂区位于轻掺杂区和源漏掺杂区之间。
17.如权利要求15所述的鳍式场效应管,其特征在于,所述源漏掺杂区的离子浓度为:5.0E19atom/cm3至1.0E21atom/cm3
18.如权利要求15所述的鳍式场效应管,其特征在于,所述栅极结构为多晶硅栅极结构或金属栅极结构。
CN201710130837.1A 2017-03-07 2017-03-07 鳍式场效应管及其形成方法 Active CN108573869B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710130837.1A CN108573869B (zh) 2017-03-07 2017-03-07 鳍式场效应管及其形成方法
US15/909,285 US10361288B2 (en) 2017-03-07 2018-03-01 Method for manufacturing FinFETs by implanting counter-doped regions in lightly-doped S/D extensions away from the channel
US16/439,339 US11114551B2 (en) 2017-03-07 2019-06-12 Fin field-effect transistor having counter-doped regions between lightly doped regions and doped source/drain regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710130837.1A CN108573869B (zh) 2017-03-07 2017-03-07 鳍式场效应管及其形成方法

Publications (2)

Publication Number Publication Date
CN108573869A CN108573869A (zh) 2018-09-25
CN108573869B true CN108573869B (zh) 2021-08-06

Family

ID=63445125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710130837.1A Active CN108573869B (zh) 2017-03-07 2017-03-07 鳍式场效应管及其形成方法

Country Status (2)

Country Link
US (2) US10361288B2 (zh)
CN (1) CN108573869B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630542B (zh) * 2017-03-17 2021-12-10 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN110957219B (zh) * 2018-09-26 2023-12-22 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN110957220B (zh) * 2018-09-27 2023-04-25 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US11450571B2 (en) * 2018-09-27 2022-09-20 Taiwan Semiconductor Manufacturing Company Ltd. Method for manufacturing semiconductor structure
CN111613672B (zh) * 2019-02-22 2023-09-15 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN111725313A (zh) * 2019-03-21 2020-09-29 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112018163A (zh) * 2019-05-30 2020-12-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112582265B (zh) * 2019-09-27 2023-06-02 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112582268A (zh) * 2019-09-30 2021-03-30 中芯国际集成电路制造(上海)有限公司 一种半导体器件及形成方法
CN113327855B (zh) * 2020-02-28 2022-07-26 中芯国际集成电路制造(天津)有限公司 半导体结构及其形成方法
CN113539828A (zh) * 2020-04-20 2021-10-22 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595919A (en) * 1996-02-20 1997-01-21 Chartered Semiconductor Manufacturing Pte Ltd. Method of making self-aligned halo process for reducing junction capacitance
US6107130A (en) * 1996-12-06 2000-08-22 Advanced Micro Devices, Inc. CMOS integrated circuit having a sacrificial metal spacer for producing graded NMOS source/drain junctions dissimilar from PMOS source/drain junctions
US6144068A (en) * 1996-08-09 2000-11-07 Micron Technology, Inc. Transistor device structures, and methods for forming such structures
CN106158641A (zh) * 2015-04-03 2016-11-23 中芯国际集成电路制造(上海)有限公司 finFET器件及其制作方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100223846B1 (ko) * 1997-05-28 1999-10-15 구본준 반도체 소자 및 그의 제조방법
US6589847B1 (en) * 2000-08-03 2003-07-08 Advanced Micro Devices, Inc. Tilted counter-doped implant to sharpen halo profile
US6451675B1 (en) * 2000-09-12 2002-09-17 United Microelectronics Corp. Semiconductor device having varied dopant density regions
US6617219B1 (en) * 2001-02-15 2003-09-09 Advanced Micro Devices, Inc. Semiconductor device and method for lowering miller capacitance by modifying source/drain extensions for high speed microprocessors
US6881616B1 (en) * 2001-12-14 2005-04-19 Advanced Micro Devices, Inc. System for forming a semiconductor device and method thereof including implanting through a L shaped spacer to form source and drain regions
JP2007042802A (ja) * 2005-08-02 2007-02-15 Toshiba Corp 電界効果トランジスタ及びその製造方法
JPWO2007023979A1 (ja) * 2005-08-22 2009-03-05 日本電気株式会社 Mosfetおよび半導体装置の製造方法
US7473593B2 (en) * 2006-01-11 2009-01-06 International Business Machines Corporation Semiconductor transistors with expanded top portions of gates
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
JP5100137B2 (ja) * 2007-01-26 2012-12-19 株式会社東芝 半導体装置の製造方法および半導体装置
KR100874957B1 (ko) * 2007-02-26 2008-12-19 삼성전자주식회사 오프셋 스페이서를 갖는 반도체 소자의 제조방법 및 관련된소자
US7651920B2 (en) * 2007-06-29 2010-01-26 Infineon Technologies Ag Noise reduction in semiconductor device using counter-doping
US8822293B2 (en) * 2008-03-13 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned halo/pocket implantation for reducing leakage and source/drain resistance in MOS devices
DE102008049719A1 (de) * 2008-09-30 2010-04-08 Advanced Micro Devices, Inc., Sunnyvale Asymmetrische Transistorbauelemente, die durch asymmetrische Abstandshalter und eine geeignete Implantation hergestellt sind
CN102110608A (zh) * 2009-12-23 2011-06-29 中芯国际集成电路制造(上海)有限公司 降低浅掺杂漏pn结漏电流的mos晶体管的制作方法
US8557692B2 (en) * 2010-01-12 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET LDD and source drain implant technique
DE102010001403B4 (de) * 2010-01-29 2012-04-26 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Austauschgateverfahren auf der Grundlage eines Umkehrabstandhalters, der vor der Abscheidung des Austrittsarbeitsmetalls aufgebracht wird
US20110303990A1 (en) * 2010-06-09 2011-12-15 St Microelectronics Semiconductor Device and Method Making Same
CN102456554A (zh) * 2011-11-11 2012-05-16 上海华力微电子有限公司 一种减小mos io器件gidl效应的方法
KR101986534B1 (ko) * 2012-06-04 2019-06-07 삼성전자주식회사 내장된 스트레인-유도 패턴을 갖는 반도체 소자 및 그 형성 방법
US20150187915A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Method for fabricating fin type transistor
KR102114237B1 (ko) * 2014-01-20 2020-05-25 삼성전자 주식회사 반도체 장치 및 이의 제조 방법
TWM506079U (zh) * 2015-05-26 2015-08-01 Heng-Cong Guo 機車踏墊固定結構
US10355131B2 (en) * 2016-05-17 2019-07-16 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
US20180076281A1 (en) * 2016-09-12 2018-03-15 Jeng-Jye Shau Deep channel isolated drain metal-oxide-semiconductor transistors
US10115808B2 (en) * 2016-11-29 2018-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. finFET device and methods of forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595919A (en) * 1996-02-20 1997-01-21 Chartered Semiconductor Manufacturing Pte Ltd. Method of making self-aligned halo process for reducing junction capacitance
US6144068A (en) * 1996-08-09 2000-11-07 Micron Technology, Inc. Transistor device structures, and methods for forming such structures
US6107130A (en) * 1996-12-06 2000-08-22 Advanced Micro Devices, Inc. CMOS integrated circuit having a sacrificial metal spacer for producing graded NMOS source/drain junctions dissimilar from PMOS source/drain junctions
CN106158641A (zh) * 2015-04-03 2016-11-23 中芯国际集成电路制造(上海)有限公司 finFET器件及其制作方法

Also Published As

Publication number Publication date
US20180261688A1 (en) 2018-09-13
CN108573869A (zh) 2018-09-25
US11114551B2 (en) 2021-09-07
US20190296130A1 (en) 2019-09-26
US10361288B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
CN108573869B (zh) 鳍式场效应管及其形成方法
US9613960B2 (en) Fin field effect transistors and fabrication method thereof
US11817499B2 (en) P-type strained channel in a fin field effect transistor (FinFET) device
US8809173B1 (en) Fin field-effect transistors and fabrication method thereof
CN105225937B (zh) 半导体器件的形成方法
US9601574B2 (en) V-shaped epitaxially formed semiconductor layer
CN107958873B (zh) 鳍式场效应管及其形成方法
US9755077B2 (en) Source and drain stressors with recessed top surfaces
US11004752B2 (en) Fin field-effect transistor
CN105448679B (zh) 半导体器件的形成方法
TWI757509B (zh) 在鰭式場效電晶體中形成磊晶結構
CN110047908B (zh) 半导体器件及其制造方法
CN108630548B (zh) 鳍式场效应管及其形成方法
CN110047754A (zh) 半导体器件及其制造方法
CN107591436B (zh) 鳍式场效应管及其形成方法
CN106935505B (zh) 鳍式场效应晶体管的形成方法
CN108630542B (zh) 半导体结构及其形成方法
CN106558493B (zh) 鳍式场效应管的形成方法
CN109755297B (zh) 半导体器件及其制造方法
CN105448727B (zh) 半导体器件及其形成方法
CN112151377A (zh) 半导体结构及其形成方法
CN108630610B (zh) 鳍式场效应管及其形成方法
CN106847697B (zh) 鳍式场效应晶体管的形成方法
CN104253090A (zh) Cmos晶体管的形成方法
CN107275211B (zh) 鳍式场效应管的形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant