CN108535296B - 一维材料透射电镜力-电耦合原位测试方法 - Google Patents

一维材料透射电镜力-电耦合原位测试方法 Download PDF

Info

Publication number
CN108535296B
CN108535296B CN201810375892.1A CN201810375892A CN108535296B CN 108535296 B CN108535296 B CN 108535296B CN 201810375892 A CN201810375892 A CN 201810375892A CN 108535296 B CN108535296 B CN 108535296B
Authority
CN
China
Prior art keywords
sample
substrate
transmission electron
electron microscope
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810375892.1A
Other languages
English (en)
Other versions
CN108535296A (zh
Inventor
张振宇
崔俊峰
陈雷雷
王博
郭东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810375892.1A priority Critical patent/CN108535296B/zh
Priority to US16/620,210 priority patent/US11313774B2/en
Priority to PCT/CN2018/095793 priority patent/WO2019200760A1/zh
Publication of CN108535296A publication Critical patent/CN108535296A/zh
Application granted granted Critical
Publication of CN108535296B publication Critical patent/CN108535296B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2204Specimen supports therefor; Sample conveying means therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N2001/305Fixative compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/364Embedding or analogous mounting of samples using resins, epoxy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/206Modifying objects while observing
    • H01J2237/2062Mechanical constraints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一维材料透射电镜力‑电耦合原位测试方法,设计制造一种可用来对样品进行压缩、压曲以及弯曲的多功能样品台,将透射电镜铜网的碳膜去除,并经圆心将其切成两半,将样品在酒精中超声分散,用移液枪将样品滴在半圆形铜网边缘,在光学显微镜下利用微机械装置用环氧树脂导电银胶将单个样品固定在样品台基片边缘,并将样品台基片表面用导电银漆进行涂抹,在透射电镜中进行力‑电耦合原位测试。本发明提供了一种简单、高效的透射电镜力‑电耦合原位观察实验的样品制备及测试方法,可对样品进行压缩、压曲以及弯曲实验,并且能够实时观测样品在受力过程中材料微观结构的变化以及电学性能的变化,实现了一维材料透射电镜力‑电耦合原位测试。

Description

一维材料透射电镜力-电耦合原位测试方法
技术领域
本发明涉及一维材料透射电镜力-电耦合原位测试方法,特别涉及一维材料原位纳米力学的力-电耦合测试,属于透射电镜原位纳米力学测试领域。
背景技术
随着航空、航天、深空探测等工程的建设和发展,对高性能装备的性能提出了一系列更高的要求,而高性能装备的性能取决于高性能零件的性能,一般要求表面达到亚纳米级表面粗糙度和纳米级平面度、表面/亚表面无损伤,传统的加工方法很难达到这种要求,并且产生的表面/亚表面损伤往往会影响材料的电学性能,从而影响整个器件的性能,所以需要开发新的超精密加工装备及加工工艺。要开发新的超精密加工装备及加工工艺,需要对加工机理进行了解,而机械加工即是对材料施加载荷,因此需要研究材料在受载时的变化过程及机理,在透射电镜中从原子尺度对其进行探索是一个非常重要的手段。传统的研究方法一般是分别对材料加载前和加载后在透射电镜中进行观察,而不能实时的观察材料在受载时的变化过程,所以很难对其机理进行解释。因此近几年发展了一种透射电镜原位纳米力学测试技术,它可以实时观察材料在受载时的变化过程,并且能够测量样品的电学性能,所以,透射电镜力-电耦合原位测试是一种研究材料变形及断裂机理的重要的测试方法。
一维材料在透射电镜原位纳米力学研究中具有独特的优势,其中一个重要的原因是在透射电镜中要观察材料的微观结构,样品厚度必须足够小,一般要求厚度小于200nm,而在另外一个维度方向上尺寸要足够大,保证样品能够固定而承受力的作用,一维材料本身无需额外的加工处理便能满足这两个要求,避免了加工过程中带来的损伤和污染。目前关于一维材料透射电镜力-电耦合原位测试的方法,主要是对样品在透射电镜中进行原位拉伸,观察样品在拉伸过程中其电学性能的变化,该方法只能使样品承受一种拉伸应力,并且样品制备及其困难,需要利用聚焦离子束系统(FIB)进行焊接,而FIB焊接过程中对样品的损伤和Pt污染对样品的力学性能、电学性能以及微观结构的观察都有重要的影响。因此,设计开发一种能够对一维材料在透射电镜中进行原位压缩、压曲以及弯曲实验的力-电耦合测试,同时又对样品无污染、无损的测试方法是十分重要的。
发明内容
本发明设计制造了一种多功能样品台,可对样品在透射电镜中进行原位压缩、压曲以及弯曲实验,可实时观测样品在受力过程中材料微观结构的变化以及电学性能的变化,并且提供了一种对样品无损伤的样品制备方法,实现了一维材料透射电镜力-电耦合原位测试。
本发明的技术方案:
一维材料透射电镜力-电耦合原位测试方法,设计制造一种多功能样品台,将透射电镜铜网的碳膜去除,并经圆心将其切成两半,将样品在酒精中超声分散,用移液枪将样品滴在半圆形铜网边缘;在光学显微镜下或在FIB中将单个样品从半圆形铜网边缘移至样品台边缘;在光学显微镜下利用微机械装置将样品用环氧树脂导电银胶进行固定,在空气中放置4-8小时使环氧树脂导电银胶固化,然后将样品台表面涂一层导电银漆。本发明提供了一种简单、高效的透射电镜力-电耦合原位观察实验的样品制备及测试方法,可对样品进行压缩、压曲以及弯曲实验,并且能够实时观测样品在受力过程中材料微观结构的变化以及电学性能的变化,实现了一维材料透射电镜力-电耦合原位测试。
所述的样品为纳米线或纳米管,二者是一维材料。一维材料在一个维度方向上尺寸较大,方便对样品进行固定,其他维度方向尺寸较小,可以在透射电镜下对其进行原子尺度的微观结构表征。
所述的多功能样品台是利用刻蚀以及激光隐形切割方法对SOI芯片加工而成,其材料为掺硼的P型硅,整体尺寸为:长2-3mm,宽1.5-2mm,厚0.25-0.4mm,通过激光隐形切割方法加工而成;多功能样品台包括衬底和基片两部分,其中基片厚5-15μm;首先通过刻蚀将衬底加工出宽1.5-1.7mm,深30-70μm的衬底沟槽,然后在基片上刻蚀出宽4-100μm,深20-60μm的基片沟槽;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比小于10,进行压缩实验;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比大于10,进行压曲实验;样品固定在平行于基片沟槽方向的基片边缘,使样品伸出基片长度大于2μm,进行弯曲实验。为使样品台导电,并且便于加工,样品台材料选用掺硼的P型硅,是利用刻蚀以及激光隐形切割方法对SOI芯片加工而成;由于透射电镜极靴间隙较小,样品台也必须足够小才能够固定在原位透射电镜样品杆上,考虑到操作过程的方便性,样品台整体尺寸选择为长2-3mm,宽1.5-2mm,为了使样品在透射电镜中能够达到共心高度,其厚度选择为0.25-0.4mm,由于尺寸较小,传统的金刚石刀片切割方法由于刀片尺寸限制以及容易出现崩裂现象,很难加工较小样品,而激光隐形切割方法利用穿透率较高的激光束使单晶硅结构发生变化,形成分割用的起点,然后通过外力将其分割成较小的芯片,制成的芯片边缘平滑且无崩裂现象,所以利用激光隐形切割方法;样品台在加工或在安装过程中不可避免会导致样品台倾斜,会造成要观察的样品被倾斜的样品台遮挡住,为了减小样品台倾斜对样品的观测,将样品台分为衬底和基片两部分,并通过刻蚀将衬底加工出宽1.5-1.7mm,深30-70μm的衬底沟槽,基片厚度5-15μm,基片上刻蚀出宽4-100μm,深20-60μm的基片沟槽;基片沟槽是为了实现对样品进行压缩、压曲以及弯曲的功能。样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比小于10,可进行压缩实验;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比大于10,样品在达到压缩应力极限之前能够发生弯曲,所以可进行压曲实验;样品固定在平行于基片沟槽方向的基片边缘,可进行弯曲实验。
将透射电镜铜网上的碳膜去除,并将透射电镜铜网经圆心用刀片切成两半,成半圆形铜网。透射电镜铜网作为样品的载体,为避免铜网上面的碳膜与样品交缠在一起,便于将单个样品从上面取出,应预先将碳膜去除,可在空气中通过打火机内焰将其烧掉或在酒精溶液中超声30min将其去除;为使更多样品分布在铜网边缘,以及便于取出单个样品,将铜网沿其圆心用刀片切成两半,取其中半个铜网。
将样品分散在酒精溶液中,并超声1-3min,然后利用移液枪将样品滴在半圆形铜网边缘。酒精是一种较常用,并且分散效果较好的一种有机溶剂,所以将样品放入酒精溶液中,并且超声1-3min,使样品分散;利用移液枪将样品滴在半圆形铜网边缘,便于从中取出单个样品。
若样品直径大于100nm,利用微机械装置在光学显微镜下将单个样品从半圆形铜网边缘移至样品台基片边缘;若样品直径小于100nm,利用聚焦离子束系统将单个样品从半圆形铜网边缘移至样品台基片边缘。样品直径大于100nm,在光学显微镜下可以观察到单个样品,所以可以在光学显微镜下利用微移动装置将单个样品从半圆形铜网边缘移至样品台基片边缘;样品直径小于100nm,在光学显微镜下很难观测到单个样品,所以需要利用FIB机械手将单个样品从半圆形铜网边缘移至样品台基片边缘。
在光学显微镜下利用微机械装置将样品用环氧树脂导电银胶进行固定,在空气中放置4-8小时,使环氧树脂导电银胶固化,然后将多功能样品台的基片表面涂一层导电银漆。为避免FIB焊接过程中对样品的损伤和污染,利用微机械装置在光学显微镜下将样品用环氧树脂导电银胶进行固定,采用环氧树脂导电银胶,一方面其便于进行滴胶,固化时间4-8小时,有足够的操作时间,另一方面其导电性好,可以在透射电镜对样品进行力-电耦合测试;待其固化后,将样品台基片表面涂一层导电银漆,增强样品台的导电性。
利用导电银漆将固定有样品的样品台固定在透射电镜原位纳米力学系统样品杆的样品座上。导电银漆可以使电流从样品杆通入样品中。
将样品座利用螺钉固定在样品杆上,用平头掺硼金刚石压针或平头钨压针在透射电镜下对样品进行力-电耦合原位观察实验。压针作为与样品接触的材料,为使电流通过样品,压针必须导电性要好,同时为了对样品进行压缩、压曲或者弯曲,所以使用用平头掺硼金刚石压针或者钨压针对样品进行力-电耦合测试。
本发明的效果和益处是设计制造了一种多功能样品台,并且在光学显微镜下采用微机械装置对样品用环氧树脂导电银胶进行固定,可实现在透射电镜下对样品进行压缩、压曲以及弯曲实验,并且实时观测样品微观结构的变化以及电学性能的变化,实现了一维材料透射电镜力-电耦合原位测试。
附图说明
图1是设计的多功能样品台的示意图,样品固定在样品台基片边缘的基片沟槽附近,制成悬臂梁状,如图2b所示。
图2a是一维材料透射电镜力-电耦合原位测试的原理图,样品台是利用刻蚀以及激光隐形切割技术对SOI芯片加工而成,其材料为掺硼的P型硅,利用环氧树脂导电银胶将样品固定在样品台基片边缘,制成悬臂梁状,然后将样品台基片利用导电银漆进行涂抹,增强样品台的导电性,平头压针在接触到样品并对样品施加载荷的过程中,可以通入一个恒定电压,测出通过样品的电流并测出在样品发生应变过程中电流的变化,平头压针固定在传感器上,传感器可以测得压针所执行的力和位移,从而可以获得样品的应力-应变曲线。图2b是图1方框所示的放大图,若样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比小于10,如位置1所示样品,可对样品进行压缩实验;若样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比大于10,如位置2所示样品,可对样品进行压曲实验;若样品固定在平行于基片沟槽方向的基片边缘,如位置3所示样品,可对样品进行弯曲实验;
图3a是实际压缩测试的透射电镜照片。
图3b是压曲测试的透射电镜照片。
图3c是弯曲测试过程的透射电镜照片。
图3d是压缩测试的力学信息和电学信息图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
一维材料透射电镜力-电耦合原位测试方法,设计制造了一种可用来对样品进行压缩、压曲以及弯曲的多功能样品台,利用微机械装置在光学显微镜下对样品用环氧树脂导电银胶进行固定,并将样品台基片表面用导电银漆进行涂抹,在透射电镜下可对样品进行力-电耦合原位测试;
(1)所述的样品为纳米线或纳米管,二者是一维材料;
(2)所述的多功能样品台是利用刻蚀以及激光隐形切割技术对SOI芯片加工而成,其材料为掺硼的P型硅,整体尺寸为:长2-3mm,宽1.5-2mm,厚0.25-0.4mm,是通过激光隐形切割技术加工而成;样品台包括衬底和基片两部分,其中基片厚5-15μm;首先通过刻蚀将衬底加工出宽1.5-1.7mm,深30-70μm的衬底沟槽,然后在基片上刻蚀出宽4-100μm,深20-60μm的基片沟槽。样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比小于10,可进行压缩实验;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比大于10,可进行压曲实验;样品固定在平行于基片沟槽方向的基片边缘,使样品伸出基片长度大于2μm,可进行弯曲实验;
(3)将透射电镜铜网上面的碳膜去除,并将铜网经圆心用刀片切成两半;
(4)将样品分散在酒精溶液中,并超声1-3min,然后利用移液枪将样品滴在半圆形铜网边缘;
(5)若样品直径大于100nm,可利用微机械装置在光学显微镜下将单个样品从半圆形铜网边缘移至样品台基片边缘;若样品直径小于100nm,可利用FIB将单个样品从半圆形铜网边缘移至样品台基片边缘;
(6)利用微机械装置在光学显微镜下将样品用环氧树脂导电银胶进行固定,在空气中放置4-8小时使环氧树脂导电银胶固化,然后将样品台基片表面涂一层导电银漆,增强样品台导电性;
(7)利用导电银漆将固定有样品的样品台粘在原位透射电镜样品杆的样品座上;
(8)将样品座利用螺钉固定在原位透射电镜样品杆上,用平头掺硼金刚石压针或钨压针在透射电镜下对样品进行力-电耦合原位观察实验。
实施例
设计加工多功能样品台,如图1所示,样品台是利用刻蚀以及激光隐形切割技术对SOI芯片加工而成,其材料为掺硼的P型硅,总体尺寸长2-2.1mm,宽1.7-1.8mm,厚0.3-0.31mm,是通过激光隐形切割技术加工而成;衬底沟槽宽1.6-1.7mm,深30-40μm,绿色方框对应的基片沟槽宽60-63μm,深20-23μm,沟槽通过刻蚀加工而成。
在空气中通过打火机内焰将透射电镜铜网的碳膜烧掉,用刀片沿铜网中心将其切成两半。样品选取直径100-300nm、长度50-100μm的单晶3C-SiC纳米线,将样品放入酒精溶液中超声分散2min,用移液枪将样品滴在半圆形透射电镜铜网边缘。利用微移动装置在光学显微镜下将单根纳米线从半圆形透射电镜铜网边缘移至样品台基片边缘,并用环氧树脂导电银胶进行固定。在空气中静置5小时之后,利用导电银漆对样品台基片表面进行涂抹。样品1直径239nm,固定在垂直于基片沟槽方向的边缘,伸出基片长度2047nm,可进行压缩实验,压缩过程如图3a所示;样品2直径145nm,固定在垂直于基片沟槽方向的边缘,伸出基片长度6392nm,可进行压曲实验,压曲过程如图3b所示;样品3直径250nm,固定在平行于基片沟槽方向的边缘,伸出基片长度3440nm,可进行弯曲实验,弯曲过程如图3c所示;实验过程中可实时获得样品受载过程中的微观结构变化以及电学性能变化,图3d所示为样品在压缩过程中的载荷-位移曲线和电流-位移曲线,其中电压为10V,压针为掺硼金刚石平头压针,可以看出样品所受载荷越大,通过样品的电流越大,即样品导电性越好,测得样品的压阻系数为-3x10-10 Pa-1

Claims (1)

1.一维材料透射电镜力-电耦合原位测试方法,设计制造一种可用来对样品进行压缩、压曲以及弯曲的多功能样品台,在光学显微镜下利用微机械装置对样品用环氧树脂导电银胶进行固定,并将多功能样品台基片表面用导电银漆进行涂抹,在透射电镜下对样品进行力-电耦合原位测试,并且观察样品微观结构的变化过程,其特征在于:
(1)所述的样品为纳米线或纳米管;
(2)所述的多功能样品台是利用刻蚀以及激光隐形切割方法对SOI芯片加工而成,其材料为掺硼的P型硅,整体尺寸为:长2-3mm,宽1.5-2mm,厚0.25-0.4mm,通过激光隐形切割方法加工而成;多功能样品台包括衬底和基片两部分,其中基片厚5-15μm;首先通过刻蚀将衬底加工出宽1.5-1.7mm,深30-70μm的衬底沟槽,然后在基片上刻蚀出宽4-100μm,深20-60μm的基片沟槽;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比小于10,进行压缩实验;样品固定在垂直于基片沟槽方向的基片边缘,使样品伸出基片长度与样品直径之比大于10,进行压曲实验;样品固定在平行于基片沟槽方向的基片边缘,使样品伸出基片长度大于2μm,进行弯曲实验;
(3)将透射电镜铜网上的碳膜去除,并将透射电镜铜网经圆心用刀片切成两半,成半圆形铜网;
(4)将样品分散在酒精溶液中,并超声1-3min,然后利用移液枪将样品滴在半圆形铜网边缘;
(5)若样品直径大于100nm,利用微机械装置在光学显微镜下将单个样品从半圆形铜网边缘移至样品台基片边缘;若样品直径小于100nm,利用聚焦离子束系统将单个样品从半圆形铜网边缘移至样品台基片边缘;
(6)在光学显微镜下利用微机械装置将样品用环氧树脂导电银胶进行固定,在空气中放置4-8小时,使环氧树脂导电银胶固化,然后将多功能样品台的基片表面涂一层导电银漆;
(7)利用导电银漆将固定有样品的样品台固定在透射电镜原位纳米力学系统样品杆的样品座上;
(8)将样品座利用螺钉固定在样品杆上,用平头掺硼金刚石压针或平头钨压针在透射电镜下对样品进行力-电耦合原位观察实验。
CN201810375892.1A 2018-04-18 2018-04-18 一维材料透射电镜力-电耦合原位测试方法 Expired - Fee Related CN108535296B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810375892.1A CN108535296B (zh) 2018-04-18 2018-04-18 一维材料透射电镜力-电耦合原位测试方法
US16/620,210 US11313774B2 (en) 2018-04-18 2018-07-16 TEM electromechanical in-situ testing method of one-dimensional materials
PCT/CN2018/095793 WO2019200760A1 (zh) 2018-04-18 2018-07-16 一维材料透射电镜力 - 电耦合原位测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810375892.1A CN108535296B (zh) 2018-04-18 2018-04-18 一维材料透射电镜力-电耦合原位测试方法

Publications (2)

Publication Number Publication Date
CN108535296A CN108535296A (zh) 2018-09-14
CN108535296B true CN108535296B (zh) 2020-08-14

Family

ID=63478546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810375892.1A Expired - Fee Related CN108535296B (zh) 2018-04-18 2018-04-18 一维材料透射电镜力-电耦合原位测试方法

Country Status (3)

Country Link
US (1) US11313774B2 (zh)
CN (1) CN108535296B (zh)
WO (1) WO2019200760A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799253B (zh) * 2019-01-24 2024-06-18 重庆大学 一种基于透射电镜普通样品台同时装载两个样品的方法
CN111272549B (zh) * 2020-01-31 2022-04-22 浙江大学 透射电镜原位压力试验的样品装载方法和样品夹具
CN111272543B (zh) * 2020-02-26 2020-10-02 哈尔滨工业大学 一种利用扫描电镜原位测试生长于涂层表面的纳米材料柔性的方法
CN113125475B (zh) * 2021-03-19 2022-04-01 复旦大学 一种在透射电子显微镜中原位施加应力的方法
CN113237755B (zh) * 2021-05-14 2022-03-25 东南大学 一种二维材料原位力学参数测试芯片结构及制备方法
CN113484545B (zh) * 2021-07-19 2024-07-16 中科合成油技术股份有限公司 透射电镜多样品载网及其配套制样台、制备和使用方法
CN114441585A (zh) * 2021-11-24 2022-05-06 桂林电子科技大学 一种原位观察微焊点微观组织演化的方法
CN116698632B (zh) * 2023-07-20 2023-11-03 龙华相位新材料(绵阳)股份有限公司 一种光学膜耐折性测试方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112791A1 (en) * 2003-09-30 2005-05-26 Davis Robert C. Method and apparatus for fabricating commercially feasible and structurally robust nanotube-based nanomechanical devices
US20060231754A1 (en) * 2005-04-14 2006-10-19 Wang Kang L Telegraph signal microscopy device and method
WO2007120202A2 (en) * 2005-11-09 2007-10-25 Zs Genetics, Inc. Nano-scale ligand arrays on substrates for particle beam instruments and related methods
CN201034883Y (zh) * 2006-12-29 2008-03-12 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置
US7491934B2 (en) * 2006-01-13 2009-02-17 Ut-Battelle, Llc SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast
CN101545871A (zh) * 2009-05-15 2009-09-30 北京工业大学 纳米线的显微结构与电学性能测试装置
US20100108884A1 (en) * 2008-10-28 2010-05-06 William Marsh Rice University Micromechanical Devices for Materials Characterization
CN201522458U (zh) * 2009-10-30 2010-07-07 北京工业大学 一种透射电镜用力电性能与显微结构测量的传感器
US20100254888A1 (en) * 2005-03-14 2010-10-07 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
CN101949957A (zh) * 2010-09-10 2011-01-19 东华大学 一种采用半导体纳米线作为探针精确移动纳米线的方法
JP2011228284A (ja) * 2010-04-14 2011-11-10 Beijing Funate Innovation Technology Co Ltd 透過型電子顕微鏡グリッド

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100520351C (zh) * 2006-03-03 2009-07-29 北京工业大学 单根纳米线原位力学性能测试和结构分析的方法及其装置
CN100590412C (zh) * 2006-12-29 2010-02-17 北京工业大学 扫描电镜中纳米线原位拉伸装置及方法
CN1995962A (zh) 2006-12-29 2007-07-11 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
US8351053B2 (en) * 2010-06-25 2013-01-08 The Board Of Trustees Of The University Of Illinois Apparatus and method for in situ testing of microscale and nanoscale samples
CN103743608B (zh) * 2014-01-21 2016-01-20 东南大学 用于原位透射电子显微镜的深亚微米器件样品及制备方法
CN107219243B (zh) * 2017-05-05 2019-10-11 大连理工大学 一种透射电镜原位纳米力学拉伸测试样品粘接方法
CN108896365B (zh) * 2018-07-06 2020-10-20 大连理工大学 一种透射电镜原位力学样品的无损制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112791A1 (en) * 2003-09-30 2005-05-26 Davis Robert C. Method and apparatus for fabricating commercially feasible and structurally robust nanotube-based nanomechanical devices
US20100254888A1 (en) * 2005-03-14 2010-10-07 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
US20060231754A1 (en) * 2005-04-14 2006-10-19 Wang Kang L Telegraph signal microscopy device and method
WO2007120202A2 (en) * 2005-11-09 2007-10-25 Zs Genetics, Inc. Nano-scale ligand arrays on substrates for particle beam instruments and related methods
US7491934B2 (en) * 2006-01-13 2009-02-17 Ut-Battelle, Llc SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast
CN201034883Y (zh) * 2006-12-29 2008-03-12 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置
US20100108884A1 (en) * 2008-10-28 2010-05-06 William Marsh Rice University Micromechanical Devices for Materials Characterization
CN101545871A (zh) * 2009-05-15 2009-09-30 北京工业大学 纳米线的显微结构与电学性能测试装置
CN201522458U (zh) * 2009-10-30 2010-07-07 北京工业大学 一种透射电镜用力电性能与显微结构测量的传感器
JP2011228284A (ja) * 2010-04-14 2011-11-10 Beijing Funate Innovation Technology Co Ltd 透過型電子顕微鏡グリッド
CN101949957A (zh) * 2010-09-10 2011-01-19 东华大学 一种采用半导体纳米线作为探针精确移动纳米线的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy;Josef Z.等;《Carbon》;20070331;第45卷(第6期);第1279-1288页 *
高性能表面层制造:基于可控表面完整性的精密制造;雷明凯 等;《机械工程学报》;20160930;第52卷(第17期);第187-197页 *

Also Published As

Publication number Publication date
US20200132574A1 (en) 2020-04-30
CN108535296A (zh) 2018-09-14
WO2019200760A1 (zh) 2019-10-24
US11313774B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
CN108535296B (zh) 一维材料透射电镜力-电耦合原位测试方法
CN108896365B (zh) 一种透射电镜原位力学样品的无损制备方法
Zhu et al. A review of microelectromechanical systems for nanoscale mechanical characterization
Yang et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging
JP5394596B2 (ja) 透過型電子顕微鏡用二軸傾斜のインサイチュ強度、電気的特性の総合試験試料ホルダー
Li et al. Nanoindentation of silver nanowires
US8302494B2 (en) Sensor for quantitative measurement of electromechanical properties and microstructure of nano-materials and method for making the same
CN108760438B (zh) 一种透射电镜原位力学拉伸样品制备方法
CN107422068B (zh) 一种用于微纳材料多场联合表征的应变加载系统
Fujii et al. Focused ion beam induced surface damage effect on the mechanical properties of silicon nanowires
CN105158073A (zh) 一种碳纳米管端部与碳纤维表面接枝强度的测量方法
Zhao et al. Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation
CN107621471A (zh) 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法
Liang et al. The grinding surface characteristics and evaluation of particle-reinforced aluminum silicon carbide
CN105115822A (zh) 一种高普适性单轴滑杆式应变仪
Li et al. Advances on in situ TEM mechanical testing techniques: A retrospective and perspective view
CN105223055A (zh) 用于透射电镜的原位拉伸试样及其制备方法
CN110407154B (zh) Mems微执行器、原位单轴拉伸器件及其制作方法
Sedlmayr Experimental investigations of deformation pathways in nanowires
CN110095449B (zh) 一种金属基复合材料中界面力学行为的分析方法
Zabaleta et al. Electrical transport measurements of thin film samples under high hydrostatic pressure
CN209963018U (zh) 一种热双金属拉压一体式驱动器
CN210110702U (zh) 一种多悬臂热双金属驱动器
Yan et al. A robust in situ TEM experiment for characterizing the fracture toughness of the interface in nanoscale multilayers
Sharpe Jr Mechanical Property Measurement at the Micro/Nano‐scale 1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200814

CF01 Termination of patent right due to non-payment of annual fee