CN103743608B - 用于原位透射电子显微镜的深亚微米器件样品及制备方法 - Google Patents

用于原位透射电子显微镜的深亚微米器件样品及制备方法 Download PDF

Info

Publication number
CN103743608B
CN103743608B CN201410026273.3A CN201410026273A CN103743608B CN 103743608 B CN103743608 B CN 103743608B CN 201410026273 A CN201410026273 A CN 201410026273A CN 103743608 B CN103743608 B CN 103743608B
Authority
CN
China
Prior art keywords
sample
ion beam
chip
manipulation arm
mechanical manipulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410026273.3A
Other languages
English (en)
Other versions
CN103743608A (zh
Inventor
吴幸
杨庆龄
李斯佳
余开浩
孙立涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410026273.3A priority Critical patent/CN103743608B/zh
Publication of CN103743608A publication Critical patent/CN103743608A/zh
Application granted granted Critical
Publication of CN103743608B publication Critical patent/CN103743608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种用于原位透射电子显微镜的深亚微米器件样品制备方法,采用聚焦离子束系统,利用电磁透镜将离子束聚焦成非常小尺寸而进行显微切割或研磨等加工,能够精确定位制样,获取深亚微米器件。采用聚焦离子束对样品进行切割、减薄,相对于传统聚焦离子束最终减薄样品采用相对样品台倾斜的52度倾斜±(0.5度-1.5度),创造性的使用相对样品台倾斜的52度倾斜±7度。本发明还提供一种用于原位透射电子显微镜的深亚微米器件样品,所述样品包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件,适用于原位透射电子显微镜研究,对研究深亚微米器件性能具有重大意义。

Description

用于原位透射电子显微镜的深亚微米器件样品及制备方法
技术领域
本发明涉及半导体制造技术和材料分析领域,尤其涉及一种用于原位透射电子显微镜的深亚微米器件样品及制备方法。
背景技术
在摩尔定律的驱使下,人们追求更高集成度、更小特征尺度的集成电路工艺。2012年,Intel采用最先进的22纳米工艺和革命性的3D晶体管技术,引领了半导体制造技术的革命。Intel等主流半导体公司更是致力于14纳米工艺的研发和投产。与此同时,国内中芯国际正加快32纳米工艺投产,中科院微电子所等正致力于22纳米CMOS晶体管的研发。半导体制造工艺的飞速发展,迫切需要对深亚微米器件、纳米器件的研究。
透射电子显微镜(TEM)能够在原子尺度的分辨率下观察样品,通过特殊原位样品杆的使用,还能实现对样品的原位电学、热学、力学研究。原位透射电子显微镜能实现外场作用下材料原子尺度的结构演变观测,使其成为研究纳米尺度器件结构和性能的强有力工具。然而透射电子显微镜中物镜极靴之间放置样品的空间非常狭小,通常只有10毫米左右,且透射电子显微镜以电子束作为光源,由于电子束的穿透能力很弱,因此用于透射电子显微镜的样品必须为厚度为100纳米左右的超薄切片。因此,对深亚微米器件、纳米器件的研究,透射电子显微镜的样品制备变的尤为关键。
聚焦离子束系统利用电磁透镜将离子束聚焦成非常小尺寸而进行显微切割或研磨等加工,被证明为现今最有效的精确定位制样方法。然而,目前采用聚焦离子束系统制备的透射电子显微镜样品通常有几微米宽,且一个样品只能包含一个器件,这将限制研究效率和限制纳米尺度器件研究。如何制备包含多个、分立、性状规则、宽度小于20纳米、厚度小于100纳米的原位透射电子显微镜的样品仍然是一个极大的挑战。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种用于原位透射电子显微镜的深亚微米器件样品及制备方法,样品包含多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件,它能够利用透射电子显微镜原位实时记录单个纳米器件的电学性能和原子尺度器件结构,也能够原位实时记录单个纳米器件在其他外场,如热场、光照下,器件结构演变。同时,它包含多个分立器件,能够方便地进行多组实验,这将极大的提高实验效率。
为实现上述目的,本发明采取如下技术方案:
一种用于原位透射电子显微镜的深亚微米器件样品制备方法,包括如下步骤:
(1)将样品台倾斜,在块状样品制作透射电子显微镜样品的部位沉积铂保护层作为薄片样品的加工区域,然后用离子束将薄片样品的底部和侧面切断,实现U形切断;
(2)样品台倾斜角度归零,插入纳米级别位移可控机械操控臂,机械操控臂针尖位置处于与扫描电镜的共心高度位置;
(3)插入铂离子气源探针;
(4)将机械操控臂的尖端与薄片样品自由端用铂沉积固定;
(5)将薄片样品与薄片器件的固定悬臂切断,提取薄片样品,退出机械操控臂和铂离子气源探头;
(6)放入聚焦离子束制样专用铜网;
(7)将铜网的最高处调至扫描电镜共心高度位置,铜网的倾斜角度归零;依次插入机械操控臂和铂离子气源探头,将薄片样品固定在铜网上;然后将机械操控臂与样品的连接部分切断,退出铂离子气源探头和机械操控臂;
(8)薄片样品调至扫描电镜共心高度,薄片样品相对样品台倾斜的52度倾斜±7度,减薄薄片样品到最终厚度。
更进一步的,步骤(1)选用离子束扫描旋转180度方式,将薄片样品的底部和侧面切断,实现U形切断。
更进一步的,步骤(1)首先将样品台倾转52度,控制离子束流在2-6皮安每平方微米,在薄片器件制作透射电子显微镜样品的部位沉积厚度≈1微米的铂保护层,作为薄片样品的加工区域;
然后采用6.5-21纳安离子束流在薄片样品上刻蚀矩形框,依次在薄片样品两侧刻蚀出两个矩形空洞;
接着用28-92皮安离子束流和截面精细刻蚀将预加工的薄片样品加工至1.5~2微米的厚度;
最后将样品台倾斜7度,用离子束将薄片样品的底部和侧面切断,实现U形切断;
更进一步的,步骤(4)首先手动调节机械操控臂到薄片样品右端,在扫描电镜窗口移动机械操控臂的前端使其与薄片样品的上表面齐平;
然后用30-50皮安的离子束流,沉积图形选择矩形,将机械操控臂的尖端与薄片样品自由端用铂沉积固定;
更进一步的,步骤(5)首先用1纳安的离子束流,刻蚀图形选择矩形,将薄片样品与块状样品的固定悬臂切断;
然后将机械操控臂向Z方向往上,移动薄片样品到离子束图像最小倍数时离子束窗口的最上方,将薄片样品提取出来;
最后退出机械操控臂和铂离子气源探头;
更进一步的,步骤(6)聚焦离子束制样专用铜网铜网上面分别有A、B、C三个透射电镜样品柱,选择B样品柱,优选将铜网B样品柱的中间用离子束切开一个3-5微米的矩形空洞以判断减薄过程中样品的厚度,选用离子束扫描旋转180度。
更进一步的,步骤(7)首先将铜网的最高处调至扫描电镜共心高度位置,铜网的倾斜角度归零;
然后依次插入机械操控臂和铂离子气源探头,手动移动机械操控臂,将薄片样品底部与铜网需要固定的表面接触;
接着用50皮安的离子束流,两个矩形图形并行沉积,将薄片样品固定在铜网上;
最后选用矩形图形将机械操控臂与样品的连接部分切断,将机械操控臂沿Z轴上移,退出铂离子气源探头,将机械操控臂移到初始位置,退出机械操控臂;
更进一步的,步骤(8)首先将薄片样品相对样品台倾斜的52度倾斜±7度,薄片样品调至扫描电镜共心高度,采用截面精细刻蚀图形,先用92皮安的离子束流,后用28皮安的离子束流,将样品减薄至厚度≈100纳米;
然后样品台倾斜±5度,采用5千伏的离子束对薄片样品依次每边轰击研磨10-20秒,直到保证铂保护层将要耗尽,样品变透明为止;
最后样品台倾斜±7度,采用2千伏的离子束对样品依次每边轰击研磨10-20秒,直至铂保护层耗尽。
更进一步的,步骤(8)选用离子束扫描旋转0度对薄片样品进行减薄,并且对薄片样品两个面的加工依次进行以减小应力效应。
本发明还提供一种用于原位透射电子显微镜的深亚微米器件样品,包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件。
有益效果:(1)本发明采用聚焦离子束对样品进行切割、减薄,相对于传统聚焦离子束最终减薄样品采用相对样品台倾斜的52度倾斜±(0.5度-1.5度),创造性的使用相对样品台倾斜的52度倾斜±7度,能够制备包含多个、分立、性状规则、宽度小于20纳米、厚度小于100纳米的原位透射电子显微镜的样品。(2)本发明提供的样品包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件,可以方便地进行多组原位透射电镜实验研究,极大的提高实验效率,以及实现对深亚微米器件进行电学性能、光电性能原位实时研究,对研究深亚微米器件性能具有重大意义。(3)本发明提供的制备方法采用聚焦离子束系统,利用电磁透镜将离子束聚焦成非常小尺寸而进行显微切割或研磨等加工,能够精确定位制样,获取深亚微米器件。(4)本发明提供的样品包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件,能够利用透射电子显微镜原位实时记录单个纳米器件的电学性能和原子尺度器件结构,也能够原位实时记录单个纳米器件在其他外场,如热场、光照下,器件结构演变。同时,它包含多个分立器件,能够方便地进行多组实验,这将极大的提高实验效率。
附图说明
图1为本发明提供的制备方法步骤(1)聚焦离子束“U”形切断示意图。
图2为本发明提供的制备方法步骤(2)插入机械操控臂的针尖至与扫描电镜的共心高度位置示意图。
图3为本发明提供的制备方法步骤(3)插入铂离子气源探针示意图。
图4为本发明提供的制备方法步骤(4)铂离子沉积将机械操控臂和薄片粘合示意图。
图5为本发明提供的制备方法步骤(5)原位提取薄片样品示意图。
图6为本发明提供的制备方法步骤(6)聚焦离子束制样专用铜网示意图。
图7为本发明提供的制备方法步骤(7)铂离子沉积固定薄片样品到铜网上示意图。
图8为本发明提供的制备方法步骤(8)减薄薄片样品到最终厚度。
具体实施方式
下面结合附图对本发明作更进一步的说明。
图1-图8为一种用于原位透射电子显微镜的深亚微米器件样品制备方法实施例流程示意图,其中各标号为:铂保护层1、“U”形切断2、机械操控臂3、铂离子气源探针4、沉积的铂离子5、预加工的透射电镜薄片6、聚焦离子束制样专用铜网7、沉积的铂离子8、包含多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的原位透射电镜样品9。
步骤一:如图(1)所示,首先在块状样品感兴趣的区域(制作透射电镜薄片样品的部位)沉积厚度~1微米的铂保护层1,采用样品台倾转52度,控制离子束流在2-6皮安每平方微米。然后采用6.5-21纳安的较大的离子束流,刻蚀图形选矩形框,依次将薄片样品两侧刻蚀出两个大的矩形空洞。接着用28-92皮安的较小的离子束流和截面精细刻蚀图形将预加工的薄片加工至1.5~2微米的厚度。最后将样品台倾斜7度,优选离子束扫描旋转180度,用离子束将薄片样品的底部和侧面切断,实现了“U”形切断2。
步骤二:如图(2)所示,样品台倾斜角度归零,插入纳米级别位移可控机械操控臂3,针尖位置应处于与扫描电镜的共心高度位置。
步骤三:如图(3)所示,插入铂离子气源探针4。
步骤四:如图(4)所示,手动调节机械操控臂3到薄片样品右端,在扫描电镜窗口移动机械操控臂3的前端使其与薄片样品的上表面齐平。然后,用30-50皮安的离子束流,沉积图形选择矩形,将机械操控臂3的尖端与薄片自由端用铂离子5沉积固定。
步骤五:如图(5)所示,先用1纳安的离子束流,刻蚀图形选择矩形,将薄片样本与块状样品的固定悬臂切断。然后,将机械操控臂3向Z方向往上,移动薄片样品到离子束图像最小倍数时离子束窗口的最上方,将薄片提取出来。退出机械操控臂3和退出铂离子气源探头。
步骤六:如图(6)所示为聚焦离子束制样专用铜网7,铜网7上面分别有A、B、C三个透射电镜样品柱,本示例选择B样品柱。优选减薄过程中判断薄片样品的厚度,固定样品前可以将铜网B样品柱的中间用离子束切开一个3-5微米的矩形空洞。该部分操作优选离子束扫描旋转180度。
步骤七:如图(7)所示,将铜网7的最高处调至扫描电镜共心高度,铜网7的倾斜角度归零。依次插入机械操控臂3和铂离子气源探头,手动移动机械操控臂3,将薄片样品底部与铜网将要固定的表面接触。然后,用50皮安的离子束流,两个矩形图形用铂离子8并行沉积,将样品固定在铜网上。最后,选用矩形图形将机械操控臂3与薄片样品的连接部分切断,将机械操控臂3沿Z轴上移,退出铂离子气源探头,将机械操控臂3移到初始位置,退出机械操控臂3。
步骤八:如图(8)所示,减薄样品到最终厚度。这一部分操作时优选离子束扫描旋转取消。不同于传统聚焦离子束最终减薄薄片样品采用相对样品台倾斜的52度倾斜±(0.5度-1.5度),样品相对样品台倾斜的52度倾斜±7度,这一部分为本发明用于原位透射电子显微镜的深亚微米器件样品制备方法的关键、特殊步骤,是实现薄片样品包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件的关键技术部分。样品调至扫描电镜共心高度,采用截面精细刻蚀图形,先用92皮安的离子束流,后用28皮安的离子束流,将薄片样品减至厚度~100纳米。优选样品两个面的加工依次进行以减小应力效应。
接着,样品台倾斜±5度,采用5千伏的离子束对薄片样品依次每边轰击研磨10-20秒,直到保证铂保护层1将要耗尽,薄片样品变的非常透明为止。最后,样品台倾斜±7度,采用2千伏的离子束对薄片样品依次每边轰击研磨10-20秒,直至铂保护层1耗尽,完成了用于原位透射电子显微镜的深亚微米器件样品的制备。
本发明还提供一种用于原位透射电子显微镜的深亚微米器件样品,包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件,有上述制备方法制作而成。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于包括如下步骤:
(1)将样品台倾斜,在块状样品制作透射电子显微镜样品的部位沉积铂保护层作为薄片样品的加工区域,然后用离子束将薄片样品的底部和侧面切断,实现U形切断;
(2)样品台倾斜角度归零,插入纳米级别位移可控机械操控臂,机械操控臂针尖位置处于与扫描电镜的共心高度位置;
(3)插入铂离子气源探针;
(4)将机械操控臂的尖端与薄片样品自由端用铂沉积固定;
(5)将薄片样品与块状样品的固定悬臂切断,提取薄片样品,退出机械操控臂和铂离子气源探头;
(6)放入聚焦离子束制样专用铜网;
(7)将铜网的最高处调至扫描电镜共心高度位置,铜网的倾斜角度归零;依次插入机械操控臂和铂离子气源探头,将薄片样品固定在铜网上;然后将机械操控臂与样品的连接部分切断,退出铂离子气源探头和机械操控臂;
(8)样品调至扫描电镜共心高度,将样品相对样品台倾斜的52度倾斜±7度,采用截面精细刻蚀图形,先用92皮安的离子束流,后用28皮安的离子束流,将薄片样品减至厚度≈100纳米;接着,样品台倾斜±5度,采用5千伏的离子束对薄片样品依次每边轰击研磨10-20秒,直到保证铂保护层1将要耗尽,薄片样品变的非常透明为止;最后,样品台倾斜±7度,采用2千伏的离子束对薄片样品依次每边轰击研磨10-20秒,直至铂保护层1耗尽。
2.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(1)选用离子束扫描旋转180度方式,将薄片样品的底部和侧面切断,实现U形切断。
3.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(1)首先将样品台倾转52度,控制离子束流在2-6皮安每平方微米,在薄片器件制作透射电子显微镜样品的部位沉积厚度微米的铂保护层,作为薄片样品的加工区域;
然后采用6.5-21纳安离子束流在薄片样品上刻蚀矩形框,依次在薄片样品两侧刻蚀出两个矩形空洞;
接着用28-92皮安离子束流和截面精细刻蚀图形将预加工的薄片样品加工至1.5~2微米的厚度;
最后将样品台倾斜7度,用离子束将薄片样品的底部和侧面切断,实现U形切断。
4.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(4)首先手动调节机械操控臂到薄片样品右端,在扫描电镜窗口移动机械操控臂的前端使其与薄片样品的上表面齐平;
然后用30-50皮安的离子束流,沉积图形选择矩形,将机械操控臂的尖端与薄片样品自由端用铂沉积固定。
5.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(5)首先用1纳安的离子束流,刻蚀图形选择矩形,将薄片样品与块状样品的固定悬臂切断;
然后将机械操控臂向Z方向往上,移动薄片样品到离子束图像最小倍数时离子束窗口的最上方,将薄片样品提取出来;
最后退出机械操控臂和铂离子气源探头。
6.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(6)聚焦离子束制样专用铜网铜网上面分别有A、B、C三个透射电镜样品柱,选择B样品柱,将铜网B样品柱的中间用离子束切开一个3-5微米的矩形空洞以判断减薄过程中样品厚度,选用离子束扫描旋转180度。
7.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(7)首先将铜网的最高处调至扫描电镜共心高度位置,铜网的倾斜角度归零;
然后依次插入机械操控臂和铂离子气源探头,手动移动机械操控臂,将薄片样品底部与铜网需要固定的表面接触;
接着用50皮安的离子束流,两个矩形图形并行沉积,将薄片样品固定在铜网上;
最后选用矩形图形将机械操控臂与样品的连接部分切断,将机械操控臂沿Z轴上移,退出铂离子气源探头,将机械操控臂移到初始位置,退出机械操控臂。
8.根据权利要求1所述的一种用于原位透射电子显微镜的深亚微米器件样品制备方法,其特征在于:所述步骤(8)选用离子束扫描旋转0度对薄片样品进行减薄,并且对薄片样品两个面的加工依次进行以减小应力效应。
9.一种权利要求1所述用于原位透射电子显微镜的深亚微米器件样品制备方法获取的样品,其特征在于:该样品包括多个、分立、形状规则、宽度小于20纳米、厚度小于100纳米的器件。
CN201410026273.3A 2014-01-21 2014-01-21 用于原位透射电子显微镜的深亚微米器件样品及制备方法 Active CN103743608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410026273.3A CN103743608B (zh) 2014-01-21 2014-01-21 用于原位透射电子显微镜的深亚微米器件样品及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410026273.3A CN103743608B (zh) 2014-01-21 2014-01-21 用于原位透射电子显微镜的深亚微米器件样品及制备方法

Publications (2)

Publication Number Publication Date
CN103743608A CN103743608A (zh) 2014-04-23
CN103743608B true CN103743608B (zh) 2016-01-20

Family

ID=50500646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410026273.3A Active CN103743608B (zh) 2014-01-21 2014-01-21 用于原位透射电子显微镜的深亚微米器件样品及制备方法

Country Status (1)

Country Link
CN (1) CN103743608B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956669A (zh) * 2018-06-08 2018-12-07 浙江大学 一种金属燃料颗粒表面氧化层检测方法
CN110057851A (zh) * 2019-05-17 2019-07-26 中国科学院地球化学研究所 一种原位制备微米级的单颗粒多个tem薄片样品的方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842045B (zh) * 2016-03-22 2018-12-07 西安交通大学 一种利用聚焦离子束制备大尺寸透射样品的加工方法
CN106018442A (zh) * 2016-05-31 2016-10-12 华东师范大学 原子尺度下动态观测iii-v族场效应晶体管栅介质失效的方法
CN105973678B (zh) * 2016-07-15 2018-07-31 吉林大学 向金刚石对顶砧转移二维层状半导体材料的装置和方法
CN106404512A (zh) * 2016-10-19 2017-02-15 中国科学院生物物理研究所 一种用于透射电镜的载网
EP3318862B1 (en) * 2016-11-04 2019-08-21 FEI Company Tomography sample preparation systems and methods with improved speed, automation, and reliability
CN108037146A (zh) * 2017-11-16 2018-05-15 长江存储科技有限责任公司 基于非精确定位的透射电镜样品制备方法
CN109839296A (zh) * 2017-11-28 2019-06-04 中国科学院上海微系统与信息技术研究所 一种用于原位电学测试的透射电镜样品的制备方法
CN108535296B (zh) * 2018-04-18 2020-08-14 大连理工大学 一维材料透射电镜力-电耦合原位测试方法
CN110595848B (zh) * 2018-06-12 2022-04-01 中国科学院苏州纳米技术与纳米仿生研究所 微米级颗粒透射电子显微镜样品的制备方法
CN108982559A (zh) * 2018-07-13 2018-12-11 中国科学院合肥物质科学研究院 使用聚焦离子束扫描电镜双束系统制备微、纳米结构样品的方法
CN109298005B (zh) * 2018-08-15 2019-06-28 中国科学院地质与地球物理研究所 聚焦离子束—氦离子显微镜对页岩纳米孔隙三维成像方法
CN109136323A (zh) * 2018-09-21 2019-01-04 云南省农业科学院生物技术与种质资源研究所 一种马铃薯y病毒粒体的原位分离固定电子显微镜诊断方法
CN109342481A (zh) * 2018-12-04 2019-02-15 中国工程物理研究院材料研究所 一种fib-tims测量含铀微粒同位素比的方法
CN111435122B (zh) * 2019-01-12 2023-03-21 中国科学院苏州纳米技术与纳米仿生研究所 半导体材料的阴极荧光成像测试方法
CN110567994B (zh) * 2019-10-12 2022-03-04 上海华力微电子有限公司 一种提取用于透射电子显微镜的待测样品的方法
CN110797457B (zh) * 2019-10-22 2021-10-12 华东师范大学 一种多层存储结构透射电子显微镜原位电学测试单元制备方法
CN111238894B (zh) * 2020-02-03 2023-02-28 天津理工大学 一种原位电学tem样品的制备方法
CN111537529A (zh) * 2020-04-09 2020-08-14 中国科学院微电子研究所 一种用于附着穿透式电子显微镜样品的硅网及其制备方法
CN111474196B (zh) * 2020-04-16 2024-01-30 宸鸿科技(厦门)有限公司 透射电子显微镜样品制备所产生形变的控制方法
CN111693349B (zh) * 2020-07-07 2024-08-16 西安交通大学 一种利用聚焦离子束提取透射电镜样品的装置
CN115448251B (zh) * 2022-09-29 2023-12-12 中国科学院合肥物质科学研究院 纳米线制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235947A (zh) * 2010-04-29 2011-11-09 中芯国际集成电路制造(上海)有限公司 一种透射电子显微镜观测样品制备方法
CN102809496A (zh) * 2011-06-03 2012-12-05 Fei公司 制备用于tem成像的薄样本的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014899A (ja) * 2006-07-10 2008-01-24 Jeol Ltd 試料作製方法
US8258473B2 (en) * 2010-11-12 2012-09-04 Nanotem, Inc. Method and apparatus for rapid preparation of multiple specimens for transmission electron microscopy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235947A (zh) * 2010-04-29 2011-11-09 中芯国际集成电路制造(上海)有限公司 一种透射电子显微镜观测样品制备方法
CN102809496A (zh) * 2011-06-03 2012-12-05 Fei公司 制备用于tem成像的薄样本的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
In situ lift-out dedicated techniques using FIB–SEM system for TEM specimen preparation;Dacian Tomus等;《Micron》;20131231;第44卷;第115–119页 *
聚焦离子束技术制备与样品表面平行的TEM 样品;王雪丽 等;《电子显微学报》;20131031;第32卷(第5期);第420-425页 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956669A (zh) * 2018-06-08 2018-12-07 浙江大学 一种金属燃料颗粒表面氧化层检测方法
CN110057851A (zh) * 2019-05-17 2019-07-26 中国科学院地球化学研究所 一种原位制备微米级的单颗粒多个tem薄片样品的方法

Also Published As

Publication number Publication date
CN103743608A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
CN103743608B (zh) 用于原位透射电子显微镜的深亚微米器件样品及制备方法
Thompson et al. In situ site-specific specimen preparation for atom probe tomography
KR102646112B1 (ko) 하전 입자 빔 장치
TWI666675B (zh) Charged particle beam device
JP5647603B2 (ja) 加工済みフィーチャの断層像をつくる方法および1または複数の加工済みフィーチャの画像を生成する方法
TW446986B (en) Stage for charged particle microscopy system
JP6586261B2 (ja) 大容量temグリッド及び試料取り付け方法
CN103808540B (zh) 透射电子显微镜样品的制作方法
US10832890B2 (en) Charged particle beam device
CN111537533B (zh) 一种尖晶石微米颗粒的球差矫正tem样品制备方法
US12007344B2 (en) Method for cross-section sample preparation
JP2017003579A (ja) ミクロ構造診断用の試料を作製する方法及びミクロ構造診断用の試料
CN105910855B (zh) 带电粒子束装置
CN105158516A (zh) 一种集成电路分析中透射电镜平面样品的制备方法
Zhang et al. 3D characterisation using plasma FIB-SEM: A large-area tomography technique for complex surfaces like black silicon
KR102144555B1 (ko) 하전 입자 빔 샘플 준비과정에서 커트닝을 감소하기 위한 방법 및 시스템
CN111081515B (zh) 带电粒子束装置和试样加工观察方法
CN106383250A (zh) 一种采用二维原子晶体材料的扫描隧道显微镜探针
Atiqah et al. Application of focused ion beam micromachining: a review
Zhang et al. Advanced characterisation of black silicon surface topography with 3D PFIB-SEM
CN101966977A (zh) 一种用于微纳材料的尺寸缩减方法及电极制作方法
TWI478362B (zh) 薄膜太陽能電池之雷射切割裝置及其測量方法
CN105004886B (zh) 用于呈现微粒立体形貌的装置
Bailey et al. Preparation of 3D atom probe samples of multilayered film structures using a focused ion beam
JP7330326B2 (ja) 走査型静電容量顕微鏡法のための試験片を準備する方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant