CN108475703B - 碳化硅半导体装置 - Google Patents

碳化硅半导体装置 Download PDF

Info

Publication number
CN108475703B
CN108475703B CN201680077297.9A CN201680077297A CN108475703B CN 108475703 B CN108475703 B CN 108475703B CN 201680077297 A CN201680077297 A CN 201680077297A CN 108475703 B CN108475703 B CN 108475703B
Authority
CN
China
Prior art keywords
type region
region
silicon carbide
electrode
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680077297.9A
Other languages
English (en)
Other versions
CN108475703A (zh
Inventor
田所千广
田口健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN108475703A publication Critical patent/CN108475703A/zh
Application granted granted Critical
Publication of CN108475703B publication Critical patent/CN108475703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

碳化硅衬底(50)设置有第1面(S1)和与第1面(S1)相反的第2面(S2),该碳化硅衬底具有n型区域(10)和p型区域(20),该n型区域(10)将第1面(S1)和第2面(S2)连接,该p型区域(20)与n型区域(10)接触,将第1面(S1)和第2面(S2)连接。第1阳极电极(32)在第1面(S1)之上与n型区域(10)肖特基接合。第1阴极电极(31)在第2面(S2)之上与n型区域(10)欧姆接合。第2阳极电极(41)在第1面(S1)之上与p型区域(20)欧姆接合。第2阴极电极(42)在第2面(S2)之上与p型区域(20)肖特基接合。

Description

碳化硅半导体装置
技术领域
本发明涉及碳化硅半导体装置,特别是涉及具有肖特基结的碳化硅半导体装置。
背景技术
当前,使用硅(Si)作为半导体材料的pn结二极管被广泛使用。该二极管能够较容易地确保高的耐压和低的正向电压这两者。另一方面,该二极管具有通断速度慢这样的缺点。因此,作为能够实现更高速的通断的二极管,近年来,使用碳化硅作为半导体材料的肖特基势垒二极管(SBD)开始被使用。例如,如日本特开2002-261295号公报(专利文献1)所公开的那样,通常的SBD的主要部分具有较简单的结构。具体而言,SBD的主要部分具有n+衬底、n型缓冲层、n型漂移层、肖特基电极和欧姆电极。肖特基电极是在n型漂移层之上作为阳极电极而设置的。欧姆电极是在n+衬底之上作为阴极电极而设置的。
专利文献1:日本特开2002-261295号公报
发明内容
在半导体装置、特别是电力用半导体装置中,电力损耗的降低是重要的课题。为了降低SBD的电力损耗,降低正向电压是尤为重要的。上述公报中记载的SBD的主要部分如上所述具有较简单的结构,因此用于对其正向电压进行调整的典型的方法有限。具体而言,典型的方法是提高n型漂移层的载流子浓度、或者减小n型漂移层的厚度。然而,无论哪种方法,正向电压的降低都会伴随耐压的降低。
本发明就是为了解决以上的课题而提出的,其目的是提供能够保持充分的耐压,且进一步降低正向电压的碳化硅半导体装置。
本发明的碳化硅半导体装置具有:碳化硅衬底、第1阳极电极、第1阴极电极、第2阳极电极和第2阴极电极。在碳化硅衬底设置有第1面和与第1面相反的第2面。碳化硅衬底具有n型区域和p型区域,该n型区域将第1面和第2面连接,该p型区域与n型区域接触,将第1面和第2面连接。第1阳极电极在第1面之上与n型区域肖特基接合。第1阴极电极在第2面之上与n型区域欧姆接合。第2阳极电极在第1面之上与p型区域欧姆接合。第2阴极电极在第2面之上与p型区域肖特基接合。
发明的效果
根据本发明,能够保持充分的耐压,且进一步降低正向电压。
本发明的目的、特征、方案以及优点通过以下的详细说明和附图变得更清楚。
附图说明
图1是概略地表示本发明的实施方式1中的碳化硅装置的等效电路的结构的电路图。
图2是概略地表示本发明的实施方式1中的碳化硅装置的结构的剖视图。
图3是概略地表示本发明的实施方式2中的碳化硅装置的结构的剖视图。
图4是概略地表示本发明的实施方式3中的碳化硅装置的结构的剖视图。
图5是概略地表示本发明的实施方式4中的碳化硅装置的结构的剖视图。
图6是概略地表示本发明的实施方式5中的碳化硅装置的结构的剖视图。
具体实施方式
下面,基于附图对本发明的实施方式进行说明。
(实施方式1)
图1是概略地表示本实施方式的二极管91(碳化硅半导体装置)的等效电路的结构的电路图。二极管91的等效电路具有:阳极端子AD、阴极端子CD、肖特基势垒二极管SBp和肖特基势垒二极管SBn。肖特基势垒二极管SBp以及肖特基势垒二极管SBn各自的阳极侧与阳极端子AD连接。肖特基势垒二极管SBp以及肖特基势垒二极管SBn各自的阴极侧与阴极端子CD连接。换言之,肖特基势垒二极管SBp以及肖特基势垒二极管SBn以相同的正向并联连接。
图2是概略地表示二极管91的结构的剖视图。二极管91具有:碳化硅衬底50、第1阳极电极32、第1阴极电极31、第2阳极电极41、第2阴极电极42和共用阳极电极60。在碳化硅衬底50设置有第1面S1和与第1面S1相反的第2面S2。第1面S1以及第2面S2是彼此实质上平行的面。碳化硅衬底50具有n型区域10以及p型区域20。
n型区域10将第1面S1和第2面S2彼此连接。n型区域10具有n区域11以及n+区域12。n+区域12的杂质浓度高于n区域11的杂质浓度。n区域11配置于第1面S1。n+区域12配置于第2面S2。
p型区域20将第1面S1和第2面S2彼此连接。p型区域20具有p区域21以及p+区域22。p+区域22的杂质浓度高于p区域21的杂质浓度。p区域21配置于第2面S2。p+区域22配置于第1面S1。
p型区域20与n型区域10接触。具体而言,p区域21与n区域11接触。由此,设置有由n型区域10以及p型区域20实现的pn结。该pn结沿与第1面S1以及第2面S2各自交叉的方向(在图2中为纵向)而延伸。由此,在二极管91设置所谓的超结构造。
第1阳极电极32为肖特基电极,在第1面S1之上与n型区域10的n区域11肖特基接合。第1阳极电极32为含有第1金属元素、例如Ti(钛)的导体层,例如为Ti层。第2阳极电极41为欧姆电极,在第1面S1之上与p型区域20的p+区域22欧姆接合。第2阳极电极41优选远离n型区域10。就第2阳极电极41而言,为了得到良好的欧姆接合,优选在第1面S1之上进行硅化。第2阳极电极41可以含有与上述第1金属元素不同的第2金属元素,例如含有Pt(铂)。例如,第2阳极电极41为Pt层。
共用阳极电极60与第1阳极电极32、第2阳极电极41分别接触。由此,共用阳极电极60具有作为阳极端子AD(图1)的功能。此外,在第1阳极电极32和第2阳极电极41彼此接触的情况下,它们各自具有作为阳极端子AD的功能,因此可以省略共用阳极电极60。
第1阴极电极31为欧姆电极,在第2面S2之上与n型区域10的n+区域12欧姆接合。第1阴极电极31优选远离p型区域20。就第1阴极电极31而言,为了得到良好的欧姆接合,优选在第2面S2之上进行硅化。第2阴极电极42为肖特基电极,在第2面S2之上与p型区域20肖特基接合。第1阴极电极31以及第2阴极电极42也可以含有共同的金属元素。例如,第1阴极电极31可以是在第2面S2之上被硅化的Ni(镍)层,第2阴极电极42可以是Ni层。第1阴极电极31和第2阴极电极42也可以彼此连接。
上述的肖特基电极能够通过成为肖特基电极的层的成膜和为了该层的烧结而进行的热处理来形成。另外,上述的欧姆电极能够通过成为欧姆电极的层的成膜和为了该层的硅化而进行的热处理来形成。为了烧结而进行的热处理的温度低于为了硅化而进行的热处理的温度。例如,前者为400℃左右,后者为1100℃左右。此外,就为了成为肖特基电极的层的烧结而进行的热处理而言,也可以对成为肖特基电极的层以及成为欧姆电极的层这两个层进行。另一方面,为了成为欧姆电极的层的硅化而进行的热处理仅对成为欧姆电极的层进行,而不对成为肖特基电极的层进行。
根据本实施方式,设置由n型区域10以及p型区域20的pn结实现的超结构造。由此,在向二极管91施加了反向电压时,耗尽层还能够沿横向(与碳化硅衬底50的厚度方向正交的方向)延伸。因此,即使作为漂移层的n型区域10以及p型区域20、即n区域11以及p区域21的杂质浓度以一定程度增高,也能够确保充分的耐压。通过提高杂质浓度,由此漂移层相对于正向电流的电阻(微分电阻)降低。另外,n型区域10以及p型区域20(图2)各自构成肖特基势垒二极管SBn以及肖特基势垒二极管SBp(图1)。由此,与仅n型区域以及p型区域中的一者构成肖特基势垒二极管的情况相比,能够将作为二极管实际起作用的部分的面积、即有效面积确保得较大。由此,能够进一步降低正向电压。由此,根据本实施方式,能够确保耐压,并且降低正向电压。
第2阳极电极41可以含有第2金属元素,该第2金属元素与第1阳极电极32所含有的第1金属元素不同。在该情况下,能够进一步优化需要与n型半导体肖特基接合的第1阳极电极的材料的物理性质和需要与n型半导体欧姆接合的第2阳极电极的材料的物理性质。
第1阴极电极31以及第2阴极电极42可以含有共同的金属元素。在该情况下,用于形成第1阴极电极31以及第2阴极电极42的工序被简化。具体而言,能够一并进行用于形成第1阴极电极31以及第2阴极电极42的堆积工序。
通过下述的实施方式2~5也能得到与上述的各效果相同的效果。因此,在其他实施方式中,不再重复对上述效果的说明。
此外,在本实施方式的二极管91中,第1阳极电极32与第2阳极电极41彼此短路,且第1阴极电极31与第2阴极电极42彼此短路。然而,上述短路只要在使用二极管91时确保即可。第1阳极电极32以及第2阳极电极41配置于同一碳化硅衬底50的同一面即第1面S1之上,因此能够容易地实现短路。另外,第1阴极电极31以及第2阴极电极42配置于同一碳化硅衬底50的同一面即第2面S2之上,因此能够容易地实现短路。例如,如上所述地彼此分离的电极能够通过安装于共用的导体部件之上而实现彼此短路。或者,上述电极能够通过向共用的导体部件进行电气键合而实现彼此短路。因此,作为二极管91的变形例,也可以省略共用阳极电极60,且设置彼此分离的第1阳极电极32和第2阳极电极41。也可以取而代之,或者与此同时,设置彼此分离的第1阴极电极31和第2阴极电极42。关于其他实施方式也是同样的。
(实施方式2)
图3是概略地表示本实施方式的二极管92(碳化硅半导体装置)的结构的剖视图。二极管92在碳化硅衬底50中具有p型阱14。p型阱14在n型区域10的n-区域11之上局部地形成第1面S1。因此,第1阳极电极32除了n区域11以外还与p型阱14接触。p型阱14能够通过n型区域10的n区域11之上的使用注入掩模进行的选择性杂质注入来形成。深度方向上的p型阱14的杂质浓度分布也可以与p+区域22大致相同。在该情况下,能够一并形成p型阱14和p+区域22。
此外,对于除了上述以外的结构,由于与上述的实施方式1的结构大致相同,因此,对相同或对应的要素标注相同的标号,不重复其说明。
根据本实施方式,在施加了大的正向电流IF时,还流动取代经由第1阳极电极32与n区域11之间的肖特基结,而是经由p型阱14的电流。由此,与实施方式1的二极管91相比,能够降低施加了大电流时的正向电压VF。因此,能够增大由IF×VF确定的I2t耐量(冲击电流耐量)。
(实施方式3)
图4是概略地表示本实施方式的二极管93(碳化硅半导体装置)的结构的剖视图。二极管93在碳化硅衬底50中具有n型阱24。n型阱24在p型区域20的p区域21之上局部地形成第2面S2。因此,第2阴极电极42除了p区域21以外还与n型阱24接触。n型阱24能够通过p型区域20的p区域21之上的使用注入掩模进行的选择性杂质注入来形成。深度方向上的n型阱24的杂质浓度分布也可以与n+区域12大致相同。在该情况下,能够一并形成n型阱24和n+区域12。
此外,对于除了上述以外的结构,由于与上述的实施方式1的结构大致相同,因此,对相同或对应的要素标注相同的标号,不重复其说明。
根据本实施方式,在施加了大的正向电流IF时,还流动取代经由第2阴极电极42与p区域21之间的肖特基结,而是经由n型阱24的电流。由此,与实施方式1的二极管91相比,能够降低施加了大电流时的正向电压VF。因此,能够增大由IF×VF确定的I2t耐量(冲击电流耐量)。
此外,除了n型阱24(图4)以外,还可以设置p型阱14(图3:实施方式2)。在该情况下,上述的效果进一步提高。
(实施方式4)
图5是概略地表示本实施方式的二极管94(碳化硅半导体装置)的结构的剖视图。在二极管94中,p型区域20具有比n型区域10的宽度小的宽度(图中的横向上的尺寸,换言之,与厚度方向正交的方向上的尺寸)。通过该结构,在俯视观察时,p型区域20能够具有比n型区域10的面积小的面积。换言之,p型区域20的有效面积小于n型区域10的有效面积。
但是,优选p型区域20的宽度不要过小。具体而言,优选p型区域20的宽度大于在施加反向偏置时耗尽层在p区域21中延伸的距离,如果考虑到波动,则更优选大于或等于该距离的3倍左右。
此外,对于除了上述以外的结构,由于与上述的实施方式1~3中任意者的结构大致相同,因此,对相同或对应的要素标注相同的标号,不重复其说明。
根据本实施方式,p型区域20的宽度小于n型区域10的宽度。由此,作为用于二极管94的动作的载流子,与迁移率低的空穴相比,迁移率高的电子占大的比例。因此,能够加快恢复动作时的载流子的排出。因此,能够降低恢复损耗。
(实施方式5)
图6是概略地表示本实施方式的二极管95(碳化硅半导体装置)的结构的剖视图。在二极管95中,第2阳极电极41具有比第2阴极电极42的面积大的面积。此外,对于除了上述以外的结构,由于与上述的实施方式1~3中任意者的结构大致相同,因此,对相同或对应的要素标注相同的标号,不重复其说明。
根据本实施方式,与由p型区域20的p区域21和第2阴极电极42实现的肖特基连接区域相比,由p型区域20的p+区域22和第2阳极电极41实现的欧姆连接区域更宽。如上所述地使得欧姆连接区域更宽,从而能够加快恢复动作时的载流子的排出。因此,能够降低恢复损耗。
此外,第2阴极电极42的面积也可以小于第1阳极电极32的面积。在该情况下,通过与实施方式4中说明的作用相同的作用,能够进一步降低恢复损耗。
此外,本发明能够在其发明的范围内对各实施方式自由地进行组合,或者对各实施方式适当地进行变形、省略。对本发明进行了详细说明,但上述说明在所有方面都为例示,本发明不限定于此。可以理解为在不脱离本发明的范围的情况下能够想到未例示出的无数的变形例。
标号的说明
AD 阳极端子,CD 阴极端子,S1 第1面,S2 第2面,SBn、SBp 肖特基势垒二极管,10n型区域,11 n区域,12 n+区域,14 p型阱,20 p型区域,21 p区域,22 p+区域,24 n型阱,31 第1阴极电极,32 第1阳极电极,41 第2阳极电极,42 第2阴极电极,50 碳化硅衬底,60共用阳极电极,91~95 二极管(碳化硅半导体装置)。

Claims (2)

1.一种碳化硅半导体装置,其具有:
碳化硅衬底,其设置有第1面和与所述第1面相反的第2面,该碳化硅衬底具有n型区域和p型区域,该n型区域将所述第1面和所述第2面连接,该p型区域与所述n型区域接触,将所述第1面和所述第2面连接;
第1阳极电极,其在所述第1面之上与所述n型区域肖特基接合;
第1阴极电极,其在所述第2面之上与所述n型区域欧姆接合;
第2阳极电极,其在所述第1面之上与所述p型区域欧姆接合;
第2阴极电极,其在所述第2面之上与所述p型区域肖特基接合;以及
p型阱,其在所述n型区域之上局部地形成所述第1面,
所述第2阳极电极具有比所述第2阴极电极的面积大的面积。
2.根据权利要求1所述的碳化硅半导体装置,其中,
所述p型区域具有比所述n型区域的宽度小的宽度。
CN201680077297.9A 2016-01-05 2016-01-05 碳化硅半导体装置 Active CN108475703B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050159 WO2017119066A1 (ja) 2016-01-05 2016-01-05 炭化珪素半導体装置

Publications (2)

Publication Number Publication Date
CN108475703A CN108475703A (zh) 2018-08-31
CN108475703B true CN108475703B (zh) 2021-05-18

Family

ID=59273397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680077297.9A Active CN108475703B (zh) 2016-01-05 2016-01-05 碳化硅半导体装置

Country Status (5)

Country Link
US (1) US10529709B2 (zh)
JP (1) JP6516873B2 (zh)
CN (1) CN108475703B (zh)
DE (1) DE112016006160T5 (zh)
WO (1) WO2017119066A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249927B2 (ja) * 2019-11-07 2023-03-31 三菱電機株式会社 半導体装置およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077682A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd ショットキーダイオード
CN1279822A (zh) * 1998-07-23 2001-01-10 三菱电机株式会社 半导体装置及其制造方法
JP2004072068A (ja) * 2002-06-14 2004-03-04 Fuji Electric Holdings Co Ltd 半導体素子
CN201435391Y (zh) * 2008-10-14 2010-03-31 常州星海电子有限公司 高抗静电肖特基二极管

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735907B1 (fr) 1995-06-22 1997-09-05 Sgs Thomson Microelectronics Assemblage monolitique de composants semiconducteurs incluant une diode rapide
JP4447065B2 (ja) * 1999-01-11 2010-04-07 富士電機システムズ株式会社 超接合半導体素子の製造方法
US6313482B1 (en) * 1999-05-17 2001-11-06 North Carolina State University Silicon carbide power devices having trench-based silicon carbide charge coupling regions therein
US7397102B2 (en) * 2005-04-20 2008-07-08 Taurus Micropower, Inc. Junction barrier schottky with low forward drop and improved reverse block voltage
JP4872158B2 (ja) 2001-03-05 2012-02-08 住友電気工業株式会社 ショットキーダイオード、pn接合ダイオード、pin接合ダイオード、および製造方法
JP5303819B2 (ja) 2005-08-05 2013-10-02 住友電気工業株式会社 半導体装置およびその製造方法
US7633135B2 (en) * 2007-07-22 2009-12-15 Alpha & Omega Semiconductor, Ltd. Bottom anode Schottky diode structure and method
US7777257B2 (en) * 2007-02-14 2010-08-17 Freescale Semiconductor, Inc. Bipolar Schottky diode and method
DE102007052202B3 (de) * 2007-10-30 2008-11-13 Infineon Technologies Austria Ag Halbleiterbauelement und Verfahren zur Herstellung desselben
JP2010199480A (ja) 2009-02-27 2010-09-09 Fuji Electric Systems Co Ltd 超接合ショットキーダイオード
JP5377548B2 (ja) * 2011-03-03 2013-12-25 株式会社東芝 半導体整流装置
DE102011080258A1 (de) * 2011-08-02 2013-02-07 Robert Bosch Gmbh Super-Junction-Schottky-Oxid-PiN-Diode
WO2013161116A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279822A (zh) * 1998-07-23 2001-01-10 三菱电机株式会社 半导体装置及其制造方法
JP2000077682A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd ショットキーダイオード
JP2004072068A (ja) * 2002-06-14 2004-03-04 Fuji Electric Holdings Co Ltd 半導体素子
CN201435391Y (zh) * 2008-10-14 2010-03-31 常州星海电子有限公司 高抗静电肖特基二极管

Also Published As

Publication number Publication date
JPWO2017119066A1 (ja) 2018-04-19
WO2017119066A1 (ja) 2017-07-13
JP6516873B2 (ja) 2019-05-22
US20180337175A1 (en) 2018-11-22
DE112016006160T5 (de) 2018-09-20
US10529709B2 (en) 2020-01-07
CN108475703A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
JP5940235B1 (ja) 半導体装置
US10937784B2 (en) Method of manufacturing a semiconductor device
CN110061050B (zh) 半导体器件和具有势垒区的绝缘栅双极型晶体管
JP6649183B2 (ja) 半導体装置
US20140231867A1 (en) Diode and semiconductor device including built-in diode
CN102694011B (zh) 半导体器件
CN109564942B (zh) 半导体装置
US11222973B2 (en) Semiconductor device
JP4282972B2 (ja) 高耐圧ダイオード
JP2012186353A (ja) 複合半導体装置
CN106531786B (zh) 半导体装置
US20150287840A1 (en) Semiconductor device
US10083956B2 (en) Semiconductor device
US20150263149A1 (en) Semiconductor device
US11949025B2 (en) Wide band gap semiconductor electronic device having a junction-barrier Schottky diode
JP2014135419A (ja) ダイオード及びダイオードを内蔵した半導体装置
CN108475703B (zh) 碳化硅半导体装置
JP2022009745A (ja) 半導体装置
US20210050458A1 (en) Semiconductor power device and method for manufacture
JP3879697B2 (ja) 半導体装置
JP6758987B2 (ja) 半導体装置
US9741872B2 (en) Semiconductor device
JP2020074426A (ja) 半導体装置
JP2023046067A (ja) 半導体装置
JP2022130063A (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant