CN108178370A - 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法 - Google Patents

一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法 Download PDF

Info

Publication number
CN108178370A
CN108178370A CN201711463188.3A CN201711463188A CN108178370A CN 108178370 A CN108178370 A CN 108178370A CN 201711463188 A CN201711463188 A CN 201711463188A CN 108178370 A CN108178370 A CN 108178370A
Authority
CN
China
Prior art keywords
haydite
nickel
catalysis
persulfate
abolishes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711463188.3A
Other languages
English (en)
Other versions
CN108178370B (zh
Inventor
黄柱坚
叶家而
张力
吴思颖
梁健铭
张雅婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201711463188.3A priority Critical patent/CN108178370B/zh
Publication of CN108178370A publication Critical patent/CN108178370A/zh
Application granted granted Critical
Publication of CN108178370B publication Critical patent/CN108178370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Abstract

本发明属于工业含镍污水处理领域,公开了一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法。本发明通过在陶粒中负载一定比例的铁锰镍等过渡金属制备得到催化陶粒,然后往含镍废水中加入过硫酸氢盐和催化陶粒,搅拌一定时间后,调pH至10,静置一定时间,即可达到可观的破除含镍络合物的效果。本发明可很好地替代传统的Fenton反应破络,用于处理电镀废水中络合态的重金属,破络效果好,药剂用量少,无污泥产生,处理成本低,且工艺简单,与现有工艺结合使用可更好的去除废水中重金属。

Description

一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的 方法
技术领域
本发明属于工业含镍污水处理领域,特别涉及一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法。
背景技术
电镀工业会产生大量镀镍漂洗废水,废水中的镍主要以硫酸镍、氯化镍及络合镍的形态存在,而镍属于第一类污染物,其超标排放会对环境造成严重污染。电镀废水中高浓度非络合态镍较易去除,而络合态镍则难以单纯地用化学沉淀法除去,故需先将其络合物破除,再以化学沉淀方法除去非络合态镍。
目前处理含络合态镍废水工艺主要采用Fenton反应,反应后会产生大量的含重金属铁泥,且催化剂不能重复利用,成本高昂,另一方面,产生的含重金属铁泥会造成二次污泥,2018年环保税的实施,电镀行业等产生的铁泥属危险废物,税率较高,对于电镀企业而言,廉价而效果优异的处理工艺存在强烈的需求。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法。
本发明的目的通过下述方案实现:
一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其包括以下步骤:
调节含镍废水的pH值为3~9,向其中加入过硫酸盐,然后再加入催化陶粒,在100~200r/min的转速下搅拌10~30min后,用碱调节pH值至9~10,静置15~20min,待溶液呈绿色时,即达到了破除含镍络合物的效果。
所述的调节含镍废水的pH值优选调节pH值为3~5;
所述的含镍废水、催化陶粒、过硫酸盐的用量满足催化陶粒和过硫酸盐的质量比为5~25:1,优选为5:1;每1L的含镍废水对应加入0.2~4g过硫酸盐。
所述的过硫酸盐可为过硫酸氢钾,过硫酸钠,过硫酸钾中的至少一种。
所述的催化陶粒是指负载有过渡金属元素的陶粒,优选为负载铁、锰、镍的催化陶粒。
所述的负载有铁、锰、镍的催化陶粒由以下方法制备得到:
(1)陶粒预处理:将陶粒放入稀硝酸溶液中加热煮沸0.5~1h,然后取出冷却并用水冲洗,干燥后冷却备用;
(2)过渡金属混合盐水溶液的制备:取硝酸锰、硝酸镍、硝酸铁,按物质的量比为4:1:1配制成混合水溶液,其中混合金属离子总摩尔浓度为0.5~1.0mol/L;
(3)将步骤(1)预处理后的陶粒加入到步骤(2)的过渡金属混合盐水溶液中,利用50~100rpm的搅拌速度,搅拌1~4h,搅拌过程中用碱调节溶液pH值至7~8,搅拌结束后静置1~4h,取出晾干并置于马弗炉中煅烧,煅烧结束后冷却并称重,增重超过3%即认为镀膜成功,得到了负载铁、锰、镍的催化陶粒;
(4)若增重不超过3%,则重复步骤(3)直至增重超过3%。
步骤(1)中所述的陶粒的直径为0.4~0.6cm,优选为0.5cm。
步骤(1)中所述的稀硝酸的浓度为0.1~0.5mol/L;所述的干燥是指在60~120℃干燥5~10h,优选在105℃干燥5h。
步骤(1)为陶粒的预处理,可除去陶粒表面的残留物质。
步骤(3)中所述的调节pH是指用氨水、氢氧化钠或氢氧化钾调节;
步骤(3)中所用的陶粒和过渡金属混合盐水溶液的用量满足所用的过渡金属混合盐水溶液能完全浸泡陶粒。
步骤(3)中所述的煅烧是指在300~600℃煅烧2~4h,优选在500℃煅烧4h;
本发明的机理为:
本发明是利用化学沉积法将具有催化活性的过渡金属Ni、Mn、Fe负载在机械强度较高的陶粒上,得到催化陶粒。以过硫酸盐为氧化剂,利用催化陶粒将其活化,产生氧化性较强的硫酸根自由基SO4 -·(此处的黑点是指未成对的电子),生成的SO4 -·可对络合态的镍发起进攻,使EDTA或柠檬酸等小分子络合物被氧化降解,破坏其络合状态,达到破络的目的。反应后,可用网格把催化陶粒阻隔截留再用,处理后的水排出。此催化氧化反应为非均相反应,反应后无污泥产生,也不会增加出水的浊度。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明所用催化陶粒机械强度大,催化效率高,只需用简单的网格便可分离回收再用。
(2)本发明利用催化陶粒活化过硫酸盐,属非均相催化氧化反应,反应后无污泥产生,可节省污泥税的费用。
附图说明
图1为本发明的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法实施的流程图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。实施例中所用的PMS为过硫酸氢钾,分子式KHSO5·0.5KHSO4·0.5K2SO4
实施例1
步骤一:催化陶粒的制备,流程如下:
(1)陶粒预处理:取陶粒若干,放入0.1~0.5mol/L稀硝酸溶液中加热煮沸0.5h,用来去除陶粒表面的残留物质,冷却后用蒸馏水冲洗数次,置于烘箱中恒温105℃烘干1h,取出冷却后备用。
(2)陶粒负载催化氧化材料的制备:取硝酸锰、硝酸镍、硝酸铁,按物质的量比4:1:1配置混合水溶液,其中混合金属离子总摩尔浓度为0.5~1.0mol/L,称取预处理后的陶粒加入到混合溶液中,搅拌1h,搅拌过程中用氨水将溶液pH调节至7~8。静置2h,取出晾干2h后,用铁盒盛装,置于500℃马弗炉中煅烧4h,降温冷却后取出陶粒后称重,增重超过3%即认为镀膜成功,得到铁锰镍/陶粒催化陶粒用清水清净烘干。
步骤二:调节含镍电镀废水的pH至4;
步骤三:将陶粒与PMS加入经步骤二处理的电镀废水中,其中陶粒与PMS的质量比为25:1~5:1,更优选为5:1;
步骤四:用混凝搅拌机以200r/min的转速,对经过步骤三处理的电镀废水进行搅拌,时间为30min;
步骤五:对经过步骤四处理的电镀废水,用NaOH调节其pH至10;
步骤六:将经过步骤五处理后的废水静置15~20min,至其溶液逐渐从无色变成绿色;
步骤七:将经过步骤六处理的电镀废水通过0.45μm的滤膜,过滤废水中的有色物质;
取六份同样的废水(分别标为0、1、2、3、4、5,其中0代表未经本发明的方法处理的废水),经上述方法处理的含镍废水,最终废水中镍含量与未经处理的废水的镍含量对比如下表1:
表1经实施例1中方法处理过后的废水中镍含量与未经处理的废水的镍含量对比数据
一、实施例结果分析
由表1可见,随着投加量质量比陶粒/PMS的减少,出水中镍含量有逐渐降低的倾向,当陶粒/PMS为5:1时,出水镍浓度最低,为1.94mg/L,处理效果为本实例中最佳。
二、镍去除率分析
镍的去除率=(1-Ct/C0)×100%,C0为初始浓度,Ct为经30min搅拌(破除络合物过程)后采用化学沉淀法(即步骤五和步骤六)处理后的镍浓度(即步骤七中滤液中的镍浓度),得到去除率如下表2所示:
表2 不同投加量质量比陶粒/PMS处理后的废水的镍去除率
由表2可见,随着投加量质量比陶粒/PMS的减少,镍除去率由逐渐上升的趋势,当陶粒/PMS为5:1时,镍去除率最高,为52.8%,处理效果为本实例中最佳。
实施例2
步骤一:催化陶粒的制备,流程如下:
(1)陶粒预处理:取陶粒若干,放入0.1~0.5mol/L稀硝酸溶液中加热煮沸0.5h,用来去除陶粒表面的残留物质,冷却后用蒸馏水冲洗数次,置于烘箱中恒温105℃烘干1h,取出冷却后备用。
(2)陶粒负载催化氧化材料的制备:取硝酸锰、硝酸镍、硝酸铁,按物质的的量比4:1:1配置混合水溶液,其中混合金属离子总摩尔浓度为0.5~1.0mol/L,称取预处理后的陶粒加入到混合溶液中,搅拌1h,搅拌过程中用氨水将溶液pH调节至7~8。静置2h,取出晾干2h后,用铁盒盛装,置于500℃马弗炉中煅烧4h,降温冷却后取出陶粒后称重,增重超过3%即认为镀膜成功,得到铁锰镍/陶粒催化陶粒用清水清净烘干。
步骤二:调节含镍电镀废水的pH至3;
步骤三:将陶粒与PMS加入经步骤二处理的电镀废水中,其中陶粒与PMS的投加量质量比优选为25:1~5:1;
步骤四:用混凝搅拌机以200r/min的转速,对经过步骤三处理的电镀废水进行搅拌,时间为30min;
步骤五:对经过步骤四处理的电镀废水,用NaOH调节其pH至10;
步骤六:将经过步骤五处理后的废水静置15~20min,至其溶液逐渐从无色变成绿色;
步骤七:将经过步骤六处理的电镀废水通过0.45μm的滤膜,过滤废水中的有色物质;
取六份同样的废水(分别标为0、1、2、3、4、5,其中0代表未经本发明的方法处理的废水),经上述方法处理的含镍废水,最终废水中镍含量与未经处理的废水的镍含量对比如下表3:
表3 经实施例2中方法处理过后的废水中镍含量与未经处理的废水的镍含量对比数据
一、实施例结果分析
由表3可见,随着投加量质量比陶粒/PMS的减少,出水中镍含量有逐渐降低的倾向,当陶粒/PMS为5:1时,出水镍浓度最低,为1.76mg/L,处理效果为本实例中最佳;
二、镍去除率分析
本发明中镍的浓度单位为mg/L
镍的去除率=(1-Ct/C0)×100%,C0为初始浓度,即未经处理前的废水中镍的含量,Ct为经30min搅拌(破除络合物过程)后采用化学沉淀法处理后的镍浓度(即步骤七中滤液中的镍浓度),得到去除率如下表4:
表4 不同投加量质量比陶粒/PMS处理后的废水的镍去除率
由表4可见,随着投加量质量比陶粒/PMS的减少,镍除去率有逐渐上升的趋势,当陶粒/PMS为5:1时,镍去除率最高,为53.07%,处理效果为本实例中最佳。
