CN108565286A - 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法 - Google Patents

高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法 Download PDF

Info

Publication number
CN108565286A
CN108565286A CN201711434029.0A CN201711434029A CN108565286A CN 108565286 A CN108565286 A CN 108565286A CN 201711434029 A CN201711434029 A CN 201711434029A CN 108565286 A CN108565286 A CN 108565286A
Authority
CN
China
Prior art keywords
dielectric
substrate
metal oxide
effect tube
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711434029.0A
Other languages
English (en)
Other versions
CN108565286B (zh
Inventor
段宝兴
曹震
董自明
师通通
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201711434029.0A priority Critical patent/CN108565286B/zh
Publication of CN108565286A publication Critical patent/CN108565286A/zh
Application granted granted Critical
Publication of CN108565286B publication Critical patent/CN108565286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种高K介质(High‑K Dielectric Pillar,HK)沟槽横向双扩散金属氧化物元素半导体场效应管(LDMOS)及其制作方法。该器件的主要是在漏端形成深槽高介电常数介质层,高K介质沟槽层的下端深入到器件衬底上方的外延层,上端与器件的漏电极相连接。HK介质沟槽与元素半导体材料衬底形成MIS电容结构,器件关断时能够有效地辅助耗尽器件衬底的电荷,使得具有低阻衬底的LDMOS可以获得高的击穿电压;而且器件反向耐压时,HK介质沟槽均匀的电场有效调制了器件体内的电场分布,降低了器件漏端的纵向高电场,提升了器件的击穿电压,解决了LDMOS随着漂移区长度增加击穿电压易饱和的问题。

Description

高K介质沟槽横向双扩散金属氧化物元素半导体场效应管及 其制作方法
技术领域
本发明涉及功率半导体器件领域,特别是涉及一种横向双扩散金属氧化物元素半导体场效应管及其制作方法。
背景技术
随着以功率MOSFET器件为代表的新型功率半导体器件迅速发展,功率半导体器件广泛应用于计算机、照明、消费类电子、汽车电子、工业驱动等领域,功率半导体器件是绿色低功耗节能环保的核心器件。以横向双扩散MOS(Lateral Double-diffused MOS,简称LDMOS)为代表的高耐压、低导通电阻的横向功率器件具有易集成,热稳定性好,较好的频率稳定性,低功耗,多子导电,功率驱动小,开关速度高等优点被广泛应用于PIC(PowerIntegrated Circuit)中。在LDMOS等横向功率器件的设计优化过程中,随着优化表面电场的终端技术,包括降低表面电场技术(Reduced Surface Field,简称RESURF)、场板(FieldPlate,简称FP)技术、横向变掺杂(Variation of Lateral Doping,简称VLD)等技术的应用,横向功率器件的表面电场已经优化到了一定程度,然而优化器件纵向电场的技术较少。
为了提高LDMOS的击穿电压,横向电场和纵向电场需要同时优化,即横向功率器件的耐压是由横向和纵向电场综合决定的。当采用RESURF等技术将器件表面电场优化到一定程度后,器件的纵向电场决定着器件的整体耐压。
发明内容
本发明提出了一种高K介质(High-K Dielectric Pillar,HK)沟槽横向双扩散金属氧化物元素半导体场效应管,旨在优化LDMOS器件击穿电压与比导通电阻的矛盾关系。
本发明的技术方案如下:
高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,包括:
半导体材料的衬底;
在衬底上生长的外延层;
在所述外延层上形成的基区和漂移区;
在所述基区上临近漂移区的一侧形成的源区和沟道,在漂移区的另一侧形成的漏区;
在基区中源区外侧形成的沟道衬底接触;
在源区和沟道衬底接触表面短接形成的源电极;
对应于沟道形成的栅绝缘层以及栅电极;
在漏区上形成的漏电极;
其特殊之处在于:
所述衬底为元素半导体材料,部分漏区刻蚀形成深沟槽,该深沟槽下端穿过漂移区深入到衬底上方的外延层,深沟槽内填充有高K介质,高K介质的深宽比主要根据器件耐压等级确定,高K介质的上端经多晶硅接触层与所述漏电极相接。
本发明还进一步作了如下优化:
多晶硅接触层和漏电极的整体厚度与栅电极的厚度相当。
高K介质的相对介电常数是100~2000。
高K介质的深度(即深沟槽的深度)与漂移区长度相关,较佳的取值为:高K介质的深度是漂移区长度的1/4~2倍。
高K介质的深宽比(即深沟槽的深宽比)根据器件耐压等级和实际工艺进行确定。如:器件耐压为600V时,高K介质的深宽比为5/1-40/1。
元素半导体材料衬底的掺杂浓度根据器件的特性要求设定,典型值为1×1013cm-3~1×1015cm-3
上述元素半导体材料可采用硅、锗等。
一种制作上述高K介质沟槽横向双扩散金属氧化物元素半导体场效应管的方法,包括以下步骤:
1)选取元素半导体材料作为衬底;
2)在衬底上生长外延层;
3)在外延层上通过离子注入或热扩散工艺形成基区和漂移区;
4)在基区和漂移区上通过场氧氧化工艺形成有源区;
5)有源区上生长栅氧化层并淀积多晶硅,再刻蚀多晶硅形成栅电极;
6)通过离子注入在基区临近漂移区的一侧形成源区和沟道,同时在漂移区的另一侧形成漏区;
7)在基区中源区外侧离子注入形成沟道衬底接触;
8)在部分漏区通过刻蚀形成深沟槽,然后淀积高K介质材料;
9)深沟槽内完全填充高K介质后,在表面淀积多晶硅,与高K介质形成接触;
10)在器件表面淀积钝化层,然后刻蚀接触孔;
11)在器件上表面淀积金属;
12)在源区和沟道衬底接触上方通过接触孔短接形成源极;
13)在漏区上方通过接触孔形成漏电极。
本发明技术方案的有益效果如下:
利用深沟槽技术在器件漏端形成高深宽比的沟槽,沟槽中淀积高K介质材料。深沟槽的高K介质层下端穿过漂移区深入到衬底上方的外延层,上端与器件表面的漏端电极相连接。HK沟槽介质层与元素半导体衬底形成MIS电容结构,当器件关断时,能够有效地辅助耗尽元素半导体衬底中的电荷,提高了器件衬底的掺杂浓度,使得具有低阻衬底的LDMOS可以获得高的击穿电压。并且,在器件反向耐压时,HK介质层上具有均匀的电场,从而可以有效地调制器件的体内电场分布,降低器件漏端区域的纵向高电场,优化了器件的纵向电场分布,提升了器件的击穿特性,解决了横向LDMOS器件随着漂移区长度增加击穿电压易饱和的问题,从而进一步优化了器件击穿电压与比导通电阻之间的矛盾关系。
附图说明
图1为本发明实施例的结构示意图(正视图)。
附图标号说明:
1-源电极;2-栅电极;3-栅绝缘层;4-漂移区;5-漏电极;6-多晶硅接触层;7-漏区;8-高K介质(填充于深沟槽);9-漂移区;10-外延层;11-衬底;12-基区;13-源区;14-沟道衬底接触;15-沟道。
具体实施方式
如图1所示,本发明的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,包括:
元素半导体材料(例如硅或锗)的衬底11(衬底的掺杂浓度为1×1013cm-3~1×1015cm-3);
在衬底11上生长的外延层10;
在外延层10上形成的基区12和漂移区9;
在基区12上临近漂移区9的一侧形成的源区13和沟道15,在漂移区9的另一侧形成的漏区7;
在基区中源区13外侧形成的沟道衬底接触14;
在源区和沟道衬底接触表面短接形成的源电极1;
对应于沟道15形成的栅绝缘层3以及栅电极2;
在漏区上形成的漏电极5;
部分漏区刻蚀形成深沟槽,该深沟槽下端穿过漂移区9深入到衬底上方的外延层10,深沟槽内填充有高K介质8。高K介质的相对介电常数是100~2000,高K介质的深度是漂移区长度的1/4~2倍;当器件耐压为600V时,高K介质的深宽比为5/1-40/1。高K介质8的上端经多晶硅接触层6与漏电极5相接。多晶硅接触层和漏电极的整体厚度与栅电极的厚度相当。
利用深沟槽技术在LDMOS器件漏区形成深沟槽,沟槽内部淀积高K介质材料,在HK沟槽上方淀积多晶硅,并在表面形成漏电极。对于传统的LDMOS,当通过RESURF和场板等技术优化了器件的表面电场后,器件的击穿发生在器件体内,由于漏区在器件体内为柱面结,在附近形成高峰电场,这样就降低了器件的纵向耐压能力。本发明通过深沟槽淀积高K介质技术使得器件漏端的高峰电场降低,并有效地优化了器件的纵向电场分布。同时又由于高K介质层与元素半导体材料形成MIS电容结构,在器件关断时能够辅助耗尽元素半导体衬底中的电荷,从而有效地提高了器件衬底的掺杂浓度,降低了衬底的电阻率。总之通过器件漏端的HK沟槽技术能够有效地提升器件的击穿特性,优化器件击穿电压和比导通电阻之间的矛盾关系。
以基于元素半导体Si材料的N沟道LDMOS为例,具体可以通过以下步骤进行制备:
1)选取P型Si材料作为衬底;
2)在衬底外延形成特定浓度的P型硅外延层;
3)在P型硅外延层上通过离子注入或热扩散形成N型漂移区和P型基区;
4)在基区和漂移区通过场氧氧化工艺形成有源区;
5)在有源区上生长栅氧化层并淀积多晶硅,然后刻蚀多晶硅和栅氧化层形成栅电极;
6)然后N型离子注入,在基区临近漂移区的一侧形成源区和沟道,同时在漂移区的另一侧形成漏区;
7)在基区中源区外侧P型离子注入形成沟道衬底接触;
8)在部分漏区通过刻蚀形成深沟槽,然后淀积高K介质材料;
9)深槽中填充高K介质后,在表面淀积多晶硅,并与高K介质材料形成接触;
10)在器件表面淀积钝化层,然后刻蚀接触孔;
11)在器件上表面淀积金属;
12)在所述源区和沟道衬底接触上方通过接触孔短接形成源极;
13)在漏区上方通过接触孔形成漏电极。
经Sentaurus软件仿真,本发明提出的新型器件的性能较之于传统器件大幅度提升,两种器件(本发明提出的器件和传统LDMOS器件)在漂移区长度相同的条件下,新型器件的击穿电压提升了55%。
当然,本发明提出的LDMOS也可以为P型沟道,其结构与N沟道LDMOS等同,本发明提出的器件漏端的高K介质沟槽技术同样适应基于元素半导体材料的LIGBT,PiN二极管等功率半导体器件,这些均应视为属于本申请权利要求的保护范围,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (8)

1.高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,包括:
半导体材料的衬底;
在衬底上生长的外延层;
在所述外延层上形成的基区和漂移区;
在所述基区上临近漂移区的一侧形成的源区和沟道,在漂移区的另一侧形成的漏区;
在基区中源区外侧形成的沟道衬底接触;
在源区和沟道衬底接触表面短接形成的源电极;
对应于沟道形成的栅绝缘层以及栅电极;
在漏区上形成的漏电极;
其特征在于:
所述衬底为元素半导体材料,部分漏区刻蚀形成深沟槽,该深沟槽下端穿过漂移区深入到衬底上方的外延层,深沟槽内填充有高K介质,高K介质的深宽比主要根据器件耐压等级确定,高K介质的上端经多晶硅接触层与所述漏电极相接。
2.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:多晶硅接触层和漏电极的整体厚度与栅电极的厚度相当。
3.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:高K介质的相对介电常数是100~2000。
4.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:高K介质的深度是漂移区长度的1/4~2倍。
5.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:器件耐压为600V时,高K介质的深宽比为5/1-40/1。
6.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:元素半导体材料的衬底掺杂浓度的典型值为1×1013cm-3~1×1015cm-3
7.根据权利要求1所述的高K介质沟槽横向双扩散金属氧化物元素半导体场效应管,其特征在于:所述元素半导体材料为硅或锗。
8.一种制作权利要求1所述高K介质沟槽横向双扩散金属氧化物元素半导体场效应管的方法,包括以下步骤:
1)选取元素半导体材料作为衬底;
2)在衬底上生长外延层;
3)在外延层上通过离子注入或热扩散工艺形成基区和漂移区;
4)在基区和漂移区上通过场氧氧化工艺形成有源区;
5)有源区上生长栅氧化层并淀积多晶硅,再刻蚀多晶硅形成栅电极;
6)通过离子注入在基区临近漂移区的一侧形成源区和沟道,同时在漂移区的另一侧形成漏区;
7)在基区中源区外侧离子注入形成沟道衬底接触;
8)在部分漏区通过刻蚀形成深沟槽,然后淀积高K介质材料;
9)深沟槽内完全填充高K介质后,在表面淀积多晶硅,与高K介质形成接触;
10)在器件表面淀积钝化层,然后刻蚀接触孔;
11)在器件上表面淀积金属;
12)在源区和沟道衬底接触上方通过接触孔短接形成源极;
13)在漏区上方通过接触孔形成漏电极。
CN201711434029.0A 2017-12-26 2017-12-26 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法 Active CN108565286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711434029.0A CN108565286B (zh) 2017-12-26 2017-12-26 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711434029.0A CN108565286B (zh) 2017-12-26 2017-12-26 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法

Publications (2)

Publication Number Publication Date
CN108565286A true CN108565286A (zh) 2018-09-21
CN108565286B CN108565286B (zh) 2021-01-29

Family

ID=63529428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711434029.0A Active CN108565286B (zh) 2017-12-26 2017-12-26 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法

Country Status (1)

Country Link
CN (1) CN108565286B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212032A (zh) * 2019-05-31 2019-09-06 西安电子科技大学 一种栅控双极-场效应复合元素半导体基横向双扩散金属氧化物半导体晶体管
CN112635564A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种基于柔性衬底的soi基ldmos器件及其制作方法
CN113740691A (zh) * 2021-07-27 2021-12-03 杭州士兰集成电路有限公司 场效应管的测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187766A1 (en) * 2004-04-09 2007-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. High Voltage Semiconductor Device Utilizing A Deep Trench Structure
US20080265363A1 (en) * 2007-04-30 2008-10-30 Jeffrey Peter Gambino High power device isolation and integration
US20120187481A1 (en) * 2009-12-02 2012-07-26 Alpha & Omega Semiconductor, Inc. Vertical Trench LDMOS Transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187766A1 (en) * 2004-04-09 2007-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. High Voltage Semiconductor Device Utilizing A Deep Trench Structure
US20080265363A1 (en) * 2007-04-30 2008-10-30 Jeffrey Peter Gambino High power device isolation and integration
US20120187481A1 (en) * 2009-12-02 2012-07-26 Alpha & Omega Semiconductor, Inc. Vertical Trench LDMOS Transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212032A (zh) * 2019-05-31 2019-09-06 西安电子科技大学 一种栅控双极-场效应复合元素半导体基横向双扩散金属氧化物半导体晶体管
CN112635564A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种基于柔性衬底的soi基ldmos器件及其制作方法
CN113740691A (zh) * 2021-07-27 2021-12-03 杭州士兰集成电路有限公司 场效应管的测试方法

Also Published As

Publication number Publication date
CN108565286B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN103280457B (zh) 一种超低比导通电阻的横向高压功率器件及制造方法
CN112164719B (zh) 具有等势浮空槽的低阻器件及其制造方法
CN104979404A (zh) 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管
CN107093623A (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN107644913A (zh) 一种具有高k电荷补偿纵向双扩散金属氧化物元素半导体场效应晶体管
CN107123684A (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN112164722A (zh) 具有均匀掺杂沟道的屏蔽栅mosfet器件及加工工艺
CN107093622A (zh) 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管
CN108091685A (zh) 一种提高耐压的半超结mosfet结构及其制备方法
CN108565286A (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法
CN107564965B (zh) 一种横向双扩散mos器件
CN107437566A (zh) 一种具有复合介质层宽带隙半导体纵向双扩散金属氧化物半导体场效应管及其制作方法
CN107579119A (zh) 具有复合介质层纵向超结双扩散金属氧化物半导体场效应管及其制作方法
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN113659009A (zh) 体内异性掺杂的功率半导体器件及其制造方法
CN108258050A (zh) 高k介质沟槽横向超结双扩散金属氧化物元素半导体场效应管及其制作方法
CN108511527A (zh) 具有电荷补偿块的垂直双扩散金属氧化物半导体场效应管及其制作方法
CN112993021B (zh) 横向双扩散金属氧化物半导体场效应管
CN107785433A (zh) 一种阶梯高k介质层宽带隙半导体纵向双扩散金属氧化物半导体场效应管
CN109585563B (zh) 一种具有钛酸锶膜的槽型横向耐压区
CN116978928A (zh) 一种基于有源耗尽机理的功率半导体器件及制造方法
CN203707141U (zh) 集成梳状栅纵向沟道soi ldmos单元
CN108447904B (zh) 一种横向igbt的制造方法
CN207896095U (zh) 一种双通道变掺杂ldmos器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant