CN108423717B - 一种自组装Ni3S2纳米片的合成方法 - Google Patents

一种自组装Ni3S2纳米片的合成方法 Download PDF

Info

Publication number
CN108423717B
CN108423717B CN201810230535.6A CN201810230535A CN108423717B CN 108423717 B CN108423717 B CN 108423717B CN 201810230535 A CN201810230535 A CN 201810230535A CN 108423717 B CN108423717 B CN 108423717B
Authority
CN
China
Prior art keywords
self
foamed nickel
reaction kettle
room temperature
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810230535.6A
Other languages
English (en)
Other versions
CN108423717A (zh
Inventor
冯亮亮
何丹阳
黄剑锋
曹丽云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Chunzelu Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201810230535.6A priority Critical patent/CN108423717B/zh
Publication of CN108423717A publication Critical patent/CN108423717A/zh
Application granted granted Critical
Publication of CN108423717B publication Critical patent/CN108423717B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种自组装Ni3S2纳米片的合成方法,首先,将泡沫镍依次在丙酮和HCl溶液中超声清洗,然后分别用去离子水和无水乙醇洗涤干净室温晾干;其次,将晾干后的泡沫镍放入带聚四氟乙烯内衬的高温高压反应釜中,然后再向反应釜中加入硫脲溶液、聚乙烯吡咯烷酮形貌调控剂,将反应釜密封,置于烘箱中待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。本发明采用的溶剂热法具有工艺简单、制备周期短和反应条件容易控制的特性,可利用不同的温度来控制反应的进程和形貌大小,从而得到不同特殊的结构形貌。

Description

一种自组装Ni3S2纳米片的合成方法
技术领域
本发明属于材料制备领域,具体涉及一种自组装Ni3S2纳米片的合成方法。
背景技术
目前具有良好金属性或导电性的非贵金属电催化剂的合成应该受到重视。Ni3S2是一种天然的黄镍铁矿。由于连续的Ni-Ni键网络贯穿于Ni3S2的整个结构,所以它具有本征的金属特性电导率高、廉价的Ni3S2在许多领域得到了应用,如氧还原、锂离子电池、染料敏化电池和储氢等。
电催化产氢产氧技术发展的核心问题就是提高HER电催化剂的活性。虽然已经开发了大量的廉价非贵金属产氢产氧电催化剂,但是与贵金属催化剂相比,其催化活性、催化稳定性以及使用范围等方面仍然存在着很大的差距。提高产氢产氧电催化剂性能的策略主要集中在材料的设计合成和后处理修饰方面。一般提高电催化产氢产氧性能的常用方法有:对电催化材料进行纳米构造、结构调控、掺杂和与导电基底(碳布、碳纤维纸、石墨烯、CNTs、泡沫镍和钛片等具有优异导电特性的物质)的复合。
发明内容
本发明的目的在于提供一种制备工艺简单,制备条件温和,成本低、制备周期短、工艺过程容易控制的自组装Ni3S2纳米片的合成方法。
为达到上述目的,本发明采用的技术方案是:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和HCl溶液中超声清洗,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,然后再向反应釜中加入5~15mL硫脲溶液,0.025~0.363g的聚乙烯吡咯烷酮形貌调控剂,将反应釜密封,置于烘箱中在130~180℃反应6~10h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。
所述步骤1)的超声清洗功率为70~80W,超声清洗时间为5~10min。
所述步骤1)HCl溶液的浓度为3mol/L。
所述步骤2)硫脲溶液的浓度为1.445mmol/L。
从制备方法上比较,本发明采用的溶剂热法具有工艺简单、制备周期短和反应条件容易控制的特性,可利用不同的温度来控制反应的进程和形貌大小,从而得到不同特殊的结构形貌。形貌结构的不同对材料的性能有较大的影响,另外,溶剂热法具有反应速率较快、反应充分彻底、等优势,它避免了传统方法的反应难以进行和难控制、能耗高、产率低和工艺复杂等缺点。层层堆叠的Ni3S2纳米片与基底泡沫镍(NF)紧密接触,这不仅提高了Ni3S2/NF的电催化稳定性,还有利于基底与催化活性物质界面之间电子的传输,暴露出高密度的催化位点活性,因此具有较快的电子转移速率,这有利于提高其电催化性能。其制备的Ni3S2纳米片紧密连接并形成了许多空隙,并且这些纳米片垂直生长在NF上。层层堆叠的纳米片阵列结构赋予该材料较大的活性面积,为催化反应提供了更多的活性位点,促使电子容易从电极传递到催化活性位,因此显示出高效、超稳定的电催化产氢和产氧活性。
附图说明
图1是本发明实施例1制备Ni3S2/NF纳米片阵列自支撑电极的XRD图。
图2是本发明实施例2制备的Ni3S2/NF纳米片阵列自支撑电极的Ni3S2的SEM 图。
具体实施方式
下面结合附图及实施例对本发明作进一步详细说明。
实施例1:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和3mol/L的HCl溶液中以70W超声清洗8min,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,再加入5mL浓度为1.445mmol/L硫脲溶液中,并加入0.275~0.363g聚乙烯吡咯烷酮 (PVP)形貌调控剂,将反应釜密封,置于烘箱中在130℃反应10h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。
由图1可以看出本实施例所制备样品为Ni3S2/NF的XRD谱图,该谱图中除了包括来自NF基体的衍射峰,还出现了六方相结构Ni3S2的衍射峰(JCPDS Card No. 44-1418)。
实施例2:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和3mol/L的HCl溶液中以80W超声清洗5min,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,再加入8mL浓度为1.445mmol/L硫脲溶液中,并加入0.2~0.264g聚乙烯吡咯烷酮(PVP) 形貌调控剂,将反应釜密封,置于烘箱中在140℃反应9h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。
图2可以看出本实施例所制备的一种自组装Ni3S2/NF纳米片阵列自支撑电极的Ni3S2纳米片层层堆叠紧密连接并形成了许多空隙。而且,这些纳米片垂直生长在NF 上,其厚度为10-15nm。
实施例3:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和3mol/L的HCl溶液中以80W超声清洗10min,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,再加入10mL浓度为1.445mmol/L硫脲溶液中,并加入0.15~0.198g聚乙烯吡咯烷酮 (PVP)形貌调控剂,将反应釜密封,置于烘箱中在150℃反应8h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。
实施例4:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和3mol/L的HCl溶液中以70W超声清洗9min,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,再加入12mL浓度为1.445mmol/L硫脲溶液中,并加入0.1~0.132g聚乙烯吡咯烷酮 (PVP)形貌调控剂,将反应釜密封,置于烘箱中在170℃反应7h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。
实施例5:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和3mol/L的HCl溶液中以70W超声清洗7min,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,再加入15mL浓度为1.445mmol/L硫脲溶液中,并加入0.025~0.033g聚乙烯吡咯烷酮 (PVP)形貌调控剂,将反应釜密封,置于烘箱中在180℃反应6h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极。

Claims (3)

1.一种自组装Ni3S2纳米片的合成方法,其特征在于包括以下步骤:
1)首先,将1cm×2cm的泡沫镍依次在丙酮和HCl溶液中超声清洗,然后分别用去离子水和无水乙醇洗涤干净室温晾干;
2)其次,将晾干后的泡沫镍放入50mL带聚四氟乙烯内衬的高温高压反应釜中,然后再向反应釜中加入5~15mL硫脲溶液,0.025~0.363g的聚乙烯吡咯烷酮形貌调控剂,将反应釜密封,置于烘箱中在130~180℃反应6~10h;
3)待反应结束后,自然冷却至室温后,取出泡沫镍,分别用水和无水乙醇反复冲洗;
4)最后,将冲洗后的泡沫镍放入真空干燥箱室温干燥得到自组装Ni3S2纳米片阵列自支撑电极;
所述步骤2)硫脲溶液的浓度为1.445mmol/L。
2.根据权利要求1所述的自组装Ni3S2纳米片的合成方法,其特征在于:所述步骤1)的超声清洗功率为70~80W,超声清洗时间为5~10min。
3.根据权利要求1所述的自组装Ni3S2纳米片的合成方法,其特征在于:所述步骤1)HCl溶液的浓度为3mol/L。
CN201810230535.6A 2018-03-20 2018-03-20 一种自组装Ni3S2纳米片的合成方法 Expired - Fee Related CN108423717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810230535.6A CN108423717B (zh) 2018-03-20 2018-03-20 一种自组装Ni3S2纳米片的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810230535.6A CN108423717B (zh) 2018-03-20 2018-03-20 一种自组装Ni3S2纳米片的合成方法

Publications (2)

Publication Number Publication Date
CN108423717A CN108423717A (zh) 2018-08-21
CN108423717B true CN108423717B (zh) 2020-06-09

Family

ID=63158549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810230535.6A Expired - Fee Related CN108423717B (zh) 2018-03-20 2018-03-20 一种自组装Ni3S2纳米片的合成方法

Country Status (1)

Country Link
CN (1) CN108423717B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109280938B (zh) * 2018-09-30 2021-02-05 陕西科技大学 一种花球状的V掺杂的Ni3S2/NF自支撑电极材料及其制备方法
CN109225299B (zh) * 2018-09-30 2021-06-25 陕西科技大学 一种鱼骨状的V掺杂的Ni3S2/NF电极材料及其制备方法
CN109267089B (zh) * 2018-09-30 2021-02-05 陕西科技大学 一种纳米森林状的V掺杂的Ni3S2/NF自支撑电极及其制备方法
CN109772367A (zh) * 2019-01-15 2019-05-21 天津大学 一种原位合成过渡金属氧化物-镍基硫化物复合材料的制备方法
CN109821554A (zh) * 2019-01-17 2019-05-31 河北工业大学 一种Ni-Fe-S纳米片花的制备方法
CN111036307B (zh) * 2019-10-18 2022-09-27 南京理工大学 一种复合型高效析氧催化剂的制备方法
CN111468140B (zh) * 2020-06-02 2022-11-29 陕西科技大学 一种Ni3S2/NiV-LDH异质纳米锥电催化剂的制备方法
CN111996543B (zh) * 2020-09-02 2023-05-02 陕西科技大学 一种钒掺杂的硒化镍异质结自支撑电极及其制备方法和应用
CN112501652B (zh) * 2020-11-24 2022-02-15 华南理工大学 一种利用形貌及结构调控电催化产氧的钨掺杂硫化镍催化剂及其制备方法与应用
CN112626550B (zh) * 2020-12-31 2021-12-14 太原理工大学 一步水热法直接制备多孔硫化镍纳米片电催化剂的方法
CN113652711A (zh) * 2021-09-13 2021-11-16 陕西科技大学 一种V-FeS/IF电催化材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683905A (zh) * 2016-12-08 2017-05-17 三峡大学 一种多孔纳米二硫化三镍薄膜电极的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683905A (zh) * 2016-12-08 2017-05-17 三峡大学 一种多孔纳米二硫化三镍薄膜电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection";Huanhuan Huo et al.;《J. Mater. Chem. A》;20140722;第2卷;摘要、第15112页第2.1节以及第15113页图1C *

Also Published As

Publication number Publication date
CN108423717A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN108423717B (zh) 一种自组装Ni3S2纳米片的合成方法
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
CN108554413B (zh) 一种三维多级结构高分散镍基电催化材料及其制备方法
CN108325539B (zh) 一种棒状自组装成花球状的钒修饰的Ni3S2电催化剂的合成方法
CN110711596B (zh) 一种高效全解水电催化剂IPBAP/Ni2P@MoOx/NF及其制备方法
CN109954503B (zh) 一种硒化镍和三元硒化镍铁复合电催化剂及制备方法和应用
CN108479808B (zh) 一种3D自组装花球状钒修饰的Ni3S2的合成方法
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN113385203A (zh) 一种核壳结构双金属磷化物纳米阵列的制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
WO2022111736A1 (zh) Fe/Fe3C嵌入N掺杂碳复合材料及其制备方法与其在微生物燃料电池中的应用
CN111841589B (zh) 一种镍钴钨磷化物催化剂及其制备方法和应用
CN113019398A (zh) 一种高活性自支撑oer电催化剂材料及其制备方法与应用
CN113981483A (zh) 一种铂掺杂铜钴氢氧化物阵列结构的制备方法
CN113684503A (zh) 一种N-GO@Co-Ni12P5-Ni3P/NCF复合电极材料及其制备方法
CN116121804A (zh) 一种锆掺杂的镍硫化物自支撑电极材料及其制备方法和应用
CN116219484A (zh) 一种高效的双金属氮化物/氢氧化物异质结构电催化剂、制备方法和应用
AU2021102042A4 (en) Preparation methods and applications of alloy hydride materials
CN113881964B (zh) 一种片状磷化镍阵列电极材料的非酸介质制备方法
CN115261881A (zh) 一种电解尿素用镍铜双金属阵列型纳米片电极制备方法
CN110013850B (zh) 一种纳米棒自组装铁氧化物微米片电催化剂及其合成方法
CN114725328A (zh) 氮掺杂生物质衍生多孔碳负载Fe3O4/Fe复合材料及其制备方法和应用
CN111514912A (zh) 一种三维Co掺杂WP2纳米片阵列电催化剂及其制备方法
CN115852421B (zh) 一种Zr-NiSe2/CC纳米片合成方法及电解水应用
CN114045500B (zh) 一种自支撑多级结构电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220803

Address after: Room 207, Unit 3, Building 168, Qinghe Street, Chaoyang District, Changchun City, Jilin Province, 130000

Patentee after: Jilin chunzelu Technology Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang university campus of Shaanxi University of Science and Technology

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200609

CF01 Termination of patent right due to non-payment of annual fee