PMS(过硫酸盐)不仅为氧化促进剂,还有更强的派生氧化能力,在光解和捕获电子时产生SO4 -·(此处的黑点是指未成对的电子)。采用过渡金属催化过硫酸盐产生SO4 -·的方式,反应体系简单可不需要外加热源和光源。本发明中的负载陶粒负载了Fe,Mn,Ni等过渡金属元素,而过渡金属在常温下通过单电子还原S2O8 2-生成SO4 -·和SO4 2-,利用过渡金属产生氧化性较强的硫酸根自由基SO4 -·,KHSO5产生以SO4 -·为主的活性物种,条件简单温和,自由基生成率高。过渡金属活化PMS后,生成的SO4 -·可对络合态的镍发起进攻,破坏其络合状态,达到破络的目的。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于包括以下步骤:
调节含镍废水的pH值为3~9,向其中加入过硫酸盐,然后再加入催化陶粒,在100~200r/min的转速下搅拌10~30min后,用碱调节pH值至9~10,静置15~20min,待溶液呈绿色时,即达到了破除含镍络合物的效果;
所述的催化陶粒是指负载有过渡金属元素的陶粒。
2.根据权利要求1所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的催化陶粒是指负载铁、锰、镍的催化陶粒。
3.根据权利要求2所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的负载有铁、锰、镍的催化陶粒由以下方法制备得到:
(1)陶粒预处理:将陶粒放入稀硝酸溶液中加热煮沸0.5~1h,然后取出冷却并用水冲洗,干燥后冷却备用;
(2)过渡金属混合盐水溶液的制备:取硝酸锰、硝酸镍、硝酸铁,按物质的量比为4:1:1配制成混合水溶液,其中混合金属离子总摩尔浓度为0.5~1.0mol/L;
(3)将步骤(1)预处理后的陶粒加入到步骤(2)的过渡金属混合盐水溶液中,利用50~100rpm的搅拌速度,搅拌1~4h,搅拌过程中用碱调节溶液pH值至7~8,搅拌结束后静置1~4h,取出晾干并置于马弗炉中煅烧,煅烧结束后冷却并称重,增重超过3%即认为镀膜成功,得到了负载铁、锰、镍的催化陶粒;
(4)若增重不超过3%,则重复步骤(3)直至增重超过3%。
4.根据权利要求3所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
步骤(1)中,所述的陶粒的直径为0.4~0.6cm;所述的稀硝酸的浓度为0.1~0.5mol/L;所述的干燥是指在60~120℃干燥5~10h。
5.根据权利要求3所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
步骤(3)中所述的调节pH是指用氨水、氢氧化钠或氢氧化钾调节;
步骤(3)中所用的陶粒和过渡金属混合盐水溶液的用量满足所用的过渡金属混合盐水溶液能完全浸泡陶粒;
步骤(3)中所述的煅烧是指在300~600℃煅烧2~4h。
6.根据权利要求1所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的调节含镍废水的pH值为3~5。
7.根据权利要求1所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的过硫酸盐为过硫酸氢钾,过硫酸钠,过硫酸钾中的至少一种。
8.根据权利要求1所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的含镍废水、催化陶粒、过硫酸盐的用量满足催化陶粒和过硫酸盐的质量比为5~25:1,每1L的含镍废水对应加入0.2~4g过硫酸盐。
9.根据权利要求8所述的过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法,其特征在于:
所述的含镍废水、催化陶粒、过硫酸盐的用量满足催化陶粒和过硫酸盐的质量比为5:1,每1L的含镍废水对应加入0.2~4g过硫酸盐。
CN201711463188.3A 2017-12-28 2017-12-28 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法 Active CN108178370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711463188.3A CN108178370B (zh) 2017-12-28 2017-12-28 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711463188.3A CN108178370B (zh) 2017-12-28 2017-12-28 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法

Publications (2)

Publication Number Publication Date
CN108178370A true CN108178370A (zh) 2018-06-19
CN108178370B CN108178370B (zh) 2021-02-19

Family

ID=62548568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711463188.3A Active CN108178370B (zh) 2017-12-28 2017-12-28 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法

Country Status (1)

Country Link
CN (1) CN108178370B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761401A (zh) * 2019-03-12 2019-05-17 江苏中电创新环境科技有限公司 一种edta类强络合重金属废水的处理工艺
CN112875922A (zh) * 2021-01-14 2021-06-01 西南大学 回收电镀废水中金属离子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486775B1 (ko) * 2004-09-15 2005-05-03 주식회사 건양기술공사 건축사사무소 고급산화법을 이용한 난분해성 축산폐수 처리방법 및 이를이용한 처리장치
CN102794182A (zh) * 2012-08-21 2012-11-28 泰山医学院 复合臭氧氧化固体催化剂的制备方法及催化剂
CN106495377A (zh) * 2016-11-16 2017-03-15 安徽工程大学 一种络合镍废水的处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486775B1 (ko) * 2004-09-15 2005-05-03 주식회사 건양기술공사 건축사사무소 고급산화법을 이용한 난분해성 축산폐수 처리방법 및 이를이용한 처리장치
CN102794182A (zh) * 2012-08-21 2012-11-28 泰山医学院 复合臭氧氧化固体催化剂的制备方法及催化剂
CN106495377A (zh) * 2016-11-16 2017-03-15 安徽工程大学 一种络合镍废水的处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张昊楠等: "FexOy@GAC活化过硫酸盐处理络合铜废水的研究", 《中国给水排水》 *
张馨月等: "不同载体镍基催化剂激活过硫酸盐降解酸性橙7的实验研究", 《水资源与水工程学报》 *
熊道陵等: "《电镀污泥中有价金属提取技术》", 31 October 2013, 冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761401A (zh) * 2019-03-12 2019-05-17 江苏中电创新环境科技有限公司 一种edta类强络合重金属废水的处理工艺
CN112875922A (zh) * 2021-01-14 2021-06-01 西南大学 回收电镀废水中金属离子的方法

Also Published As

Publication number Publication date
CN108178370B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN105753133B (zh) 一种臭氧催化氧化塔及应用其处理煤气化废水的方法
CN107051468B (zh) 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用
CN106495377A (zh) 一种络合镍废水的处理方法
CN102659221A (zh) 用于废水处理的电催化氧化材料及制备方法和应用
CN109647413A (zh) 催化过硫酸盐处理有机废水的负载型金属催化剂及其制备
CN104624198A (zh) 一种用于臭氧氧化的催化剂的制备方法
CN103787537B (zh) 一种污水的处理方法及其应用
CN108928892A (zh) 一种基于电芬顿耦合电絮凝处理垃圾渗滤液的方法
CN103877978B (zh) 类Fenton法深度处理印染废水催化剂的制备和应用
CN107540135A (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN101658789B (zh) 金属掺杂羟基氧化物催化剂及其制备方法和应用
CN108178370A (zh) 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法
CN115043545B (zh) 一种磁絮凝耦合光催化净水的方法和磁絮凝耦合光催化净水装置
CN105233838A (zh) 一种以活化膨润土为载体的o3/h2o2催化剂的制备方法、催化剂及其应用
CN102115277A (zh) 一种综合电镀废水一体化集成达标处理方法
CN106745538B (zh) 一种从次磷酸盐废水中回收单质磷的方法
CN106430699B (zh) 一种利用MnxCo3-xO4纳米笼活化单过硫酸盐处理水中抗癫痫药物的方法
CN102049253A (zh) 一种用于臭氧氧化处理废水专用催化剂的制备方法
CN210710884U (zh) 处理高浓度含氰废水的装置
CN105923854A (zh) 一种高浓度有机废水的处理方法
CN105565468B (zh) 一种用于染料降解的类Fenton碳材料的制备方法
CN108525673A (zh) 一种类芬顿固体催化剂及其制备方法和应用
CN108314167A (zh) 一种除废酸复合碱及其制备方法
CN103288167B (zh) 有机膨润土与TiO2联合预处理垃圾渗滤液的方法
CN107081153B (zh) 一种基于催化剂光催化还原Cr(VI)的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant