CN108315822B - 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用 - Google Patents

环氧驱动一步制备六钛酸钾晶须方法及其光催化应用 Download PDF

Info

Publication number
CN108315822B
CN108315822B CN201810138708.1A CN201810138708A CN108315822B CN 108315822 B CN108315822 B CN 108315822B CN 201810138708 A CN201810138708 A CN 201810138708A CN 108315822 B CN108315822 B CN 108315822B
Authority
CN
China
Prior art keywords
solution
potassium
sol
potassium hexatitanate
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810138708.1A
Other languages
English (en)
Other versions
CN108315822A (zh
Inventor
王永红
汪中尚
陈干
张春晨
王旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810138708.1A priority Critical patent/CN108315822B/zh
Publication of CN108315822A publication Critical patent/CN108315822A/zh
Application granted granted Critical
Publication of CN108315822B publication Critical patent/CN108315822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明技术涉及环氧驱动一步制备六钛酸钾晶须方法及其应用技术,制得晶须形貌规整,结晶良好并具有光催化性能。技术方案是:先将钾源组分溶解在无水乙醇中,得到溶液A,然后在冰水浴条件下向A中缓慢滴加有机分散剂改性四氯化钛溶液B,得到透明溶胶;经磁力搅拌一定时间,向溶胶中滴加一定量环氧丙烷(PO),凝胶化反应立即发生;将经干燥处理的凝胶掺入适量氯化钾助溶剂于不同温度下热处理得到晶须产物。本发明提供制备六钛酸钾晶须方法,与传统溶胶‑凝胶煅烧工艺相比,具有设备条件简单,原料成本低;规模化制备工艺简便、易操作,周期短;热处理温度底,节约能耗,环境友好;晶须易分散,长径比大,产率高,光催化性能优越。

Description

环氧驱动一步制备六钛酸钾晶须方法及其光催化应用
1.技术领域
本发明技术涉及环保节能材料、增强材料、摩擦材料、隔热材料等无机非金属材料工程技术领域,尤其是属于一步制备高性能六钛酸钾晶须材料及其光催化应用技术。
2.背景技术
六钛酸钾晶须是碱金属钛酸盐K2O·nTiO2(n=2,4,6)系统中一种由TiO6八面体通过共棱和共面形成的隧道状晶体结构功能材料。其K+离子组分在晶体结构中通过化学键和相邻原子作用不易溶出,所以六钛酸钾具有良好的化学稳定性和物理机械性能,如耐磨、耐腐蚀、耐热性、低热导率、离子交换性能和优异的光催化活性等,尤其在能源、环保、汽车摩擦材料、复合材料和高端涂料、塑料增强材料以及隔热材料等方面具有良好的应用前景[1](参考:中国专利CN 106567128A,一种导电钛酸钾晶须的制备方法[P])。
六钛酸钾晶须材料在工程应用中面临的主要问题就是晶须形貌尺寸和微观结构性能明显影响不同应用领域特定要求的粉晶材料性能。例如,中国专利CN 106119949A公布了一种高强度钛酸钾晶须的制备方法及其磁改性应用,该技术将氧化铁和硅溶胶包裹改性晶须材料表面,以提高其表面形貌的光滑程度、强度和可再生性能。但是该发明工艺步骤多且复杂,周期长,反应中涉及强酸碱试剂的使用,环保和成本较高;日本Hisao Yoshida等人利用氯化钾助溶剂法制备了钛酸钾晶须并和Rh2O3、金属Rh共催化剂分解水制氢。然而,试验结果表明晶须的结构形貌明显影响其光催化活性(参考:Hisao Yoshida,MasakiTakeuchi,Masumi Sato, Like Zhang,Tomoki Teshima,Manohar Ganpat Chaskar,Potassium hexatitanate photocatalysts prepared by a flux method for watersplitting[J],Catalysis Today,2014,232:158–164)。澳大利亚Mohammad Shahid等人利用水热法合成了钛酸钾晶须,并测试了有机物结晶紫探针分子的光催化活性。试验中使用了强碱、强氧化剂和高温水热设备,因而,反应条件苛刻,成本高, 不利于钛酸钾晶须的光催化技术市场推广(参考:Mohammad Shahid,Ibrahim El Saliby,Andrew McDonagh,Leonard D.Tijing,Jong-Ho Kim,Ho Kyong Shon,Synthesis and characterisation ofpotassium polytitanate for photocatalytic degradation of crystal violet[J],Journal of Environmental Science,2014,26:2348–2354)。最近,日本Shunsuke Takaya等人报道了利用氧化铝瓷球为载体,通过熔盐和空气氧化法将金属钛片与氧化铝表面由机械研磨合金化反应制备得钛酸钾薄膜片。产物在紫外光照射条件下,可分解甲基蓝,显示较高的光催化活性。但该技术路线工艺复杂,效率低,成本高(参考:Shunsuke Takaya,YunLu,Sujun Guan,Kouhei Miyazawa, Hiroyuki Yoshida,Hiroshi Asanuma,Fabricationof the photocatalyst thin films of nano-structured potassium titanate bymolten salt treatment and its photocatalytic activity[J],Surface&CoatingsTechnology,2015,275:260–263)。
六钛酸钾晶须的结构形貌特征不仅明显影响其光催化性能和力学摩擦性能,而且还是决定其能否被合理使用的重要标准。例如,工业上广泛使用的环保无石棉汽车摩擦刹车片的增强材料多为高长径比的钛酸钾晶须或晶须状材料,这是由于其优越的高温摩擦系数稳定性协同作用和抗热衰退能力。但是,随着欧美汽车摩擦刹车片市场环保立法的进一步限制,直径小于3.5μm的钛酸钾晶须因其对人类的可吸入性致病因素而被禁止使用(参考:Roser Costa, Ramon Orriolsb,Man-Made Mineral Fibers and the RespiratoryTract,Arch Bronconeumol,2012, 48(12):460–468)。
目前,已报道的六钛酸钾晶须合成方法有很多,如水热法、熔盐法、助溶剂法、溶胶- 凝胶法、烧结法、KDC法、急冷烧结结晶法、液相沉淀法等(王慧,商少明,低能耗制备六钛酸钾晶须的方法研究[J],应用化工,2010,39(12):1878-1881)。上述方法中,水热法因其固有的高温高压反应条件和设备,不利于钛酸钾晶须材料的工业化制备;助溶剂法和熔盐法,尽管降低了钛酸钾晶须的晶化温度,降低了能耗,但须使用高活性超细纳米氧化钛起始原料,工艺过程也涉及混料、结晶后去除助溶剂等复杂工序且晶须的结构性能尤其是光催化性能也未曾被评价和表征,所以都不是很理想的实用技术(参考:Xianke Zhang,Shaolong Tang,Lin Zhai,Jiangying Yu,Yangguang Shi,Youwei Du,A simple moltensalt method to synthesize single-crystalline potassium titanate nanobelts[J],Materials Letters,2009,63:887–889;Lianqiang Xu,Li Cheng,Environmentallyfriendly growth of single-crystalline K2Ti6O13nanoribbons from KCl flux,Materials Characterization,2010,61:245–248)。相比较而言,粉末反应烧结法,工业收率高,成本相对较低,且工艺简单适合工业化生产(参考:Yang Li,Hai yang Yu,YangYang, Feng Zheng,Hongwei Ni,Mei Zhang,Min Guo,Synthesis of potassiumhexatitanate whiskers with high thermal stability from Ti-bearing electricarc furnace molten slag[J],Ceramics International, 2016,42:11294–11302)。但由于固相烧结法生产六钛酸钾晶须制备工艺中,通常选用高活性纳米颗粒状的氧化钛或含钛矿渣和氢氧化钾或碳酸钾等碱性原料,而且,900-1100℃高温范围需要长时间保温方能获得所需产品。工艺过程能耗高,产率低;较低的产率导致较高的生产成本,阻碍了六钛酸钾晶须在工业上的规模应用(参考:Ningzhong Bao,Liming Shen,Xin Feng,Xiaohua Lu,High Quality and Yield in Potassium Titanate Whiskers Synthesized byCalcination from Hydrous Titania,Journal of American Ceramic Society,2004,87[3]:326–30)。
专利CN 100577896C公开了一种六钛酸钾晶须及其水热制备方法,制备出的六钛酸钾晶须直径约在200-500nm之间,长约20000-30000μm之间,长径比大,晶须产率在83%以上。但是,该发明中的实验原料选用的是商业超细锐钛矿型TiO2与自制的纳米TiO2相比,此方法不仅增加了六钛酸钾晶须的成本,而且不利于制备出尺寸分布均匀的晶须。最近,专利CN 106048727A公布了燃烧法一步制备六钛酸钾晶须的方法,选用碳酸钾颗粒和二氧化钛为原料,分别与活性炭、乙炔、苯甲酸燃料混合,加热约15min制备出六钛酸钾晶须。虽改进了制备方法,一步直接合成产物且合成时间短;但采用活性炭等燃料燃烧制备六钛酸钾晶须,能耗增加且反应产生的温室气体不利于绿色环保。
溶胶-凝胶技术是一种低温、简单可获得高纯化学组成的一种材料制备技术。利用溶胶- 凝胶技术可比熔盐法还低350℃的630℃煅烧条件获得钛酸钾材料(参考:K.T.Jung,Y.G.Shul, Synthesis of high surface area potassium hexatitanate powders bysol-gel method[J],Journal of Sol-Gel Science and Technology 1996,6:227~233)。利用同样的方法结合陶瓷煅烧工艺技术,可获得不同形貌组成的钛酸钾纳米带材料(参考:Sung-Oong Kang,Hoon-Sik Jang,Yong-Il Kim, Ki-Bok Kim,Maeng-Joon Jung,Study onthe growth of potassium titanate nanostructures prepared by sol-gel–calcination process[J],Materials Letters,2007,61:473–477;)。然而,该技术通常使用价格较贵的高纯金属钛醇盐化合物,且因凝胶化反应周期较长,所得产物收率低,仅为克级规模,根本不具备工程规模化制备要求(参考:Xiaoming Sun,Xing Chen,and YadongLi, Large-Scale Synthesis of Sodium and Potassium Titanate Nanobelts,Inorg.Chem.2002,41: 4996-4998)。而且,传统的溶胶凝胶技术规模化制备六钛酸钾晶须,高昂的原料价格和制备耗能,复杂的工艺参数优化等缺点是不可避免的工程技术问题。
本专利克服了现存的制备技术缺点,发明了一种环氧驱动一步制备六钛酸钾晶须的方法及其光催化应用技术,设备要求简单、反应温度低、环境友好,晶须结晶度高、长径比大、形貌好,光催化性能优越。
3.发明内容
针对目前六钛酸钾晶须制备存在的两个突出问题,本发明的目的在于提供一种生产成本低廉、环境污染小、长径比大的高质量六钛酸钾晶须制备方法及其光催化应用技术。本发明通过环氧反应驱动技术,将环氧丙烷加入四氯化钛配制的溶胶中,促进溶胶-凝胶化的发生,掺有氯化钾助溶剂的凝胶经过干燥、热处理工艺制得六钛酸钾晶须。本发明制备出的六钛酸钾晶须平均直径在0.1~0.3μm,长径比(L/D)可达到12,粗细均匀,分散性良好,光催化效果显著。
本发明采用的技术路径包括以下几个工艺步骤:
1.溶胶-凝胶过程
以K:Ti比1:2~3称取反应物乙酸钾和四氯化钛,将乙酸钾溶解于40ml无水乙醇中形成A溶液;四氯化钛和1ml PAA溶液搅拌均匀形成溶液B。将装有A溶液的烧杯放入加有冰块的冰浴大烧杯中,一边磁力搅拌,一边缓慢向A溶液中滴加B溶液,得到溶液C,滴加完毕后,将烧杯口密封,在室温下继续搅拌20分钟。称取14ml环氧丙烷,缓慢滴加于C溶液中,凝胶化反应立即发生,将生成的凝胶放入鼓风干燥箱中于70~80℃干燥保温10~12h;
2.煅烧工艺
将得到干凝胶和氯化钾粉末按照质量比1:8~10,在研钵里研成粉末,倒入30ml坩埚中,在箱式电阻炉中于700,800,900℃热处理,保温10h,然后随炉冷却到室温;
最后将所得样品经去离子水反复洗涤、超声、干燥,得到钛酸钾晶须;
3.光催化应用
利用实验室光化学反应仪系统(南京大学仪器厂)评价制得的钛酸钾晶须的光催化应用性能。首先,将10ml抗生素(四环素TC)溶液和10mg晶须分别加入待测试管中,先在避光条件下搅拌30min,以达到吸附平衡排除吸附值的影响;然后,打开汞灯(500W)进行连续光催化反应;每隔15min取其溶液于离心试管中,经离心、静置后,取上清液用紫外-可见分光光度计检测TC溶液的吸光度变化,检测波长为440nm。溶液分解率的计算方法如下: A=abC,式中A为吸光度,a为吸光系数,b为比色皿厚度,C为溶液浓度。
本发明与现有技术相比具有以下优点:
(1)本发明采用环氧丙烷开环驱动,促进溶胶-凝胶化的动力学反应过程,减少反应时间;
(2)本发明合成方法简单,原料来源广,价格便宜,操作简便,反应条件温和,能耗低,无污染物排出;
(3)本发明制备的六钛酸钾晶须长径比大,粗细均匀,分散性良好,光催化效果明显。
附图说明
图1为实施例1中六钛酸钾晶须的X射线衍射图;
图2为实施例1中六钛酸钾晶须的扫描电子显微镜图;
图3为实施例2中六钛酸钾晶须的X射线衍射图;
图4为实施例2中六钛酸钾晶须的扫描电子显微镜图;
图5为实施例3中六钛酸钾晶须的X射线衍射图;
图6为实施例3中六钛酸钾晶须的扫描电子显微镜图;
图7为实施例1、2、3中六钛酸钾晶须的光催化性能。
具体实施方式
本发明的技术路径和实施效果可以通过如下具体实施例和附图进一步实现,但不限定目前本发明列举的有限实施例工艺参数。
实施例1:
以K:Ti比1:2.5称取反应物乙酸钾和四氯化钛,先将乙酸钾溶解于40ml无水乙醇中形成A溶液;四氯化钛和1ml有机分散剂PAA溶液搅拌均匀形成溶液B。将装有A溶液的烧杯放入加有冰块的冰浴大烧杯中,一边磁力搅拌,一边缓慢向A溶液中滴加B溶液,得到溶液C,滴加完毕后,将烧杯口密封,在室温下继续搅拌20分钟。称取14ml环氧丙烷,缓慢滴加于C溶液中,凝胶化反应立即发生,将生成的凝胶放入鼓风干燥箱中于70℃保温10h。将得到的干凝胶并掺入占反应物质量15%的氯化钾粉末,在研钵里研磨混匀,倒入30ml坩埚中,在箱式电阻炉中于700℃热处理,保温10h,然后随炉冷却到室温,经去离子水洗涤、超声、干燥,得到产物。产物的晶体成分分析结果见图1,形貌见图2。利用实验室光化学反应仪系统(南京大学仪器厂)评价制得的钛酸钾晶须的光催化应用性能,光催化分析结果见图7。
实施例2:
以K:Ti比1:2.5称取反应物乙酸钾和四氯化钛,将乙酸钾溶解于40ml无水乙醇中形成 A溶液;四氯化钛和1ml PAA溶液搅拌均匀形成溶液B。将装有A溶液的烧杯放入加有冰块的冰水浴大烧杯中,一边磁力搅拌,一边缓慢向A溶液中滴加B溶液,得到溶液C,滴加完毕后,将烧杯口密封,在室温下继续搅拌20分钟。称取14ml环氧丙烷,缓慢滴加于C溶液中,凝胶化反应立即发生,将生成的凝胶放入鼓风干燥箱中于70℃保温10h。将得到的干凝胶和占反应物质量15%的氯化钾粉末,在研钵里研磨混匀,倒入30ml坩埚中,在箱式电阻炉中于800℃热处理,保温10h,然后随炉冷却到室温,经去离子水洗涤、超声、干燥,得到产物。产物的物相组成见图3,形貌见图4。利用实验室光化学反应仪系统(南京大学仪器厂)评价制得的钛酸钾晶须的光催化应用性能,光催化分析结果见图7。
实施例3:
以K:Ti比1:2.5称取反应物乙酸钾和四氯化钛,将乙酸钾溶解于40ml无水乙醇中形成 A溶液;四氯化钛和1ml PAA溶液搅拌均匀形成溶液B。将装有A溶液的烧杯放入加有冰块的冰浴大烧杯中,一边磁力搅拌,一边缓慢向A溶液中滴加B溶液,得到溶液C,滴加完毕后,将烧杯口密封,在室温下继续搅拌20分钟。称取14ml环氧丙烷,缓慢滴加于C溶液中,凝胶化反应立即发生,将生成的凝胶放入鼓风干燥箱中于70℃保温10h。将得到的干凝胶和占反应物质量15%的氯化钾粉末,在研钵里研磨混匀,倒入30ml坩埚中,在箱式电阻炉中于900℃热处理,保温10h,然后随炉冷却到室温,经去离子水洗涤、超声、干燥,得到产物。产物的晶体组成见图5,形貌见图6。利用实验室光化学反应仪系统(南京大学仪器厂)评价制得的钛酸钾晶须的光催化应用性能,光催化分析结果见图7。

Claims (6)

1.环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于该发明技术包含以下工艺步骤顺序:首先,以K:Ti原子比为1:2~3分别称取适量反应物乙酸钾和四氯化钛配制溶液A、B和溶胶;即在搅拌条件下先将乙酸钾溶解在无水乙醇中得到溶液A;B溶液是四氯化钛溶液并经缓慢滴加占B溶液总质量0.1~0.5%聚丙烯酸(PAA)或聚丙烯酸盐分散改性制得;将装有A溶液的烧杯放入加有冰块的冰浴大烧杯中,一边磁力搅拌,一边缓慢向A溶液中滴加B溶液得到溶胶;其次,溶胶-凝胶反应制备凝胶;密封磁力搅拌20分钟后,继续以n(Ti)/n(H2O)/n(PO)=1:3:6~10比例向形成的溶胶中滴加环氧丙烷(PO),环氧丙烷捕获质子并发生开环反应固定共轭碱生成湿凝胶;湿凝胶在干燥箱中干燥保温制得干凝胶固体;最后,六钛酸钾晶须煅烧制备;将占反应物总质量15%的氯化钾反应助熔剂掺入干凝胶固体,在研钵里研磨混匀,倒入坩埚中,在箱式电阻炉中于700℃~900℃热处理,保温10h,然后冷却到室温;产物经去离子水反复洗涤、超声、干燥,得到六钛酸钾晶须。
2.根据权利要求1中所述的环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于所用的前驱物为廉价的无机钛盐四氯化钛和乙酸钾,钾钛比为1:2.5。
3.根据权利要求1中所述的环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于煅烧工艺中使用的反应助熔剂氯化钾熔点为770℃。
4.根据权利要求1中所述的环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于溶胶制备中的A溶液溶剂为无水乙醇,B溶液中使用的有机分散剂为聚丙烯酸(PAA)。
5.根据权利要求1中所述的环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于凝胶干燥工艺在电热鼓风干燥箱中进行,干燥温度为70~80℃,干燥时间为10~12h;煅烧工艺于箱式电阻炉或马弗炉中进行,升温速率为1~3℃/min,冷却速率为随炉冷却。
6.根据权利要求1中所述的环氧驱动一步制备六钛酸钾晶须方法,其技术特征在于所述的洗涤方法为使用50~60℃去离子水,抽滤、搅拌洗涤、干燥,循环操作至少3次。
CN201810138708.1A 2018-02-10 2018-02-10 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用 Active CN108315822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810138708.1A CN108315822B (zh) 2018-02-10 2018-02-10 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810138708.1A CN108315822B (zh) 2018-02-10 2018-02-10 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN108315822A CN108315822A (zh) 2018-07-24
CN108315822B true CN108315822B (zh) 2020-12-18

Family

ID=62903630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810138708.1A Active CN108315822B (zh) 2018-02-10 2018-02-10 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN108315822B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498049A (zh) * 2009-01-21 2009-08-05 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备莫来石晶须的方法
CN103397388A (zh) * 2013-08-15 2013-11-20 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备硅酸锆晶须的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035443C (zh) * 1993-04-10 1997-07-16 中国科学院金属研究所 钛酸钾晶须制备方法
CN101144186B (zh) * 2006-09-12 2011-11-23 江西隆亨新材料有限公司 六钛酸钾晶须的合成方法
CN100577896C (zh) * 2006-11-23 2010-01-06 四川大学 六钛酸钾晶须及其制备方法
CN101148779B (zh) * 2007-07-24 2011-07-27 山东大学 一种钛酸钾晶须的制备方法
CN101363135B (zh) * 2007-08-10 2012-07-11 上海晶须复合材料制造有限公司 六钛酸钾晶须的合成方法
CN103073054B (zh) * 2013-02-04 2014-08-06 河北工业大学 纳米带状六钛酸钾的制备方法
CN106311195A (zh) * 2015-07-06 2017-01-11 新加坡国立大学 光催化降解抗生素的催化剂及其制备方法和应用
CN106119950B (zh) * 2016-06-23 2018-08-17 南通奥新电子科技有限公司 一种高强度钛酸钾晶须的制备方法及其应用
CN106119949B (zh) * 2016-06-23 2018-08-17 南通奥新电子科技有限公司 一种高强度钛酸钾晶须的制备方法及其磁改性应用
CN106048727B (zh) * 2016-08-12 2018-08-28 南京工业大学 燃烧法一步制备六钛酸钾晶须的方法
CN106673121A (zh) * 2017-01-05 2017-05-17 北京师范大学 一种光催化法净化污水中四环素的方法
CN107200378B (zh) * 2017-06-23 2020-12-15 华南师范大学 一种高效降解四环素的混合物粉末的简易制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498049A (zh) * 2009-01-21 2009-08-05 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备莫来石晶须的方法
CN103397388A (zh) * 2013-08-15 2013-11-20 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备硅酸锆晶须的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparative study of potassium hexatitanate (K2Ti6O13) whiskers prepared by sol–gel and solid state reaction routes;Mohd Asim Siddiqui等;《Applied Surface Science》;20120410;第258卷;第7354-7358页 *
Study on the growth of potassium titanate nanostructures prepared by sol-gel–calcination process;Sung-Oong Kang等;《Materials Letters》;20060512;第61卷;第473-477页 *

Also Published As

Publication number Publication date
CN108315822A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
US10364193B2 (en) Method for synthesizing high-purity ultrafine ZrC—SiC composite powder
CN103754891B (zh) 一种硼/碳热还原法低温制备硼化铪粉体的方法
CN103157461A (zh) 一种纳米光催化剂钨酸铋及其制备方法
CN106915961A (zh) 一种石墨烯‑氧化锆复合材料及其制备方法
CN103588216A (zh) 一种硼/碳热还原法低温制备硼化锆粉体的方法
CN109399711A (zh) 一种金红石相二氧化钒纳米粉体的制备方法
CN106634056B (zh) 一种石墨烯包覆钛酸盐新型复合物及其制备方法
CN102219513B (zh) 一种制备近零热膨胀复合材料的方法
Foo et al. Synthesis and characterisation of Y2O3 using ammonia oxalate as a precipitant in distillate pack co-precipitation process
CN102924083A (zh) 一种碳化锆陶瓷粉体的制备方法
CN108315822B (zh) 环氧驱动一步制备六钛酸钾晶须方法及其光催化应用
CN102716701B (zh) 一种超声喷雾制备镍掺杂硅酸铋微米球的方法
CN105502316B (zh) 一种基于低温液相法的氮化钛粉体及其制备方法
CN101704677A (zh) 高能球磨合金化法合成制备二硼化钛陶瓷微粉
CN111250077A (zh) 一种复合金属氧化物催化剂及其应用
CN107445202B (zh) 一种小尺寸、超分散纳米氧化锆基涂层粉体的制备方法
CN105036136A (zh) 一种碳化硅纳米多孔材料的制备方法
Yang et al. Anodized oxidative electrosynthesis of magnesium silicate whiskers
CN101660204A (zh) 六方片氧化铝晶须材料的制备方法
CN114477247A (zh) 一种微波诱导燃烧合成纳米氧化镁的方法
CN108166051A (zh) 一种形貌可控六钛酸钾粉晶材料及其低能耗制备方法
CN103922413B (zh) 一种水热辅助低温煅烧制备棱锥状Cr2WO6微晶的方法
CN108706631B (zh) 一种矩形片状单斜氧化锆的制备方法
CN106115707B (zh) 一种抗氧化的鳞片石墨粉体及其制备方法
DING et al. Preparation and properties of Sr2+-doped nano TiO2 thin film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant