CN108193088A - 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 - Google Patents
一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 Download PDFInfo
- Publication number
- CN108193088A CN108193088A CN201711473395.7A CN201711473395A CN108193088A CN 108193088 A CN108193088 A CN 108193088A CN 201711473395 A CN201711473395 A CN 201711473395A CN 108193088 A CN108193088 A CN 108193088A
- Authority
- CN
- China
- Prior art keywords
- entropy
- entropy alloy
- alcrfeniv
- precipitation strength
- strength type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种析出强化型AlCrFeNiV体系高熵合金及其制备方法,属于金属材料技术领域。所述高熵合金中各组分的原子计量比为Al 0.30~0.60,Cr 0.20~0.89,Fe 0.60~1.20,Ni 1.50~3.50以及V 0.10~0.30,通过熔炼成型工艺以及形变热处理工艺制备而成。本发明通过调控各元素的含量,并优化合成工艺,获得无序FCC与有序L12两相共格的调幅组织,且晶粒细小,显著提高了高熵合金强度。
Description
技术领域
本发明涉及一种析出强化型AlCrFeNiV体系高熵合金及其制备方法,属于金属材料技术领域。
背景技术
传统合金通常以单一元素为主,其他元素少量添加。而高熵合金突破了传统合金的设计理念,采用多种元素作为主元,每种主要元素的原子百分比为5%~35%,当然并不排除添加微量元素,但是微量元素的原子百分比小于5%。相比于传统合金,高熵合金由于高熵效应、迟滞扩散效应、晶格畸变效应以及鸡尾酒效应等而表现出良好的强度、硬度、耐磨、耐腐蚀和热稳定性等性能优势。
尽管高熵合金具有优异的综合性能,但FCC结构高熵合金大多强度较低,这极大地限制了高熵合金的工程应用。例如,FCC结构的CoCrFeNiMn高熵合金,其抗拉强度仅为400MPa。有报道指出,可通过在FCC基体中引入纳米尺度析出相,以达到提高强度的目的。例如,在CoCrFeNi单相FCC高熵合金中添加少量的Ti和Al,并结合形变热处理工艺,促使FCC基体中析出纳米尺度L12析出相,强度大幅提升,屈服强度达到1000MPa,但合金中仍存在大量的脆性Laves相,限制了合金强度的进一步提高。
发明内容
针对目前FCC结构高熵合金普遍强度偏低的问题,本发明的目的在于提供一种析出强化型AlCrFeNiV体系高熵合金及其制备方法,所述高熵合金采用熔炼成型工艺以及形变热处理工艺制备而成,形成无序FCC与有序L12两相共格的调幅组织,且晶粒细小,显著提高了高熵合金强度。
本发明的目的是通过以下技术方案实现的。
一种析出强化型AlCrFeNiV体系高熵合金,所述高熵合金的化学式记为AlaCrbFecNidVe,其中,a=0.30~0.60,b=0.20~0.89,c=0.60~1.20,d=1.50~3.50,e=0.10~0.30。
进一步地,a、b、c、d、和e的取值优选a=0.30~0.55,b=0.30~0.70,c=0.60~1.10,d=2.0~3.50,e=0.10~0.22。
本发明所述析出强化型AlCrFeNiV体系高熵合金的制备方法,所述方法步骤如下,
(1)以金属单质Al、Cr、Fe、Ni和V作为原料,在氩气保护下将金属原料加热至熔化进行合金化得到母合金锭;再在氩气保护下,将母合金锭加热至熔化进行重熔,并浇铸成型,得到高熵合金锭;
(2)将高熵合金锭清洗干净后,置于真空环境或者氩气保护环境下,加热至1000℃~(Tm-100℃),固溶处理12h以上;再进行变形处理,总变形量为50%~90%;最后在500℃~900℃下时效处理1h~50h,得到所述高熵合金。
其中,金属单质Al、Cr、Fe、Ni以及V的纯度不低于99.5wt.%;Tm为高熵合金锭的熔点;变形处理的方式包括轧制、模锻、旋锻或模锻与旋锻复合变形方式。
有益效果:
(1)本发明所述高熵合金中Ni和Fe含量高,两者是FCC相稳定元素,能够确保高熵合金主要由FCC相组成;同时所述高熵合金具有高的Ni含量以及较低的Al含量,这有助于L12强化相的形成,避免B2相的析出;并且V的熔点较高,与Ni的混合焓较负,也会促进L12相的形成;另外,较低的Cr含量和少量的V,可以有效避免硬脆σ相的形成,并且较低的Cr含量可以有效减少或者避免富Cr板条状BCC相的形成,从而使高熵合金具有较高的强度;
(2)本发明所述的高熵合金主要由FCC相组成,在FCC高熵基体上析出大量与基体共格的纳米尺度L12相,显著改善了高熵合金的强度,其屈服强度超过1200MPa,抗拉强度超过1300MPa。
附图说明
图1为实施例1~5中制备的高熵合金1~5的X射线衍射(XRD)谱图的对比图。
图2为实施例1中制备的高熵合金1的扫描电子显微镜(SEM)图。
图3为实施例2中制备的高熵合金2的扫描电子显微镜图。
图4为实施例3中制备的高熵合金3的扫描电子显微镜图。
图5为实施例4中制备的高熵合金4的扫描电子显微镜图。
图6为实施例5中制备的高熵合金5的扫描电子显微镜图。
图7为实施例1~5中制备的高熵合金1~5的拉伸应力-应变曲线对比图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中:
金属单质Al、Cr、Fe、Ni和V的纯度均为99.9wt.%;
高纯氩气:纯度大于99.99wt.%;
高真空非自耗电弧熔炼炉为:DHL-400型,中国科学院沈阳科学仪器股份有限公司;
高真空电弧熔炼-翻转浇铸系统:沈阳好智多新材料制备技术有限公司;
铜制模具上加工有一个横截面为长方形的内腔,内腔的尺寸为50mm×13mm×50mm(即长×宽×高)。
对实施例中所制备的高熵合金进行的力学性能测试和组织结构表征:
(1)物相分析:采用美国阿贡国家实验室先进光源,11-ID-C线站进行高能X射线衍射实验,对高熵合金的物相结构进行分析,所使用的高能X射线波长λ=0.011725nm;
(2)微观组织:采用HITACHIS4800型冷场发射扫描电子显微镜进行微观组织表征;
(3)准静态拉伸力学性能测试:采用CMT4305型微机电子万能试验机进行室温准静态拉伸试验,测试试样依据金属材料室温拉伸试验方法(GB/T228.1-2010)国家标准中有关规定制成工字试样,样品厚1.0mm,宽3.14mm,平行段长度10mm,标距长度5mm,应变率为10- 3s-1。
实施例1
Al0.38Cr0.69Fe0.6Ni2.12V0.17高熵合金(以下简称高熵合金1)的具体制备步骤如下:
(1)配料:利用砂纸和砂轮机去除Al、Cr、Fe、Ni以及V表面的氧化皮等杂质,再依次使用丙酮、无水乙醇进行超声波清洗,得到洁净的金属单质;按照化学式中的计量比,准确称量Al、Cr、Fe、Ni以及V,原料总质量为80g;
(2)熔炼:将洁净的金属单质按照熔点由低到高的顺序自下而上堆放到高真空非自耗电弧熔炼炉的水冷铜坩埚中,然后抽真空,待熔炼炉内的真空度达到2.5×10-3Pa后,再充入高纯氩气作为保护气体;先熔炼纯Ti金属锭进一步降低熔炼炉腔内氧含量,然后再进行合金化熔炼,熔炼电流为20A~500A,熔炼过程中利用电磁搅拌使合金均匀化,冷却得到合金锭,将合金锭翻转,重复熔炼4次,得到母合金锭;
(3)浇铸:将母合金锭置于高真空电弧熔炼-翻转浇铸系统中,对炉腔抽真空,待真空度达到2.5×10-3Pa后,充入高纯氩气;在氩气保护下进行熔炼,加热电流为20A~500A,将母合金锭加热至1600℃,至母合金锭完全熔化后,将合金液浇铸到铜制模具中,冷却后获得高熵合金锭;
(4)固溶处理:高熵合金锭用丙酮超声清洗干净后,进行真空封管并充入氩气保护,将其置于热处理炉中,以10℃/min的升温速率升温到1200℃,保温24h后,取出样品并进行水淬,得到固溶态高熵合金;
(5)变形处理:将固溶态高熵合金进行室温轧制变形,采用多道次轧制,每次压下量为0.5mm,轧制速度为0.1m/s,总变形量为70%,得到轧制态高熵合金;
(6)时效处理:将轧制态高熵合金,在700℃下保温10h后,进行空冷,得到高熵合金1。
从图1中的XRD谱图可以得知,所制备的高熵合金1由FCC相和L12相组成。从图2所示的SEM照片中可以看出,所制备的高熵合金1包含A和B两种区域,A区域为基体FCC相,B区域为FCC相与L12相交错分布的区域,平均晶粒尺寸为0.7μm。对所制备的高熵合金1进行准静态拉伸力学性能测试,结果详见根据图7和表1中的测试结果可知,高熵合金1的室温(25℃)拉伸屈服强度为1426MPa,抗拉强度为1609MPa,断裂延伸率为10%。
实施例2
Al0.6Cr0.84Fe1.2Ni3V0.24高熵合金(以下简称高熵合金2)的具体制备步骤如下:
(1)配料:利用砂纸和砂轮机去除Al、Cr、Fe、Ni以及V表面的氧化皮等杂质,再依次使用丙酮、无水乙醇进行超声波清洗,得到洁净的金属单质;按照化学式中的计量比,准确称量Al、Cr、Fe、Ni以及V,原料总质量为80g;
(2)熔炼:将洁净的金属单质按照熔点由低到高的顺序自下而上堆放到高真空非自耗电弧熔炼炉的水冷铜坩埚中,然后抽真空,待熔炼炉内的真空度达到2.5×10-3Pa后,再充入高纯氩气作为保护气体;先熔炼纯Ti金属锭进一步降低熔炼炉腔内氧含量,然后再进行合金化熔炼,熔炼电流为20A~500A,熔炼过程中利用电磁搅拌使合金均匀化,冷却得到合金锭,将合金锭翻转,重复熔炼4次,得到母合金锭;
(3)浇铸:将母合金锭置于高真空电弧熔炼-翻转浇铸系统中,对炉腔抽真空,待真空度达到2.5×10-3Pa后,充入高纯氩气;在氩气保护下进行熔炼,加热电流为20A~500A,将母合金锭加热至1600℃,至母合金锭完全熔化后,将合金液浇铸到铜制模具中,冷却后获得高熵合金锭;
(4)固溶处理:高熵合金锭用丙酮超声清洗干净后,进行真空封管并充入氩气保护,将其置于热处理炉中,以10℃/min的升温速率升温到1200℃,保温24h后,取出样品并进行水淬,得到固溶态高熵合金;
(5)变形处理:将固溶态高熵合金进行室温轧制变形,采用多道次轧制,每次压下量为0.5mm,轧制速度为0.1m/s,总变形量为70%,得到轧制态高熵合金;
(6)时效处理:将轧制态高熵合金,在600℃下保温1h后,进行空冷,得到高熵合金2。
从图1中的XRD谱图可以得知,所制备的高熵合金2由FCC相、L12相和BCC相组成。从图3所示的SEM照片中可以看出,所制备的高熵合金2包含A和B两种区域,A区域为基体FCC相,B区域为FCC相与L12相交错分布的区域,同时存在少量板条状BCC相,平均晶粒尺寸为1.3μm。根据图7和表1中准静态拉伸力学性能测试结果可知,所制备的高熵合金2的室温拉伸屈服强度为1228MPa,抗拉强度为1353MPa,断裂延伸率为1.8%。
实施例3
Al0.5Cr0.55FeNi2.5V0.2高熵合金(以下简称高熵合金3)的具体制备步骤如下:
(1)配料:利用砂纸和砂轮机去除Al、Cr、Fe、Ni以及V表面的氧化皮等杂质,再依次使用丙酮、无水乙醇进行超声波清洗,得到洁净的金属单质;按照化学式中的计量比,准确称量Al、Cr、Fe、Ni以及V,原料总质量为80g;
(2)熔炼:将洁净的金属单质按照熔点由低到高的顺序自下而上堆放到高真空非自耗电弧熔炼炉的水冷铜坩埚中,然后抽真空,待熔炼炉内的真空度达到2.5×10-3Pa后,再充入高纯氩气作为保护气体;先熔炼纯Ti金属锭进一步降低熔炼炉腔内氧含量,然后再进行合金化熔炼,熔炼电流为20A~500A,熔炼过程中利用电磁搅拌使合金均匀化,冷却得到合金锭,将合金锭翻转,重复熔炼4次,得到母合金锭;
(3)浇铸:将母合金锭置于高真空电弧熔炼-翻转浇铸系统中,对炉腔抽真空,待真空度达到2.5×10-3Pa后,充入高纯氩气;在氩气保护下进行熔炼,加热电流为20A~500A,将母合金锭加热至1600℃,至母合金锭完全熔化后,将合金液浇铸到铜制模具中,冷却后获得高熵合金锭;
(4)固溶处理:高熵合金锭用丙酮超声清洗干净后,进行真空封管并充入氩气保护,将其置于热处理炉中,以10℃/min的升温速率升温到1200℃,保温24h后,取出样品并进行水淬,得到固溶态高熵合金;
(5)变形处理:将固溶态高熵合金进行室温轧制变形,采用多道次轧制,每次压下量为0.5mm,轧制速度为0.1m/s,总变形量为60%,得到轧制态高熵合金;
(6)时效处理:将轧制态高熵合金,在600℃下保温1h后,进行空冷,得到高熵合金3。
从图1中的XRD谱图可以得知,所制备的高熵合金3由FCC相和L12相组成。从图4所示的SEM照片中可以看出,所制备的高熵合金3包含A和B两种区域,A区域为基体FCC相,B区域为FCC相与L12相交错分布的区域,平均晶粒尺寸为1.2μm。根据图7和表1中的准静态拉伸力学性能测试结果可知,所制备的高熵合金3的室温拉伸屈服强度为1307MPa,抗拉强度为1393MPa,断裂延伸率为2.0%。
实施例4
Al0.4Cr0.32Fe0.8Ni2V0.16高熵合金(以下简称高熵合金4)的具体制备步骤如下:
(1)配料:利用砂纸和砂轮机去除Al、Cr、Fe、Ni以及V表面的氧化皮等杂质,再依次使用丙酮、无水乙醇进行超声波清洗,得到洁净的金属单质;按照化学式中的计量比,准确称量Al、Cr、Fe、Ni以及V,原料总质量为80g;
(2)熔炼:将洁净的金属单质按照熔点由低到高的顺序自下而上堆放到高真空非自耗电弧熔炼炉的水冷铜坩埚中,然后抽真空,待熔炼炉内的真空度达到2.5×10-3Pa后,再充入高纯氩气作为保护气体;先熔炼纯Ti金属锭进一步降低熔炼炉腔内氧含量,然后再进行合金化熔炼,熔炼电流为20A~500A,熔炼过程中利用电磁搅拌使合金均匀化,冷却得到合金锭,将合金锭翻转,重复熔炼4次,得到母合金锭;
(3)浇铸:将母合金锭置于高真空电弧熔炼-翻转浇铸系统中,对炉腔抽真空,待真空度达到2.5×10-3Pa后,充入高纯氩气;在氩气保护下进行熔炼,加热电流为20A~500A,将母合金锭加热至1600℃,至母合金锭完全熔化后,将合金液浇铸到铜制模具中,冷却后获得高熵合金锭;
(4)固溶处理:高熵合金锭用丙酮超声清洗干净后,进行真空封管并充入氩气保护,将其置于热处理炉中,以10℃/min的升温速率升温到1250℃,保温24h后,取出样品并进行水淬,得到固溶态高熵合金;
(5)变形处理:将固溶态高熵合金进行室温轧制变形,采用多道次轧制,每次压下量为0.5mm,轧制速度为0.1m/s,总变形量为70%,得到轧制态高熵合金;
(6)时效处理:将轧制态高熵合金,在600℃下保温5h后,进行空冷,得到高熵合金4。
从图1中的XRD谱图可以得知,所制备的高熵合金4由FCC相和L12相组成。从图5所示的SEM照片中可以看出,所制备的高熵合金4包含A和B两种区域,A区域为基体FCC相,B区域为FCC相与L12相交错分布的区域,平均晶粒尺寸为0.8μm。根据图7和表1中的拉伸应力-应变曲线准静态拉伸力学性能测试结果可知,所制备的高熵合金4的室温拉伸屈服强度为1204MPa,抗拉强度为1318MPa,断裂延伸率为4.4%。
实施例5
Al0.5Cr0.37FeNi3.18V0.21高熵合金(以下简称高熵合金5)的具体制备步骤如下:
(1)配料:利用砂纸和砂轮机去除Al、Cr、Fe、Ni以及V表面的氧化皮等杂质,再依次使用丙酮、无水乙醇进行超声波清洗,得到洁净的金属单质;按照化学式中的计量比,准确称量Al、Cr、Fe、Ni以及V,原料总质量为80g;
(2)熔炼:将洁净的金属单质按照熔点由低到高的顺序自下而上堆放到高真空非自耗电弧熔炼炉的水冷铜坩埚中,然后抽真空,待熔炼炉内的真空度达到2.5×10-3Pa后,再充入高纯氩气作为保护气体;先熔炼纯Ti金属锭进一步降低熔炼炉腔内氧含量,然后再进行合金化熔炼,熔炼电流为20A~500A,熔炼过程中利用电磁搅拌使合金均匀化,冷却得到合金锭,将合金锭翻转,重复熔炼4次,得到母合金锭;
(3)浇铸:将母合金锭置于高真空电弧熔炼-翻转浇铸系统中,对炉腔抽真空,待真空度达到2.5×10-3Pa后,充入高纯氩气;在氩气保护下进行熔炼,加热电流为20A~500A,将母合金锭加热至1600℃,至母合金锭完全熔化后,将合金液浇铸到铜制模具中,冷却后获得高熵合金锭;
(4)固溶处理:高熵合金锭用丙酮超声清洗干净后,进行真空封管并充入氩气保护,将其置于热处理炉中,以10℃/min的升温速率升温到1250℃,保温24h后,取出样品并进行水淬,得到固溶态高熵合金;
(5)变形处理:将固溶态高熵合金进行室温轧制变形,采用多道次轧制,每次压下量为0.5mm,轧制速度为0.1m/s,总变形量为75%,得到轧制态高熵合金;
(6)时效处理:将轧制态高熵合金,在700℃下保温1h后,进行空冷,得到高熵合金5。
从图1中的XRD谱图可以得知,所制备的高熵合金5由FCC相和L12相组成。从图6所示的SEM照片中可以看出,所制备的高熵合金5包含A和B两种区域,A区域为基体FCC相,B区域为FCC相与L12相交错分布的区域,平均晶粒尺寸为1.2μm。根据图7和表1准静态拉伸力学性能测试结果可知,所制备的高熵合金5的室温拉伸屈服强度为1407MPa,抗拉强度为1490MPa,断裂延伸率为3.6%。
表1
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
1.一种析出强化型AlCrFeNiV体系高熵合金,其特征在于:所述高熵合金的化学式记为AlaCrbFecNidVe,其中,a=0.30~0.60,b=0.20~0.89,c=0.60~1.20,d=1.50~3.50,e=0.10~0.30。
2.根据权利要求1所述的一种析出强化型AlCrFeNiV体系高熵合金,其特征在于:所述AlaCrbFecNidVe中,a=0.30~0.55,b=0.30~0.70,c=0.60~1.10,d=2.00~3.50,e=0.10~0.22。
3.一种如权利要求1或2所述的析出强化型AlCrFeNiV体系高熵合金的制备方法,其特征在于:所述方法步骤如下,
(1)以Al、Cr、Fe、Ni和V作为原料,在氩气保护下将金属原料加热至熔化进行合金化得到母合金锭;再在氩气保护下,将母合金锭加热至熔化进行重熔,并浇铸成型,得到高熵合金锭;
(2)将高熵合金锭清洗干净后,先在真空环境或者氩气保护环境下进行固溶处理,再依次进行变形处理和时效处理,得到所述高熵合金。
4.根据权利要求3所述的一种析出强化型AlCrFeNiV体系高熵合金的制备方法,其特征在于:Al、Cr、Fe、Ni以及V的纯度不低于99.5wt.%。
5.根据权利要求3所述的一种析出强化型AlCrFeNiV体系高熵合金的制备方法,其特征在于:在1000℃~(Tm-100℃)下,固溶处理12h以上;其中,Tm为高熵合金锭的熔点。
6.根据权利要求3所述的一种析出强化型AlCrFeNiV体系高熵合金的制备方法,其特征在于:变形处理的方式包括轧制、模锻、旋锻或者模锻与旋锻复合变形方式,总变形量为50%~90%。
7.根据权利要求3所述的一种析出强化型AlCrFeNiV体系高熵合金的制备方法,其特征在于:在500℃~900℃下时效处理1h~50h。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711473395.7A CN108193088B (zh) | 2017-12-29 | 2017-12-29 | 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 |
PCT/CN2018/000105 WO2019127610A1 (zh) | 2017-12-29 | 2018-03-16 | 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 |
US16/409,531 US11390938B2 (en) | 2017-12-29 | 2019-05-10 | Precipitation strengthening AlCrFeNiV system high entropy alloy and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711473395.7A CN108193088B (zh) | 2017-12-29 | 2017-12-29 | 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108193088A true CN108193088A (zh) | 2018-06-22 |
CN108193088B CN108193088B (zh) | 2020-07-24 |
Family
ID=62586466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711473395.7A Active CN108193088B (zh) | 2017-12-29 | 2017-12-29 | 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11390938B2 (zh) |
CN (1) | CN108193088B (zh) |
WO (1) | WO2019127610A1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109252083A (zh) * | 2018-11-07 | 2019-01-22 | 安阳工学院 | 一种多相高熵合金及其制备方法 |
CN110983255A (zh) * | 2019-12-19 | 2020-04-10 | 南京工程学院 | 一种含有L12有序相的Ni基多层膜的制备方法 |
KR20200039892A (ko) * | 2018-10-05 | 2020-04-17 | 현대자동차주식회사 | 하이엔트로피 합금 |
CN112251659A (zh) * | 2020-06-19 | 2021-01-22 | 沈阳工业大学 | 一种AlCrFe2Ni2C0.24高熵合金及其制备方法 |
TWI729899B (zh) * | 2020-08-05 | 2021-06-01 | 國立清華大學 | 高熵超合金之加工方法 |
CN112962037A (zh) * | 2021-02-03 | 2021-06-15 | 中国科学院力学研究所 | 一种超高强度高熵合金的时效有序硬化方法 |
CN113151726A (zh) * | 2021-03-26 | 2021-07-23 | 北京理工大学 | 具有高含量纳米级的魏氏体组织的高熵合金及其制备方法 |
CN113430343A (zh) * | 2021-07-05 | 2021-09-24 | 陕西科技大学 | 一种新型纳米析出强化CoCrNi基高熵合金的处理方法 |
CN115164648A (zh) * | 2022-06-15 | 2022-10-11 | 北京理工大学 | 一种TiZrVNbAl系含能高熵合金药型罩及其制备方法 |
CN115491529A (zh) * | 2022-09-15 | 2022-12-20 | 上海工程技术大学 | 一种调控析出相提高AlCrFeNiV系高熵合金力学性能的方法 |
CN115522146A (zh) * | 2022-10-10 | 2022-12-27 | 北京科技大学 | 一种高熵合金及其热机械处理方法 |
CN115821142A (zh) * | 2022-10-25 | 2023-03-21 | 锑玛(苏州)精密工具股份有限公司 | 一种核电现场加工刀具用FeCrNiVAl高熵合金及制备方法与应用 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020223162A1 (en) * | 2019-04-30 | 2020-11-05 | Oregon State University | Cu-based bulk metallic glasses in the cu-zr-hf-al and related systems |
US11353117B1 (en) | 2020-01-17 | 2022-06-07 | Vulcan Industrial Holdings, LLC | Valve seat insert system and method |
US11421680B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US12049889B2 (en) | 2020-06-30 | 2024-07-30 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US11421679B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing assembly with threaded sleeve for interaction with an installation tool |
US11384756B1 (en) | 2020-08-19 | 2022-07-12 | Vulcan Industrial Holdings, LLC | Composite valve seat system and method |
USD980876S1 (en) | 2020-08-21 | 2023-03-14 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD997992S1 (en) | 2020-08-21 | 2023-09-05 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD986928S1 (en) | 2020-08-21 | 2023-05-23 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
US12055221B2 (en) | 2021-01-14 | 2024-08-06 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US11391374B1 (en) | 2021-01-14 | 2022-07-19 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
CN113025865B (zh) * | 2021-03-03 | 2021-12-07 | 北方工业大学 | 一种AlCoCrFeNi系双相组织高熵合金制备方法 |
CN114457270B (zh) * | 2021-12-31 | 2023-01-31 | 西安理工大学 | L12颗粒强塑化的中熵合金及其制备方法 |
US11434900B1 (en) * | 2022-04-25 | 2022-09-06 | Vulcan Industrial Holdings, LLC | Spring controlling valve |
US11920684B1 (en) | 2022-05-17 | 2024-03-05 | Vulcan Industrial Holdings, LLC | Mechanically or hybrid mounted valve seat |
CN115233071B (zh) * | 2022-06-23 | 2024-05-24 | 西北工业大学 | 一种Ni-Fe基高温中熵合金及其制备方法 |
CN115821141B (zh) * | 2022-09-23 | 2023-11-24 | 哈尔滨工业大学 | 一种Laves相析出修饰AlCoCrFeNi双相高熵合金及其制备方法 |
CN115449691B (zh) * | 2022-10-12 | 2023-08-25 | 沈阳航空航天大学 | 一种超高强度-塑性匹配的高熵合金及其制备方法 |
CN115747606B (zh) * | 2022-12-20 | 2023-11-07 | 哈尔滨工业大学 | 一种单晶高熵合金NiCoCrFeTaAl及其制备方法 |
CN116065048B (zh) * | 2023-01-09 | 2024-09-10 | 山东科技大学 | 一种双尺度Ni3Al颗粒增强AlCoCrFeNi2.1共晶高熵合金耐磨性能的方法 |
CN116180124B (zh) * | 2023-03-22 | 2023-12-12 | 哈尔滨工业大学 | 核壳结构高熵合金电催化电极的制备方法及其应用 |
CN116397170B (zh) * | 2023-04-27 | 2024-07-02 | 西北工业大学 | 一种由原子团簇和纳米析出相增强的高熵合金及其制备方法 |
CN116586590A (zh) * | 2023-05-15 | 2023-08-15 | 西安工业大学 | 一种基于高梯度定向凝固的异构共晶高熵合金及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694808A (zh) * | 2015-03-26 | 2015-06-10 | 北京科技大学 | 具有弥散纳米析出相强化效应的高熵合金及其制备方法 |
CN105755324A (zh) * | 2016-03-02 | 2016-07-13 | 北京理工大学 | 一种兼具强度和韧性的高熵合金及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103194656A (zh) * | 2013-04-19 | 2013-07-10 | 梧州漓佳铜棒有限公司 | AlxCrFeNiCuVTi高熵合金材料及其制备方法 |
WO2017164601A1 (ko) * | 2016-03-21 | 2017-09-28 | 포항공과대학교 산학협력단 | 극저온용 고 엔트로피 합금 |
TWI595098B (zh) * | 2016-06-22 | 2017-08-11 | 國立清華大學 | 高熵超合金 |
CN106086486B (zh) * | 2016-08-12 | 2018-02-09 | 北京理工大学 | 一种强韧性匹配良好的高熵合金及其制备方法 |
CN107475596B (zh) * | 2017-08-10 | 2020-02-11 | 哈尔滨工业大学 | 一种高熵金属间化合物 |
-
2017
- 2017-12-29 CN CN201711473395.7A patent/CN108193088B/zh active Active
-
2018
- 2018-03-16 WO PCT/CN2018/000105 patent/WO2019127610A1/zh active Application Filing
-
2019
- 2019-05-10 US US16/409,531 patent/US11390938B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694808A (zh) * | 2015-03-26 | 2015-06-10 | 北京科技大学 | 具有弥散纳米析出相强化效应的高熵合金及其制备方法 |
CN105755324A (zh) * | 2016-03-02 | 2016-07-13 | 北京理工大学 | 一种兼具强度和韧性的高熵合金及其制备方法 |
Non-Patent Citations (1)
Title |
---|
J.Y. HE ETAL: "A precipitation-hardened high-entropy alloy with outstanding tensile properties", 《ACTA MATERIALIA》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102614171B1 (ko) | 2018-10-05 | 2023-12-14 | 현대자동차주식회사 | 하이엔트로피 합금 |
KR20200039892A (ko) * | 2018-10-05 | 2020-04-17 | 현대자동차주식회사 | 하이엔트로피 합금 |
CN109252083A (zh) * | 2018-11-07 | 2019-01-22 | 安阳工学院 | 一种多相高熵合金及其制备方法 |
CN110983255A (zh) * | 2019-12-19 | 2020-04-10 | 南京工程学院 | 一种含有L12有序相的Ni基多层膜的制备方法 |
CN110983255B (zh) * | 2019-12-19 | 2021-09-21 | 南京工程学院 | 一种含有L12有序相的Ni基多层膜的制备方法 |
CN112251659A (zh) * | 2020-06-19 | 2021-01-22 | 沈阳工业大学 | 一种AlCrFe2Ni2C0.24高熵合金及其制备方法 |
TWI729899B (zh) * | 2020-08-05 | 2021-06-01 | 國立清華大學 | 高熵超合金之加工方法 |
CN112962037A (zh) * | 2021-02-03 | 2021-06-15 | 中国科学院力学研究所 | 一种超高强度高熵合金的时效有序硬化方法 |
CN113151726A (zh) * | 2021-03-26 | 2021-07-23 | 北京理工大学 | 具有高含量纳米级的魏氏体组织的高熵合金及其制备方法 |
CN113430343A (zh) * | 2021-07-05 | 2021-09-24 | 陕西科技大学 | 一种新型纳米析出强化CoCrNi基高熵合金的处理方法 |
CN113430343B (zh) * | 2021-07-05 | 2022-09-20 | 陕西科技大学 | 一种纳米析出强化CoCrNi基高熵合金的处理方法 |
CN115164648A (zh) * | 2022-06-15 | 2022-10-11 | 北京理工大学 | 一种TiZrVNbAl系含能高熵合金药型罩及其制备方法 |
CN115164648B (zh) * | 2022-06-15 | 2023-10-20 | 北京理工大学 | 一种TiZrVNbAl系含能高熵合金药型罩及其制备方法 |
CN115491529A (zh) * | 2022-09-15 | 2022-12-20 | 上海工程技术大学 | 一种调控析出相提高AlCrFeNiV系高熵合金力学性能的方法 |
CN115522146A (zh) * | 2022-10-10 | 2022-12-27 | 北京科技大学 | 一种高熵合金及其热机械处理方法 |
CN115522146B (zh) * | 2022-10-10 | 2023-11-07 | 北京科技大学 | 一种高熵合金及其热机械处理方法 |
CN115821142A (zh) * | 2022-10-25 | 2023-03-21 | 锑玛(苏州)精密工具股份有限公司 | 一种核电现场加工刀具用FeCrNiVAl高熵合金及制备方法与应用 |
CN115821142B (zh) * | 2022-10-25 | 2024-06-11 | 锑玛(苏州)精密工具股份有限公司 | 一种核电现场加工刀具用FeCrNiVAl高熵合金及制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN108193088B (zh) | 2020-07-24 |
US11390938B2 (en) | 2022-07-19 |
US20200308683A1 (en) | 2020-10-01 |
WO2019127610A1 (zh) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108193088A (zh) | 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法 | |
CN108642363B (zh) | 一种高强高塑共晶高熵合金及其制备方法 | |
CN106350716B (zh) | 一种高强度外观件铝合金材料及其制备方法 | |
Cremasco et al. | Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy | |
CN108998715A (zh) | 具有大塑性变形能力的难熔高熵合金材料及其制备方法 | |
CN112105751B (zh) | 高强度钛合金 | |
CN104674103A (zh) | 一种CrFeCoNiNbx高熵合金及其制备方法 | |
CN107164669B (zh) | 一种易加工回收7系变形铝合金及其制备方法 | |
CN106555086A (zh) | 一种高强耐蚀Al-Zn-Mg-(Cu)系铝合金棒材及其制备方法 | |
US11427903B2 (en) | High-strength and high-conductivity Cu—Ag—Sc alloy and preparation method thereof | |
CN107234196B (zh) | 一种等原子比钛镍合金大型铸锭锻造方法 | |
CN107587004B (zh) | 一种Al-Ni-Cu-Fe-Yb-Sc合金导体材料及其制备方法 | |
CN113403555B (zh) | 通过热变形工艺改善硅化物增强难熔高熵合金性能的方法 | |
CN106435318B (zh) | 一种高强高韧的钒合金及其制备方法 | |
CN107151753A (zh) | 一种抑制a7n01铝合金表面粗晶环产生的方法 | |
CN117265360A (zh) | 一种复合析出强化型高熵合金及其制备方法 | |
CN107739876A (zh) | 一种多元低铍铜合金及其制备方法 | |
CN115652171B (zh) | 一种高强析出强化型高熵合金及其制备方法 | |
CN111321336A (zh) | 一种低缺口敏感性的共晶高熵合金及其制备方法 | |
CN115074601B (zh) | 一种制备高体积分数b2强化铁素体合金的方法 | |
CN108165780A (zh) | 一种Ni-Cr-Al-Fe系高温合金的制备方法 | |
TW201436892A (zh) | 高爾夫桿頭之鈦合金滾軋板及其製造方法 | |
CN110029295A (zh) | 一种6061铝合金热机械处理强化工艺 | |
Feng et al. | Comparison of Ag and Zr with same atomic ratio in Cu-Cr alloy | |
CN112359246A (zh) | 一种Cu-Ti-P-Ni-Er铜合金材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |