CN108559174A - 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法 - Google Patents

一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法 Download PDF

Info

Publication number
CN108559174A
CN108559174A CN201810256233.6A CN201810256233A CN108559174A CN 108559174 A CN108559174 A CN 108559174A CN 201810256233 A CN201810256233 A CN 201810256233A CN 108559174 A CN108559174 A CN 108559174A
Authority
CN
China
Prior art keywords
barrier
polypropylene
interfacial
regulation
fento
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810256233.6A
Other languages
English (en)
Other versions
CN108559174B (zh
Inventor
罗珊珊
韦良强
孙静
黄安荣
秦舒浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Material Industrial Technology Research Institute
Original Assignee
Guizhou Material Industrial Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Material Industrial Technology Research Institute filed Critical Guizhou Material Industrial Technology Research Institute
Priority to CN201810256233.6A priority Critical patent/CN108559174B/zh
Publication of CN108559174A publication Critical patent/CN108559174A/zh
Application granted granted Critical
Publication of CN108559174B publication Critical patent/CN108559174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特点是利用微纳层叠共挤出设备使含α成核剂的高阻隔聚合物在聚丙烯中原位微纤化。相形态调控和界面结晶调控有机结合,在聚丙烯中构筑取向微纤和“互锁”α横晶的多层次微观结构。利用多层次微观结构提高聚丙烯的气体阻隔性能。本发明在无相容剂的情况下通过界面结晶的方式优化高阻隔聚合物与聚丙烯界面结构,解决了普通制备工艺中高阻隔聚合物与聚丙烯界面相互作用弱而制约气体阻隔性能进一步提高的问题;且本发明所涉及的设备操作简单,模具加工容易,制造成本低,可连续化生产,生产效率高,具有良好的工业应用前景。

Description

一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法
技术领域
本发明涉及一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,更具体的说是涉及使用微纳层叠共挤出设备实现含α成核剂的高阻隔聚合物在纯聚丙烯中原位微纤化,这种聚丙烯原位微纤复合材料中含有取向微纤和大量“互锁”α横晶结构,属于高分子材料加工的技术领域。
背景技术
聚丙烯(PP),因其无毒、质轻、不透水、易加工、价格低廉而被广泛应用于包装工业中。然而,纯聚丙烯材料对氧气、二氧化碳等气体的阻隔性差,极大地限制其在食品、医药等包装领域的应用。大量研究表明,提高聚合物材料阻隔性能的关键在于:使不透气的组分垂直于气体透过方向取向排列,形成类似砖墙结构的“纳米阻隔墙”结构(nano-barrierwalls),有效延长气体分子在聚合物中扩散渗透的曲折路径。目前,不透气的组分主要有:片状填料及其衍生物(蒙脱土、石墨烯等)、高阻隔聚合物(聚乙烯醇PVA、乙烯-乙烯醇共聚物EVOH等)。具有大长径比或径厚比的片状填料广泛用于改善聚合物的阻隔性能。但是,片状填料的剥离、分散、取向通常需要复杂的工艺,难以工业化应用。相比于片状填料,直接采用高阻隔聚合物来改善PP的阻隔性能显得更加经济环保,同时还能结合两种聚合物各自的优异性能,受到广泛关注。
研究发现,只有当高阻隔聚合物在PP中以纤维状或片状形态存在时,才能有效改善基体的阻隔性能。例如,Jarus [Polymer, 2002, 43: 2401-2408]等利用微层共挤出技术制备出PP/聚酰胺66(PA66)交替多层复合材料,然后将多层材料在两相熔点间进行注塑。得到的注塑制品中PA66以微片状存在,其氧气渗透系数明显低于球状形态的传统注塑制品。此外,高阻隔聚合物大多为极性聚合物,与非极性的聚丙烯基体界面相互作用较弱,两者界面存在“缝隙”。这种“缝隙”会增加气体的透过率,阻碍气体阻隔性能的进一步提升。由此可见,采用高阻隔聚合物制备具有优异阻隔性能的聚丙烯材料需做到两方面:其一,构筑取向的纤维状或片状分散相形态;其二,设计和优化分散相与基体的界面结构。
对于相形态调控方面,在聚合物共混体系中,分散相形态取决于两相粘度比、组分比、表面张力比以及力场作用等。近年来,随着加工技术的迅猛发展,越来越多的加工技术能够促使分散相原位形成纤维或片状形态,且沿着力场方向取向排列。例如,沈佳斌[Polymers for Advanced Technologies, 2011, 22: 237-245]等利用微纳层共挤出技术中内在的应力场作用使聚酰胺6(PA6)在PP中原位微纤化。这些加工技术能够高效可控地构筑取向的纤维状或片状分散相形态,为设计和制备高阻隔材料提供了新的平台。
对于界面结构方面,目前主要通过加入相容剂来优化两相界面。例如,李长金 [工程塑料应用, 2013, 41, 83-86]等通过微纳叠层共挤出装置实现EVOH在PP中原位形成片状结构,结合马来酸酐接枝聚丙烯(PP-g-MAH)改善两相界面相互作用,提高PP的气体阻隔性能。但是,大多数相容剂分子量低,比较柔软,会引起复合材料其他性能的下降;且相容剂的合成工艺复杂,价格昂贵。
因此,在原位微纤化技术调控高阻隔聚合物相形态的基础上,需要开发一种更加高效简单的优化高阻隔聚合物与聚丙烯界面相互作用的方法,且该方法的生产工艺简单,易于控制,适合大规模工业化生产。为此,申请者提出引入成核剂界面结晶调控的方式来改善高阻隔聚合物与聚丙烯界面相互作用,具体讲是:通过微纳层叠共挤出设备实现含α成核剂的高阻隔聚合物在聚丙烯中原位微纤化,微纤表面的α成核剂在界面诱导形成α横晶。α横晶削弱两相界面“缝隙”对气体阻隔性能的消极作用。同时,控制相邻α横晶的片晶在界面相互穿插,形成“互锁”结构,进一步提高聚丙烯的阻隔性能。取向微纤和“互锁”α横晶有机结合,提供一种制备高阻隔聚丙烯材料的新方法。
发明内容
本发明的目的是针对现有高阻隔聚合物改善聚丙烯阻隔性能存在的问题而提供一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,使用该方法制备的聚丙烯中含有取向微纤和“互锁”α横晶多层次微观结构。
本发明的技术原理是:通过微纳层叠共挤出设备实现含α成核剂的高阻隔聚合物在聚丙烯中原位微纤化。将相形态调控与界面结晶调控有机结合,在聚丙烯中构筑高阻隔聚合物取向微纤与“互锁”α横晶多层次微观结构。取向微纤和“互锁”α横晶组成的纳米阻隔墙,能够有效延长气体分子在聚丙烯中扩散渗透的曲折路径,从而获得高阻隔聚丙烯材料。
具体讲,本发明所采用的技术方案是,通过微纳层叠共挤出设备使含有α成核剂的高阻隔聚合物在聚丙烯中原位微纤化后,获得多层次微观结构:
(1)所述多层次微观结构为高阻隔聚合物原位形成的取向微纤以及微纤表面α成核剂诱导形成α横晶,且相邻α横晶的片晶在界面处相互穿插,形成“互锁”结构;
(2)所述多层次微观结构中取向微纤与“互锁”α横晶组成的纳米阻隔墙,有效延长气体小分子在聚丙烯中扩散渗透的曲折路径,显著提高聚丙烯的气体阻隔性能。
在上述技术方案中,所述高阻隔聚合物为聚酯、聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、聚酰胺6、聚酰胺66中的一种,其添加量为5 wt%-40 wt%;α成核剂为二亚苄基山梨醇类、芳香族羧酸盐类、取代芳基杂环磷酸盐类、取代芳基杂环磷酸酯类、支化酰胺类、脱氢枞酸及其盐类、无机物类和高分子类中的一种,其添加量为0.1 wt%-1.0 wt%。
在上述技术方案中,所述高阻隔聚丙烯材料的制备方法是将含α成核剂的高阻隔聚合物与纯聚丙烯混合后,投入由挤出机(A、B)、熔体泵(C)、四层分配器(D)、三层分配器(E)、口模(F)、牵引辊(G)构成的微纳层叠共挤出设备中,含α成核剂的高阻隔聚合物熔体在层分配器中不断被分割、叠加,受到强烈的剪切-拉伸复合流动场作用,在聚丙烯中原位形成微纤,并沿流动方向取向排列。
在上述技术方案中,所述α横晶是由高阻隔聚合物中的α成核剂在其表面诱导聚丙烯分子链形成的,通过调控α横晶的片晶生长长度、取向度以及微纤间的距离,相邻α横晶的片晶相互穿插,形成“互锁”结构。
在上述技术方案中,α横晶的片晶生长长度、取向度可通过α成核剂含量、α成核剂种类、热处理过程来调节,微纤间的间距由高阻隔聚合物的含量、牵引辊的牵引速率来控制。
在上述技术方案中,热处理过程是指将牵引冷却成型的样品在两相熔点间的温度熔融后,经不同降温速度降至不同等温结晶温度进行热处理,热处理可以在保持微纤形态不变的条件下,提高“互锁”α横晶的完善程度。
在上述技术方案中,可通过层分配器数量、层分配器温度、牵引辊的牵引速率、热处理熔融温度、热处理降温速度、热处理等温结晶温度、高阻隔聚合物含量、高阻隔聚合物种类、α成核剂含量、α成核剂种类的调节对聚丙烯材料的气体阻隔性能进行调控。
在上述技术方案中,可通过使用不同流道形状的口模得到高阻隔聚丙烯薄膜、片材、板材或纤维。
本发明具有以下优点:
(1)本发明通过微纳层叠共挤出设备在聚丙烯中构筑高阻隔聚合物取向微纤和大量“互锁”α横晶的多层次微观结构,相形态调控与界面结晶调控有机结合,无需添加相容剂或无机填料,便可获得高阻隔聚丙烯材料,适用于医药、食品等对阻隔性能和卫生要求比较高的包装领域;
(2)本发明所涉及的设备操作简单,模具加工容易,制造成本低,可连续化生产,生产效率高,具有良好的工业应用前景。
附图说明
图1 为本发明所涉及的微纳层叠共挤出装置的结构示意图。在图中,A、B:挤出机;C:熔体泵;D:四层分配器;E:三层分配器;F:口模;G:牵引辊
图2 为基于相形态与界面结晶调控制备的高阻隔聚丙烯材料的多层次微观结构示意图。
具体实施方法
以下通过实施例对本发明进行进一步的具体描述。在以下各实施例中,各组分的用量均为重量用量。有必要在此指出,下面实施例只是对本发明的进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明进行一些非本质的改进和调整。
实施例1
将取代芳基杂环磷酸铝的碱式盐类α成核剂(商品名NA-21)和乙烯-乙烯醇共聚物(EVOH)按重量比为0.5 : 99.5混合后,投入双螺杆挤出机中挤出造粒,制得含NA-21的EVOH。其中,双螺杆挤出机各段温度控制在180oC-190oC-210oC-210oC-200oC。将含NA-21的EVOH和纯聚丙烯按10 : 90(重量比)混合后,投入微纳层叠共挤出设备中原位微纤化,其中挤出机(A、B)的加料段、输送段、熔融段、均化段、层分配器(D、E)、口模(F)的温度分别为180oC、190oC、210oC、210oC、210oC、200oC。测试挤出物的气体阻隔性能:与纯聚丙烯相比,材料的氧气渗透系数从5.340×10-14 cm3·cm/cm2·s·Pa降低至2.302×10-15 cm3·cm/cm2·s·Pa。
实施例2
将山梨醇类α成核剂(商品名T5688)和聚酰胺6(PA6)按重量比为0.7 : 99.3混合后,投入双螺杆挤出机中挤出造粒,制得含T5688的PA6。其中,双螺杆挤出机各段温度控制在180oC -220oC -230oC -230oC -220oC。将含T5688的PA6和纯聚丙烯按20 : 80(重量比)混合后,投入微纳层叠共挤出设备中原位微纤化,其中挤出机(A、B)的加料段、输送段、熔融段、均化段、层分配器(D、E)、口模(F)的温度分别为180oC、220oC、230oC、230oC、230oC、220oC。该原位微纤复合材料的氧气渗透系数为4.035×10-16 cm3·cm/cm2·s·Pa。
实施例3
将山梨醇类α成核剂(商品名T5688)和聚酰胺6(PA6)按重量比为0.7 : 99.3混合后,投入双螺杆挤出机中挤出造粒,制得含T5688的PA6。其中,双螺杆挤出机各段温度控制在180oC -220oC -230oC -230oC -220oC。将含T5688的PA6和纯聚丙烯按20 : 80(重量比)混合后,投入微纳层叠共挤出设备中原位微纤化,其中挤出机(A、B)的加料段、输送段、熔融段、均化段、层分配器(D、E)、口模(F)的温度分别为180oC、220oC、230oC、230oC、230oC、220oC。将冷却定型的样品固定在模具中,放入200oC的烘箱熔融10分钟后,快速移至130oC的油浴锅中恒温4h,得到热处理样品。该热处理样品的氧气渗透系数为2.758×10-16 cm3·cm/cm2·s·Pa。

Claims (9)

1.一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于,该方法是利用微纳层叠共挤出设备使含有α成核剂的高阻隔聚合物在聚丙烯中原位微纤化后,通过微纤中的α成核剂界面结晶调控,获得多层次微观结构:
(1)所述多层次微观结构包含高阻隔聚合物原位形成的取向微纤、微纤表面α成核剂诱导形成的α横晶,且相邻横晶的片晶在界面处相互穿插,形成“互锁”结构;
(2)所述多层次微观结构中取向微纤与“互锁”α横晶组成的纳米阻隔墙,有效延长气体小分子在聚丙烯中扩散渗透的曲折路径,显著提高聚丙烯的气体阻隔性能。
2.根据权利要求1所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于高阻隔聚合物为聚酯、聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、聚酰胺6、聚酰胺66中的一种,其添加量为5 wt%-40 wt%。
3.根据权利要求1所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于α成核剂为二亚苄基山梨醇类、芳香族羧酸盐类、取代芳基杂环磷酸盐类、取代芳基杂环磷酸酯类、支化酰胺类、脱氢枞酸及其盐类、无机物类和高分子类中的一种,其添加量为0.1 wt%-1.0 wt%。
4.根据权利要求1所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于将含α成核剂的高阻隔聚合物与纯聚丙烯混合后,投入由挤出机(A、B)、熔体泵(C)、四层分配器(D)、三层分配器(E)、口模(F)、牵引辊(G)构成的微纳层叠共挤出设备中,含α成核剂的高阻隔聚合物熔体在层分配器中不断被分割、叠加,受到强烈的剪切-拉伸复合流动场作用,在聚丙烯中原位形成微纤,并沿流动方向取向排列。
5.根据权利要求1所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于α横晶是由高阻隔聚合物中的α成核剂在其表面诱导聚丙烯分子链形成的,通过调控α横晶的片晶生长长度、取向度以及微纤间的距离,相邻α横晶的片晶相互穿插,形成“互锁”结构。
6.根据权利要求5所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于α横晶的片晶生长长度、取向度可通过α成核剂含量、α成核剂种类、结晶条件(结晶温度、降温速度)来调节,微纤间的间距由高阻隔聚合物的含量、牵引辊的牵引速率来控制。
7.根据权利要求6所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于热处理是指将牵引冷却成型的样品在两相熔点间的温度熔融后,经不同降温速度降至不同等温结晶温度进行热处理,热处理可以在保持微纤形态不变的条件下,进一步提高“互锁”α横晶的完善程度。
8.根据权利要求4或5所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于可通过层分配器数量、层分配器温度、牵引辊的牵引速率、热处理熔融温度、热处理降温速度、热处理等温结晶温度、高阻隔聚合物含量、高阻隔聚合物种类、α成核剂含量、α成核剂种类的调节对聚丙烯材料的气体阻隔性能进行调控。
9.根据权利要求1所述一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法,其特征在于通过使用不同流道形状的口模得到的挤出物是薄膜、片材、板材或纤维。
CN201810256233.6A 2018-03-27 2018-03-27 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法 Active CN108559174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810256233.6A CN108559174B (zh) 2018-03-27 2018-03-27 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810256233.6A CN108559174B (zh) 2018-03-27 2018-03-27 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法

Publications (2)

Publication Number Publication Date
CN108559174A true CN108559174A (zh) 2018-09-21
CN108559174B CN108559174B (zh) 2020-12-11

Family

ID=63533346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810256233.6A Active CN108559174B (zh) 2018-03-27 2018-03-27 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法

Country Status (1)

Country Link
CN (1) CN108559174B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233105A (zh) * 2018-09-25 2019-01-18 宁波瑞成包装材料有限公司 一种抗拉伸高阻隔性聚丙烯膜的生产方法
CN109233106A (zh) * 2018-09-25 2019-01-18 宁波瑞成包装材料有限公司 一种低成本高阻隔性聚丙烯膜的生产方法
CN109280270A (zh) * 2018-09-25 2019-01-29 宁波瑞成包装材料有限公司 一种耐高温高阻隔性聚丙烯膜的生产方法
CN109293958A (zh) * 2018-09-25 2019-02-01 宁波瑞成包装材料有限公司 一种低雾度高阻隔性聚丙烯膜的生产方法
CN109306120A (zh) * 2018-09-25 2019-02-05 宁波瑞成包装材料有限公司 一种共混法高阻隔性聚丙烯包装膜的生产方法
CN109836702A (zh) * 2019-03-05 2019-06-04 贵州省材料产业技术研究院 一种β成核剂选择性分布的聚丙烯基原位微纤发泡材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594628A (ja) * 1982-06-29 1984-01-11 Sekisui Plastics Co Ltd 繊維状構造を有する発泡体の製造方法
US20070039683A1 (en) * 2005-08-17 2007-02-22 Innegrity, Llc Methods of forming composite materials including high modulus polyolefin fibers
CN1944512A (zh) * 2006-09-13 2007-04-11 四川大学 微纤柔性可控的原位微纤化复合材料及其制备方法
CN101798421A (zh) * 2010-03-19 2010-08-11 郑州大学 在涤纶纤维增强等规聚丙烯复合材料中制备β横晶的方法
CN105538735A (zh) * 2015-12-08 2016-05-04 四川大学 一种含有含量可控且连续有序α横晶层的聚丙烯材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594628A (ja) * 1982-06-29 1984-01-11 Sekisui Plastics Co Ltd 繊維状構造を有する発泡体の製造方法
US20070039683A1 (en) * 2005-08-17 2007-02-22 Innegrity, Llc Methods of forming composite materials including high modulus polyolefin fibers
CN1944512A (zh) * 2006-09-13 2007-04-11 四川大学 微纤柔性可控的原位微纤化复合材料及其制备方法
CN101798421A (zh) * 2010-03-19 2010-08-11 郑州大学 在涤纶纤维增强等规聚丙烯复合材料中制备β横晶的方法
CN105538735A (zh) * 2015-12-08 2016-05-04 四川大学 一种含有含量可控且连续有序α横晶层的聚丙烯材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王洪见: "高聚物"结构控制"加工成型工艺研究进展", 《合成树脂及塑料》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233105A (zh) * 2018-09-25 2019-01-18 宁波瑞成包装材料有限公司 一种抗拉伸高阻隔性聚丙烯膜的生产方法
CN109233106A (zh) * 2018-09-25 2019-01-18 宁波瑞成包装材料有限公司 一种低成本高阻隔性聚丙烯膜的生产方法
CN109280270A (zh) * 2018-09-25 2019-01-29 宁波瑞成包装材料有限公司 一种耐高温高阻隔性聚丙烯膜的生产方法
CN109293958A (zh) * 2018-09-25 2019-02-01 宁波瑞成包装材料有限公司 一种低雾度高阻隔性聚丙烯膜的生产方法
CN109306120A (zh) * 2018-09-25 2019-02-05 宁波瑞成包装材料有限公司 一种共混法高阻隔性聚丙烯包装膜的生产方法
CN109306120B (zh) * 2018-09-25 2021-06-25 宁波瑞成包装材料有限公司 一种共混法高阻隔性聚丙烯包装膜的生产方法
CN109280270B (zh) * 2018-09-25 2021-06-29 宁波瑞成包装材料有限公司 一种耐高温高阻隔性聚丙烯膜的生产方法
CN109233105B (zh) * 2018-09-25 2021-06-29 宁波瑞成包装材料有限公司 一种抗拉伸高阻隔性聚丙烯膜的生产方法
CN109233106B (zh) * 2018-09-25 2021-06-29 宁波瑞成包装材料有限公司 一种低成本高阻隔性聚丙烯膜的生产方法
CN109293958B (zh) * 2018-09-25 2022-03-29 宁波瑞成包装材料有限公司 一种低雾度高阻隔性聚丙烯膜的生产方法
CN109836702A (zh) * 2019-03-05 2019-06-04 贵州省材料产业技术研究院 一种β成核剂选择性分布的聚丙烯基原位微纤发泡材料及其制备方法

Also Published As

Publication number Publication date
CN108559174B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN108559174A (zh) 一种相形态与界面结晶调控制备高阻隔聚丙烯材料的方法
CN107383612A (zh) 一种改性白石墨烯复合聚丙烯铝塑稳态管材及其制备方法
CN102501511A (zh) 一种阻隔性热封型双轴拉伸复合薄膜及其制备方法
CN108515680B (zh) 一种高强高韧聚丙烯阻隔材料及其制备方法
CN104448491B (zh) 一种石墨烯改性聚乙烯高强度复合薄型制品的挤出成型方法
CN104479205A (zh) 一种石墨烯改性聚乙烯高强度复合薄型制品的注塑成型方法
CN102408610A (zh) 一种功能性聚乙烯管材及其制备方法
US20120270989A1 (en) Composites Comprising a Polymer and a Layered Compound and Methods of Preparing and Using Same
CN103540049A (zh) 一种pvc木塑生态家具、隔断板及生产方法
CN104441544B (zh) 一种石墨烯改性尼龙66高强度复合薄型制品的挤出成型方法
CN107254087A (zh) 一种增强复合聚乙烯双壁缠绕管及其制备方法
CN102558675A (zh) 一种高熔体强度聚丙烯复合材料及其制备方法
CN105538735B (zh) 一种含有含量可控且连续有序α横晶层的聚丙烯材料及其制备方法
CN101691156B (zh) 一种bopp抗菌食品珠光膜及其制造方法
CN105566753B (zh) 一种含有含量可控且连续有序β横晶层的聚丙烯材料及其制备方法
CN104354411B (zh) 一种纳米稀土成核剂改性的高阻隔薄膜
CN104558789A (zh) 一种易加工的聚乙烯组合物
CN104559146A (zh) 一种晶须增强导热塑料材料及其制备方法
CN104974409A (zh) 注塑用高刚性线性低密度聚乙烯树脂及其制备方法
JP2000044756A (ja) エチレン−酢酸ビニル共重合体ケン化物組成物の製造法
KR20120114886A (ko) 폴리염화비닐 파이프 제조방법
CN106065115A (zh) 一种节水渗透管及其制造方法
CN103724899A (zh) 一种可热塑加工的聚乙烯醇改性材料
CN108394078A (zh) 一种提高聚乳酸气体阻隔性的方法
RU2019104361A (ru) Полимерный нанокомпозит, содержащий поли(этилентерефталат), армированный интеркалированным филлосиликатом

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant