CN109585563B - 一种具有钛酸锶膜的槽型横向耐压区 - Google Patents

一种具有钛酸锶膜的槽型横向耐压区 Download PDF

Info

Publication number
CN109585563B
CN109585563B CN201811384147.XA CN201811384147A CN109585563B CN 109585563 B CN109585563 B CN 109585563B CN 201811384147 A CN201811384147 A CN 201811384147A CN 109585563 B CN109585563 B CN 109585563B
Authority
CN
China
Prior art keywords
strontium titanate
voltage
groove
titanate film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811384147.XA
Other languages
English (en)
Other versions
CN109585563A (zh
Inventor
程骏骥
陈为真
林靖杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811384147.XA priority Critical patent/CN109585563B/zh
Publication of CN109585563A publication Critical patent/CN109585563A/zh
Application granted granted Critical
Publication of CN109585563B publication Critical patent/CN109585563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体功率器件领域,涉及横向耐压区,具体提供一种具有钛酸锶膜的槽型横向耐压区,应用于半导体功率器件的结边缘终端或者横向半导体功率器件包括LDMOS(Lateral Double‑Diffused MOSFET)、LIGBT(Lateral Insulated Gate Bipolar Transistor);本发明通过在槽型横向耐压区中的绝缘介质槽与半导体漂移区之间增加钛酸锶材料薄膜,使漂移区电荷的一部分作用于以钛酸锶膜为介质、阳极与漂移区分别为两极板的大电容,减弱了漂移区电荷改变表面电场分布的作用,在相同掺杂浓度下可实现更理想的电场分布,或在相同击穿电压条件下提高掺杂浓度,最终优化击穿电压与导通电阻之间的矛盾关系。

Description

一种具有钛酸锶膜的槽型横向耐压区
技术领域
本发明属于半导体功率器件领域,涉及横向耐压区,特别是具有槽型结构的横向耐压区;可应用于半导体功率器件的结边缘终端,或者横向半导体功率器件包括LDMOS(Lateral Do uble-Diffused MOSFET)、LIGBT(Lateral Insulated Gate BipolarTransistor)等的耐压区。
背景技术
横向半导体功率器件,如LDMOS(Lateral Double-Diffused MOSFET,LDMOS)等,因为具有易集成、易驱动、高耐压、低功耗等特点,在功率集成芯片上得到了广泛应用;但在高压应用中,传统LDMOS通常需要很长的横向耐压区来承受很高的反向耐压,占用了较大的芯片表面积,增加了芯片制造成本。为此,人们提出了一种槽型横向耐压区结构。
现有的槽型横向耐压区的一种典型结构如图1所示,它是在耐压区表面嵌入一个填充绝缘介质的槽来代替现有半导体材料(下面以硅为例)进行耐压,如此可获得两个主要优点:
其一、因为绝缘介质的临界击穿场强一般远高于硅的临界击穿场强,所以与传统LDMO S中的无槽耐压区相比,在承受相同反向电压的条件下,含绝缘介质槽的耐压区所需的横向宽度更小,即耐压区的横向尺寸有效减小;例如,硅的临界击穿场强约为2×105V/cm,二氧化硅的介电强度约为107V/cm,耐压为200V时,硅所需宽度至少为10μm,二氧化硅则只需要0.2μm,宽度和占用面积仅为前者的五十分之一;实际制作时考虑到槽的刻蚀及填充水平,一般达不到上述极限小程度的槽宽度,但介质槽减小耐压区横向尺寸的作用依然显著;而且考虑到绝缘介质中的横向电场分布非常接近矩形,半导体材料中的横向电场分布却通常为三角形或梯形,介质槽的使用更利于在一定击穿电压条件下减小耐压区的横向宽度;
其二、硅中嵌入介质槽等效增加了体硅漂移区长度。有效体硅漂移区长度从传统LDMO S中的、仅为阳极与阴极间的横向距离,变为槽型耐压区中的、沿槽边缘折叠的三段长度之和(如图1所示,总的体硅漂移区长度含两个槽纵向深度O1-O2和O3-O4、一个槽横向宽度O2-O3);众所周知,将体硅中的电场沿槽边缘从阳极积分到阴极,所得的积分值为反向电压;有效体硅漂移区长度的增加,使得积分得到的反向电压也相应增加,利于使耐压区在横向宽度相同的条件下获得更高的击穿电压;综上,现有槽型横向耐压区的优势可以归结为一方面由绝缘介质横向耐压,有效缩短耐压区的横向宽度,另一方面等效增加了半导体漂移区的长度,在一定的耐压区横向宽度的条件下提高了击穿电压,两种因素同时作用促成了耐压区电学性能的提高。
然而,现有槽型耐压区中的表面电场分布毕竟受到泊松方程的严格制约,倘若半导体材料的掺杂浓度越大,沿槽边缘方向的表面电场分布(包括沿O1-O2的纵向电场分布、沿O2-O3的横向电场分布、沿O3-O4的纵向电场分布)将越倾斜而不均匀;在同样的槽尺寸下,击穿电压将会越低;这造成了耐压区击穿电压与掺杂浓度之间的矛盾制约关系;因为在单极器件中掺杂浓度通常决定了导通电阻,所以也造成了器件击穿电压与导通电阻之间的矛盾。
发明内容
本发明的目的在于针对上述现有槽型横向耐压区结构中击穿电压与导通电阻之间的矛盾,提供一种具有钛酸锶膜的槽型横向耐压区,用以实现在不影响其它参数的同时,提高槽型横向耐压区的击穿电压,进而提高器件的击穿电压;或者在维持击穿电压的同时,降低槽型横向耐压区的导通电阻,进而降低器件的导通电阻。
为实现上述目的,本发明采用的技术方案为:
一种具有钛酸锶膜的槽型横向耐压区,包括衬底(01)、N型漂移区(02)、绝缘介质(03)、阳极P+(04)、阳极(05)、阴极N+(06)及阴极(07);所述N型漂移区(02)位于衬底(01)上方,所述N型漂移区(02)中开设深槽、深槽中填充所述绝缘介质(03),所述阳极P+(04)与阴极N+(06)均设置于N型漂移区(03)上方、且分别位于深槽两侧,所述阳极P+(04)上方设置阳极(05),所述阴极N+(06)上方设置阴极(07);其特征在于,所述深槽的槽壁处设置有一层钛酸锶膜(08),所述钛酸锶膜(08)将绝缘介质(03)与N型漂移区(02)、阳极P+(04)及阴极N+(06)隔离。
进一步的,所述槽型横向耐压区还包括P型漂移区(09),所述P型漂移区(09)设置于N型漂移区(03)中、位于位于阳极P+(04)下方,且与阳极P+(04)及钛酸锶膜(08)相接触;所述P型漂移区(09)与阳极P+(04)下方的N型漂移区进行电荷补偿。
更进一步的,所述绝缘介质(03)为临界电场强度高于硅临界电场强度的绝缘介质材料,包括但不限于SiO2、Si3N4、BenzoCycloButene(BCB)或者PolyTetraFluoroEthylene(PTFE)。
所述钛酸锶膜(08)的相对介电常数约为100~600,可随不同的制造工艺发生变化;为克服钛酸锶膜与硅之间的热应力差异,钛酸锶膜厚度为小于等于400nm。
所述衬底(01)采用硅半导体衬底或者SOI材料。
本发明的有益效果在于:
本发明提供一种具有钛酸锶膜的槽型横向耐压区,通过增加钛酸锶膜,引入一个新电容,耐压区的阳极是该电容的一个极板,钛酸锶膜是电容的介质,漂移区及耐压区的阴极构成了电容的另一极板。因为钛酸锶膜的相对介电常数可达数百,因此该电容较大;在反向电压较大、漂移区已完全耗尽时,漂移区中电荷密度的一部分作为极板电荷密度被贡献给了上述新的电容;剩余的电荷密度才按照泊松方程的制约改变漂移区的电场分布;因为剩余的电荷密度小于总的电荷密度,即小于实际掺杂浓度,在一定的掺杂浓度下,对比现有的槽型耐压区,本发明的漂移区电场分布显然能够更理想,击穿电压能够更高。同理,在一定的击穿电压要求下,通过本发明,掺杂浓度能够提高。而掺杂浓度密切联系着导通电阻,所以借助本发明能够优化击穿电压与导通电阻的矛盾。
同时,本发明提供一种同时具有超结结构和钛酸锶膜的槽型横向耐压区,在具有钛酸锶膜的槽型横向耐压区上述的优点之外,超结结构能够进一步地优化击穿电压与导通电阻之间的矛盾关系。
附图说明
图1为现有的槽型横向耐压区结构示意图。
图2为本发明实施例1中具有钛酸锶膜的槽型横向耐压区的结构示意图,其中,钛酸锶膜(08)是由钛酸锶材料构成的薄膜。
图3为本发明实施例1中硅上淀积400nm钛酸锶膜的表面和截面观测图。
图4为本发明实施例2中具有超结结构和钛酸锶膜的槽型横向耐压区的结构示意图,其中,P型漂移区(09)与N型漂移区(02)左侧形成超结结构。
图5为本发明实施例1、实施例2与现有槽型横向耐压区结构仿真结果对比图。
图6为本发明实施例3中应用了钛酸锶膜槽横向耐压区的N沟道LDMOS的结构示意图。
图7为本发明实施例3中具有现有槽型横向耐压区和具有钛酸锶膜槽横向耐压区的N沟道LDMOS的主要工艺制作示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种具有钛酸锶膜的槽型横向耐压区,其结构如图2所示;包括衬底(01)、N型漂移区(02)、绝缘介质(03)、阳极P+(04)、阳极(05)、阴极N+(06)、阴极(07)及钛酸锶膜(08);所述N型漂移区(02)位于衬底(01)上方;所述N型漂移区(02)中开设深槽、深槽中填充所述绝缘介质(03);所述阳极P+(04)位于N型漂移区(03)上方并处于绝缘介质(04)左侧,阳极P+(04)上方设置阳极(05);所述阴极N+(06)位于N型漂移区(03)上方并处于绝缘介质(04)右侧,阴极N+(06)上方设置阴极(07);所述钛酸锶膜(08)处于绝缘介质(03)与N型漂移区(02)、阳极P+(04)及阴极N+(06)之间。
钛酸锶膜与硅之间存在一定的热应力差异,膜越厚,退火时它们之间的热应力差异越难消除。本实施例中,所述钛酸锶膜厚度为小于等于400nm。本实施例通过在硅衬底上淀积钛酸锶膜,其表面效果观测图如图3所示,在厚度为400nm时与硅有良好的热匹配,均匀且未出现裂纹,故,本实施例中采用厚度为400nm的钛酸锶膜进行后续仿真测试。
从工作原理上讲:上述具有钛酸锶膜的槽型横向耐压区,在现有槽型横向耐压区的基础上,于绝缘介质与漂移区之间增加一层钛酸锶膜,用以改善上述矛盾关系,示意结构如图2所示。图2对比图1,引入了一个新电容,耐压区的阳极是该电容的一个极板,钛酸锶膜是电容的介质,漂移区及耐压区的阴极构成了电容的另一极板;因为钛酸锶膜的相对介电常数可达数百,因此该电容较大;在反向电压较大、漂移区已完全耗尽时,漂移区中电荷密度的一部分作为极板电荷密度被贡献给了上述新的电容。剩余的电荷密度才按照泊松方程的制约改变漂移区的电场分布;因为剩余的电荷密度小于总的电荷密度,即小于实际掺杂浓度,在一定的掺杂浓度下,对比现有的槽型耐压区,本发明的漂移区电场分布显然可以更理想,击穿电压可以更高;同理,在一定的击穿电压要求下,通过本发明,掺杂浓度可以提高;而掺杂浓度密切联系着导通电阻,所以借助本发明可以优化击穿电压与导通电阻的矛盾。
实施例2
本实施例提供一种具有超结结构和钛酸锶膜的槽型横向耐压区,其结构如图4所示;其与实施例1的区别在于:所述槽型横向耐压区还包括P型漂移区(09),所述P型漂移区(09)设置于N型漂移区(03)中、位于位于阳极P+(04)下方,且与阳极P+(04)及钛酸锶膜(08)相接触;所述P型漂移区(09)与阳极P+(04)下方的N型漂移区进行电荷补偿。
本实施例中P型漂移区的增加有利于在阳极P+下方形成超结结构,将在实例1中因靠近阳极P+而难以受新电容制约的电荷进行平衡,进而得到更理想的电场分布。
借助MEDICI仿真软件,对如图1、图2、图4所示的三种槽型横向耐压区进行了仿真。仿真中所使用参数为:绝缘介质一律采用二氧化硅,绝缘介质槽的深度和宽度一律分别设定为7μm和3.5μm,元胞宽度一律设定为6.5μm。仿真优化后得到的结果为:现有槽型横向耐压区的最佳N型漂移区杂质浓度为2.2e15cm-3,击穿电压为236V;具有钛酸锶膜的槽型横向耐压区的最佳N型漂移区杂质浓度为6e15cm-3,击穿电压为258V,其中钛酸锶膜的相对介电常数采用475,厚度设为400nm;具有超结结构和钛酸锶膜的槽型横向耐压区的最佳N型漂移区杂质浓度为12e15cm-3,击穿电压为296V,其中钛酸锶膜的介电系数采用475,厚度设为400nm,P型漂移区浓度为24e15cm-3,宽度为0.5μm。
分别沿着槽边缘O1-O2-O3-O4提取了现有的和本发明提出的槽型横向耐压区的表面电场分布,如图5所示。明显地,本发明所提出的槽型横向耐压区的电场分布更接近理想状态。因此尽管其漂移区杂质浓度更大,几乎为现有槽型横向耐压区的三倍,仍然可以实现相同甚至更高的击穿电压。
综上所述,本发明提出的具有钛酸锶膜的槽型横向耐压区能获得击穿电压的显著提升,或者在相同耐压的条件下获得导通电阻的显著降低。
实施例3
本实施例提供一种应用具有钛酸锶膜的槽型横向耐压区的N沟道LDMOS,其基本结构如图6所示;该结构采用了槽栅和SOI衬底。
应用现有槽型横向耐压区的N沟道LDMOS的主要制作工艺包括晶圆准备、槽刻蚀、绝缘介质填充沟槽、化学机械抛光和有源区制作等步骤,如图7所示。与之相比,本实施例仅需在淀积绝缘介质之前淀积一定厚度的钛酸锶材料,除此之外,无需多余的掩膜版或其他操作,因此并未造成复杂的工艺变化。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (5)

1.一种具有钛酸锶膜的槽型横向耐压区,包括衬底(01)、N型漂移区(02)、绝缘介质(03)、阳极P+(04)、阳极(05)、阴极N+(06)及阴极(07);所述N型漂移区(02)位于衬底(01)上方,所述N型漂移区(02)中开设深槽、深槽中填充所述绝缘介质(03),所述阳极P+(04)与阴极N+(06)均设置于N型漂移区(03)上方、且分别位于深槽两侧,所述阳极P+(04)上方设置阳极(05),所述阴极N+(06)上方设置阴极(07);其特征在于,所述深槽的槽壁处设置有一层钛酸锶膜(08),所述钛酸锶膜(08)将绝缘介质(03)与N型漂移区(02)、阳极P+(04)及阴极N+(06)隔离;所述钛酸锶膜(08)的相对介电常数为100~600,厚度为小于等于400nm。
2.按权利要求1所述具有钛酸锶膜的槽型横向耐压区,其特征在于,所述槽型横向耐压区还包括P型漂移区(09),所述P型漂移区(09)设置于N型漂移区(02)中、位于阳极P+(04)下方,且与阳极P+(04)及钛酸锶膜(08)相接触。
3.按权利要求1或2所述具有钛酸锶膜的槽型横向耐压区,其特征在于,所述绝缘介质(03)为临界电场强度高于硅临界电场强度的绝缘介质材料。
4.按权利要求3所述具有钛酸锶膜的槽型横向耐压区,其特征在于,所述绝缘介质为SiO2、Si3N4、BenzoCycloButene (BCB) 或者PolyTetraFluoroEthylene (PTFE)。
5.按权利要求1或2所述具有钛酸锶膜的槽型横向耐压区,其特征在于,所述衬底(01)采用硅半导体衬底或者SOI材料。
CN201811384147.XA 2018-11-20 2018-11-20 一种具有钛酸锶膜的槽型横向耐压区 Active CN109585563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811384147.XA CN109585563B (zh) 2018-11-20 2018-11-20 一种具有钛酸锶膜的槽型横向耐压区

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811384147.XA CN109585563B (zh) 2018-11-20 2018-11-20 一种具有钛酸锶膜的槽型横向耐压区

Publications (2)

Publication Number Publication Date
CN109585563A CN109585563A (zh) 2019-04-05
CN109585563B true CN109585563B (zh) 2021-09-24

Family

ID=65922979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811384147.XA Active CN109585563B (zh) 2018-11-20 2018-11-20 一种具有钛酸锶膜的槽型横向耐压区

Country Status (1)

Country Link
CN (1) CN109585563B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212017B (zh) * 2019-05-15 2021-06-01 电子科技大学 一种具有阻性场板的超结带槽横向耐压区
CN115602729A (zh) * 2022-12-13 2023-01-13 广东省大湾区集成电路与系统应用研究院(Cn) 横向双扩散金属氧化物半导体器件及制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969358A (zh) * 2012-12-06 2013-03-13 电子科技大学 一种横向高压功率半导体器件
CN104241365A (zh) * 2014-04-10 2014-12-24 电子科技大学 一种soi横向功率mosfet器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059243B2 (en) * 2012-06-25 2015-06-16 International Business Machines Corporation Shallow trench isolation structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969358A (zh) * 2012-12-06 2013-03-13 电子科技大学 一种横向高压功率半导体器件
CN104241365A (zh) * 2014-04-10 2014-12-24 电子科技大学 一种soi横向功率mosfet器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Study on HK-VDMOS with deep trench termination,Superlattics and Microstructures;Bo Yi,etal;《Superlattics and Microstructures》;20140808;正文第279页第4段,第284页最后1段及图1 *

Also Published As

Publication number Publication date
CN109585563A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US11189702B2 (en) Split gate semiconductor with non-uniform trench oxide
US9842925B2 (en) Insulated gate semiconductor device having a shield electrode structure and method
US8354711B2 (en) Power MOSFET and its edge termination
US8890280B2 (en) Trench-type semiconductor power devices
US8466025B2 (en) Semiconductor device structures and related processes
EP1168455B1 (en) Power semiconductor switching element
CN103098219B (zh) 超结型沟槽功率mosfet器件的制造
US20220320295A1 (en) Sic mosfet structures with asymmetric trench oxide
US9324855B2 (en) Lateral power device having low specific on-resistance and using high-dielectric constant socket structure and manufacturing method therefor
US20070126055A1 (en) Trench insulated gate field effect transistor
US20150108568A1 (en) Semiconductor structure with high energy dopant implantation
JP5298432B2 (ja) 半導体装置およびその製造方法
US12057482B2 (en) MOSFET with distributed doped P-shield zones under trenches
US9627472B2 (en) Semiconductor structure with varying doping profile and related ICS and devices
CN108389892B (zh) 一种具有纵向变掺杂剂量的深槽型横向耐压区
CN112864246B (zh) 超结器件及其制造方法
CN109585563B (zh) 一种具有钛酸锶膜的槽型横向耐压区
CN108565286A (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法
CN107785433A (zh) 一种阶梯高k介质层宽带隙半导体纵向双扩散金属氧化物半导体场效应管
Chen et al. Progressive development of superjunction power MOSFET devices
CN112635331B (zh) 一种超级结功率器件的制备方法
CN116190438A (zh) 一种AlGaN/GaN垂直型高电子迁移率晶体管及其制作方法
CN111524798B (zh) 一种具有纵向线性变掺杂的深槽横向耐压区的制备方法
CN102522338A (zh) 高压超结mosfet结构及p型漂移区形成方法
CN111192915A (zh) 半导体功率器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant