CN108097224A - 一种苯酚吸附剂再生与苯酚无害化处理的方法 - Google Patents

一种苯酚吸附剂再生与苯酚无害化处理的方法 Download PDF

Info

Publication number
CN108097224A
CN108097224A CN201810000410.4A CN201810000410A CN108097224A CN 108097224 A CN108097224 A CN 108097224A CN 201810000410 A CN201810000410 A CN 201810000410A CN 108097224 A CN108097224 A CN 108097224A
Authority
CN
China
Prior art keywords
phenol
adsorption
agent
reaction kettle
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810000410.4A
Other languages
English (en)
Other versions
CN108097224B (zh
Inventor
田森林
张月超
李英杰
黄建洪
胡学伟
宁平
谷俊杰
关清卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810000410.4A priority Critical patent/CN108097224B/zh
Publication of CN108097224A publication Critical patent/CN108097224A/zh
Application granted granted Critical
Publication of CN108097224B publication Critical patent/CN108097224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明公开了一种苯酚吸附剂再生与苯酚无害化处理的方法,属于环保技术领域。本发明将水、已吸附苯酚的苯酚吸附剂、氧化剂和/或催化剂加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,并反应0.1~60min,冷却至室温,收集气体产物和再生苯酚吸附剂,其中超临界状态的温度为380~600℃,压力为22.1~30Mpa。本发明中超临界水与苯酚互溶,在氧化剂过量时苯酚完全氧化,生成二氧化碳和水;在氧气不足和催化剂存在时苯酚发生氧化‑气化,生成氢气和一氧化碳等资源化气体;本发明苯酚吸附剂再生的同时实现苯酚的无害化及资源化,再生后的吸附剂可以全部或者部分替代新鲜吸附剂。

Description

一种苯酚吸附剂再生与苯酚无害化处理的方法
技术领域
本发明涉及一种苯酚吸附剂再生与苯酚无害化处理的方法,属于环保技术领域。
背景技术
酚是一种芳香族碳氢化合物的含氧衍生物,是一大类相似化合物的总称,包括苯酚、氨基酚、氯酚、硝基酚、间二苯酚以及其它酚类化合物等。酚类物质是工业废水中常见的难降解、毒性高的有机污染物,往往具有致癌、致畸和致突变特性,给生物和生态系统造成严重的威胁。在工业中,酚类是重要的化工原料和中间体,可用于制造酚醛树脂、高分子材料、离子交换树脂、合成纤维、燃料、药物等。与之对应的含酚废水主要来源于塑料厂、焦化厂、石油化工厂、染料厂、农药厂、树脂厂、苯酚厂等。酚类化合物早已被美国国家环保局列为129种优先监控污染物的名单之中。含酚废水也是我国水污染控制中的重点。我国GB3838-2002《地表水质量标准》中明确规定,Ⅰ、Ⅱ类水体挥发酚含量小于0.002mg/L,Ⅲ类水体含量小于0.005mg/L。
目前国内外对含酚废水处理技术的研究很多,主要有物化法,包括萃取法、吸附法、蒸汽法、还有盐析法等;化学法,包括化学沉淀法、化学氧化法、湿式催化氧化法、焚烧法和超临界水氧化法等;生化法,包括生物膜法、活性污泥法、根据活性污泥法原理产生的生物流化床法、厌氧法以及厌氧-好氧组合工艺等。
诸多方法中,吸附法具有简单、易用等优点,可以利用吸附剂的多孔性质将废水中的酚类物质吸附。常用的吸附剂如活性炭、碳纤维、膨润土、沸石、大孔树脂等。
中国专利CN104148028B中公开了一种去除水体中低浓度苯酚吸附剂的制备方法,稻壳经过酸碱处理、发霉、氯仿淋洗、H2O2灭菌、极性化合物改后,得到苯酚吸附剂。中国专利CN104045167A中公开了一种吸收苯酚废水的环保载体材料,吸收材料是丙烯酸酯、氢氧化铝、醇酸树脂、密胺树脂、高岭土、纳米硫酸钙、钛酸酯偶联剂、纳米银、马来酸酐接枝聚丙烯、聚对苯二甲酸乙二醇酯、水泥灰水溶液和麦饭石的混合物。上述吸附剂,可以有效吸附苯酚,但吸附处理后,苯酚没能到有效的降解,有毒害隐患。
发明内容
针对现有技术中苯酚吸附剂再生和苯酚无害化处理的问题,本发明提供一种苯酚吸附剂再生与苯酚无害化处理的方法,本发明中在苯酚吸附剂再生的过程中,酚类物质在超临界水中完全氧化,生成CO2和H2O,实现处理过程的无害化;而在催化条件下,酚类物质超临界水中部分氧化气化,生成H2、CH4和CO等,实现处理过程的资源化。
一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂、氧化剂和/或催化剂加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,并反应0.1~60min,冷却至室温,收集气体产物和再生苯酚吸附剂,其中超临界状态的温度为380~600℃,压力为22.1~30MPa。
所述吸附剂为碳材料、活性三氧化二铝或分子筛,碳材料为活性炭、碳纳米管或活性炭纤维,分子筛为13X分子筛、ZSM-5分子筛、TS-1分子筛、ZSM-35分子筛或ZSM-22。
所述氧化剂与苯酚的摩尔比率为(0~20):1,氧化剂为双氧水、过氧化钠、过氧碳酸钠、过氧化钾、过氧碳酸钾或氧化性气体,氧化性气体为O2和/或O3
所述氧化剂过氧化钠与水可发生反应,Na2O2+H2O=2NaOH+H2O2,所述氧化剂过氧化钾与水可发生反应,K2O2+H2O=2KOH+H2O2,氧化剂过氧碳酸钠与水可发生反应,Na2CO4+H2O=Na2CO3+H2O2;氧化剂过氧碳酸钾与水可发生反应,K2CO4+H2O= K2CO3+H2O2;
所述催化剂与苯酚的质量比为(0.05~1):1,催化剂为碱金属的氢氧化物、碱金属的碳酸盐、碱金属的碳酸氢盐、过渡金属与贵金属的合金、过渡金属的合金、贵金属的合金中的一种或任意比多种。
所述碱金属的氢氧化物为NaOH或KOH,碱金属的碳酸盐为Na2CO3、NaHCO3、K2CO3或KHCO3,过渡金属为Zn、Co、Ni或Cu,贵金属为Pd、Pt或Ru。
所述高温高压反应釜为间歇式反应釜或连续式反应釜。
所述氧化剂(以氧元素计算)与苯酚的摩尔比为(1~7.5):1,酚类物质超临界水中部分氧化气化,生成H2、CH4等,实现处理过程的资源化;
所述氧化剂(以氧元素计算)与苯酚的摩尔比为(7.5~15):1,酚类物质在超临界水中完全氧化,生成CO2和H2O,实现处理过程的无害化。
本发明的原理为:
(1)水处于超临界状态时,可溶解有机物,消除相间传质阻力,能够快速的将苯酚从吸附剂上脱附;
(2)超临界水有强烈的水解作用,并且可与气体互溶,当气体为氧化性气体时,如氧气,可发生强烈的水解-氧化作用,从而氧化苯酚生成二氧化碳、水和氢气等;
(3)1mol苯酚完全氧化的理论需氧量为7.5mol,当供氧量超过理论需氧量并发生完全氧化时,生成二氧化碳和水,当供氧量不足时,发生部分氧化气化生成氢气和一氧化碳,生成资源化气体进行回收利用。
本发明的有益效果:
(1)本发明的超临界水中存在过量氧化剂时,苯酚可完全氧化分解苯酚,生成水和二氧化碳,无二次污染;
(2)本发明中存在非过量氧化剂和/或催化剂时,苯酚发生部分氧化,生成氢气和一氧化碳,生成资源化气体进行回收利用;
(3)本发明中氧化性气体可与超临界水互溶,提高利用率,有益于降低工艺成本;
(4)本发明的操作简单,再生时间短,效率高,有利于降低能耗。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(活性炭)、氧化剂(H2O2)和催化剂(NaOH)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为380℃,压力为22.1Mpa,并反应1min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(活性炭);其中苯酚吸附剂(活性炭)与水的质量比为1:5.5,苯酚与活性炭的质量比为24:100,氧化剂(H2O2)与苯酚的摩尔比为1:1,催化剂(NaOH)与苯酚的质量比为0.05:1;
本实施例中苯酚吸附剂(活性炭)的再生产率为97.7,再生苯酚吸附剂(活性炭)对苯酚的吸附容量为原苯酚吸附剂(活性炭)的90%,以体积百分数计,气体产物中CO2占21%, H2占79%,苯酚的转化率为37%。
实施例2:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(苯酚吸附剂为活性炭)、氧化剂(氧化剂为过氧化钠)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为400℃,压力为23.5Mpa,并反应3min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(活性炭);其中苯酚与苯酚吸附剂(活性炭)的质量比为24:100,氧化剂(过氧化钠)与苯酚的摩尔比为1.5:1;
本实施例中苯酚吸附剂(活性炭)的再生产率为96.3,再生苯酚吸附剂(活性炭)对苯酚的吸附容量为原苯酚吸附剂(活性炭)的102%,以体积百分数计,气体产物中CH4占7%,CO2占36%,H2占57%,苯酚的转化率为58%。
实施例3:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(苯酚吸附剂为碳纳米管)、氧化剂(氧化剂为过氧化钾)和催化剂(Zn合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为450℃,压力为24Mpa,并反应5min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(活性炭);其中苯酚与苯酚吸附剂(活性炭)的质量比为24:100;氧化剂(过氧化钾)与苯酚的摩尔比为3:1;催化剂(Zn合金)与苯酚的质量比为0.5:1;
本实施例中苯酚吸附剂(活性炭)的再生产率为96.5%,再生苯酚吸附剂(活性炭)对苯酚的吸附容量为原苯酚吸附剂(活性炭)的108%,以体积百分数计,气体产物中CH4占24%,CO2占34%,H2占42%,苯酚的转化率为64%。
实施例4:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(碳纳米管)、和催化剂(Zn-Ni合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为500℃,压力为25Mpa,并反应60min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(碳纳米管);其中苯酚与苯酚吸附剂(碳纳米管)的质量比为24:100;催化剂(Zn-Ni合金)与苯酚的质量比为1:1;
本实施例中苯酚吸附剂(碳纳米管)的再生率为91%,再生苯酚吸附剂(碳纳米管)对苯酚的吸附容量为原苯酚吸附剂(碳纳米管)的115%,以体积百分数计,气体产物中CH4占38%,CO2占32%,H2占30%,苯酚的转化率为100%。
实施例5:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(苯酚吸附剂为活性炭纤维)、氧化剂(氧化剂为双氧水)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为390℃,压力为28Mpa,并反应15min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(活性炭纤维);其中双氧水以双氧水溶液加入,苯酚吸附剂(活性炭纤维)与双氧水溶液的质量比为1:5.5,苯酚与苯酚吸附剂(活性炭纤维)的质量比为24:100;氧化剂(双氧水)与苯酚的摩尔比为7.5:1;
本实施例中苯酚吸附剂(活性炭纤维)的再生产率为88%,再生苯酚吸附剂(活性炭纤维)对苯酚的吸附容量为原苯酚吸附剂(活性炭纤维)的122%,以体积百分数计,气体产物中CO2占89%,H2占11%,苯酚的转化率为81%。
实施例6:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(活性三氧化二铝)、催化剂(Zn-Ni-Pd合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为500℃,压力为25Mpa,并反应40min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(活性三氧化二铝);其中苯酚与苯酚吸附剂(活性三氧化二铝)的质量比为24:100;催化剂(Zn-Ni-Pd合金)与苯酚的质量比为1:1;
本实施例中苯酚吸附剂(活性三氧化二铝)的再生产率为98%,再生苯酚吸附剂(活性炭)对苯酚的吸附容量为原苯酚吸附剂(活性炭)的95%,以体积百分数计,气体产物中CH4占21%,CO2占34%,H2占45%,苯酚的转化率为100%。
实施例7:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(TS-1)、催化剂(Pt-Pd合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为500℃,压力为30Mpa,并反应30min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(TS-1);其中苯酚与苯酚吸附剂(TS-1)的质量比为24:100;催化剂(Pt-Pd合金)与苯酚的质量比为0.8:1;
本实施例中苯酚吸附剂(TS-1)的再生产率为99%,再生苯酚吸附剂(TS-1)对苯酚的吸附容量为原苯酚吸附剂(TS-1)的98%,以体积百分数计,气体产物中CH4占17%,CO2占15%,H2占68%,苯酚的转化率为100%。
实施例8:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(13X)、氧化剂(过氧碳酸钠)、催化剂(Ni-Co合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为500℃,压力为27Mpa,并反应30min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(13X);其中苯酚与苯酚吸附剂(13X)的质量比为24:100;氧化剂(过氧碳酸钠)与苯酚的摩尔比为4:1;催化剂(Ni-Co合金)与苯酚的质量比为0.5:1;
本实施例中苯酚吸附剂(13X)的再生产率为97%,再生苯酚吸附剂(13X)对苯酚的吸附容量为原苯酚吸附剂(13X)的89%,以体积百分数计,气体产物中CH4占11%,CO2占41%,H2占48%,苯酚的转化率为100%。
实施例9:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(ZSM-5)、催化剂(KOH和Ni-Cu合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为500℃,压力为30Mpa,并反应20min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(ZSM-5);其中苯酚与苯酚吸附剂(ZSM-5)的质量比为24:100;催化剂(KOH)与苯酚的质量比为0.1:1;催化剂(Ni-Co合金)与苯酚的质量比为0.3:1;
本实施例中苯酚吸附剂(ZSM-5)的再生产率为98%,再生苯酚吸附剂(ZSM-5)对苯酚的吸附容量为原苯酚吸附剂(ZSM-5)的94%,以体积百分数计,气体产物中CH4占25%,CO2占31%,H2占44%,苯酚的转化率为89%。
实施例10:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(ZSM-35)、催化剂(KHCO3和Ni-Cu-Ru合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为480℃,压力为30Mpa,并反应20min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(ZSM-5);其中苯酚与苯酚吸附剂(ZSM-35)的质量比为24:100;催化剂(KHCO3)与苯酚的质量比为0.2:1;催化剂(Ni-Co-Ru合金)与苯酚的质量比为0.3:1;
本实施例中苯酚吸附剂(ZSM-35)的再生产率为99%,再生苯酚吸附剂(ZSM-35)对苯酚的吸附容量为原苯酚吸附剂(ZSM-35)的88%,以体积百分数计,气体产物中CH4占23%,CO2占24%,H2占53%,苯酚的转化率为83%。
实施例11:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(TS-1)、氧化剂(H2O2)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为400℃,压力为26Mpa,并反应10min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(ZSM-5);其中双氧水以双氧水溶液加入,苯酚吸附剂(TS-1)与双氧水溶液的质量比为1:5.5,苯酚与苯酚吸附剂(TS-1)的质量比为24:100;氧化剂(双氧水)与苯酚的摩尔比为15:1;
本实施例中苯酚吸附剂(TS-1)的再生产率为98%,再生苯酚吸附剂(TS-1)对苯酚的吸附容量为原苯酚吸附剂(TS-1)的97%,以体积百分数计,气体产物中CO2占95%,H2占5%,苯酚的转化率为100%。
实施例12:一种苯酚吸附剂再生与苯酚无害化处理的方法,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂(TS-1)、氧化剂(H2O2)、催化剂(KHCO3和Ni-Cu-Ru合金)加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,即温度为400℃,压力为26Mpa,并反应15min,冷却至室温,打开气体输出阀门,收集气体产物,拆开反应釜,收集再生苯酚吸附剂(ZSM-5);其中双氧水以双氧水溶液加入,苯酚吸附剂(TS-1)与双氧水溶液的质量比为1:5.5,苯酚与苯酚吸附剂(TS-1)的质量比为24:100,氧化剂(双氧水)与苯酚的摩尔比为10:1,催化剂(KHCO3)与苯酚的质量比为0.4:1,催化剂(Ni-Co-Ru合金)与苯酚的质量比为0.2:1;
本实施例中苯酚吸附剂(TS-1)的再生产率为99%,再生苯酚吸附剂(TS-1)对苯酚的吸附容量为原苯酚吸附剂(TS-1)的95%,以体积百分数计,气体产物中CH4占9%,CO2占63%,H2占28%,苯酚的转化率为83%。

Claims (6)

1.一种苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于,具体步骤如下:
将水、已吸附苯酚的苯酚吸附剂、氧化剂和/或催化剂加入到高温高压反应釜中,密闭高温高压反应釜,然后进行升温加压至高温高压反应釜内的反应体系达到超临界状态,并反应0.1~60min,冷却至室温,收集气体产物和再生苯酚吸附剂,其中超临界状态的温度为380~600℃,压力为22.1~30MPa。
2.根据权利要求1所述苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于:吸附剂为碳材料、活性三氧化二铝或分子筛,碳材料为活性炭、碳纳米管或活性炭纤维,分子筛为13X分子筛、ZSM-5分子筛、TS-1分子筛、ZSM-35分子筛或ZSM-22。
3.根据权利要求1所述苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于:氧化剂与苯酚的摩尔比率为(0~20):1,氧化剂为双氧水、过氧化钠、过氧碳酸钠、过氧化钾、过氧碳酸钾或氧化性气体,氧化性气体为O2和/或O3
4.根据权利要求1所述苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于:催化剂与苯酚的质量比为(0.05~1):1,催化剂为碱金属的氢氧化物、碱金属的碳酸盐、碱金属的碳酸氢盐、过渡金属与贵金属的合金、过渡金属的合金、贵金属的合金中的一种或任意比多种。
5.根据权利要求3所述苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于:碱金属的氢氧化物为NaOH或KOH,碱金属的碳酸盐为Na2CO3、NaHCO3、K2CO3或KHCO3,过渡金属为Zn、Co、Ni或Cu,贵金属为Pd、Pt或Ru。
6.根据权利要求1所述苯酚吸附剂再生与苯酚无害化处理的方法,其特征在于:高温高压反应釜为间歇式反应釜或连续式反应釜。
CN201810000410.4A 2018-01-02 2018-01-02 一种苯酚吸附剂再生与苯酚无害化处理的方法 Active CN108097224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810000410.4A CN108097224B (zh) 2018-01-02 2018-01-02 一种苯酚吸附剂再生与苯酚无害化处理的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810000410.4A CN108097224B (zh) 2018-01-02 2018-01-02 一种苯酚吸附剂再生与苯酚无害化处理的方法

Publications (2)

Publication Number Publication Date
CN108097224A true CN108097224A (zh) 2018-06-01
CN108097224B CN108097224B (zh) 2020-11-17

Family

ID=62218425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810000410.4A Active CN108097224B (zh) 2018-01-02 2018-01-02 一种苯酚吸附剂再生与苯酚无害化处理的方法

Country Status (1)

Country Link
CN (1) CN108097224B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372050A (zh) * 2019-07-15 2019-10-25 昆明理工大学 一种红土镍矿作为催化剂在废水处理中的应用及其方法
CN111675423A (zh) * 2020-05-19 2020-09-18 四川美富特环境治理有限责任公司 烟酸类医药中间体废水的处理方法及系统
CN112374473A (zh) * 2020-11-11 2021-02-19 深圳大学 一种基于含酚废水合成酚类有机物掺杂g-C3N4的方法
CN113371875A (zh) * 2021-06-04 2021-09-10 广东工业大学 一种水体中蓝藻水华的去除方法
WO2023114806A1 (en) * 2021-12-16 2023-06-22 Ionic Water Technologies, LLC Regeneratable system for contaminant removal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108854A (zh) * 1985-12-30 1987-09-09 联合碳化公司 从有毒有机物的稀水溶液中除去有毒有机物的方法
JPH11333474A (ja) * 1998-05-29 1999-12-07 Teijin Ltd フェノール含有廃水の処理方法
CN1546223A (zh) * 2003-12-11 2004-11-17 中国科学院山西煤炭化学研究所 一种处理含酚废水活性炭的再生方法
CN101215016A (zh) * 2008-01-11 2008-07-09 浙江理工大学 一种有机废水的处理方法
CN101522572A (zh) * 2006-06-27 2009-09-02 技术研究及发展基金有限公司 流体污染物的吸附方法和吸附剂的再生
CN103130318A (zh) * 2011-11-29 2013-06-05 中国海洋石油总公司 一种含酚废水制备合成气的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108854A (zh) * 1985-12-30 1987-09-09 联合碳化公司 从有毒有机物的稀水溶液中除去有毒有机物的方法
JPH11333474A (ja) * 1998-05-29 1999-12-07 Teijin Ltd フェノール含有廃水の処理方法
CN1546223A (zh) * 2003-12-11 2004-11-17 中国科学院山西煤炭化学研究所 一种处理含酚废水活性炭的再生方法
CN101522572A (zh) * 2006-06-27 2009-09-02 技术研究及发展基金有限公司 流体污染物的吸附方法和吸附剂的再生
CN101215016A (zh) * 2008-01-11 2008-07-09 浙江理工大学 一种有机废水的处理方法
CN103130318A (zh) * 2011-11-29 2013-06-05 中国海洋石油总公司 一种含酚废水制备合成气的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张敏华 等: "超临界水氧化技术", 《净水技术》 *
杨玉敏 等: "苯酚在超临界水中的催化氧化反应", 《石油化工》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372050A (zh) * 2019-07-15 2019-10-25 昆明理工大学 一种红土镍矿作为催化剂在废水处理中的应用及其方法
CN110372050B (zh) * 2019-07-15 2021-07-13 昆明理工大学 一种红土镍矿作为催化剂在废水处理中的应用及其方法
CN111675423A (zh) * 2020-05-19 2020-09-18 四川美富特环境治理有限责任公司 烟酸类医药中间体废水的处理方法及系统
CN111675423B (zh) * 2020-05-19 2022-05-27 四川美富特环境治理有限责任公司 烟酸类医药中间体废水的处理方法及系统
CN112374473A (zh) * 2020-11-11 2021-02-19 深圳大学 一种基于含酚废水合成酚类有机物掺杂g-C3N4的方法
CN113371875A (zh) * 2021-06-04 2021-09-10 广东工业大学 一种水体中蓝藻水华的去除方法
WO2023114806A1 (en) * 2021-12-16 2023-06-22 Ionic Water Technologies, LLC Regeneratable system for contaminant removal

Also Published As

Publication number Publication date
CN108097224B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN108097224A (zh) 一种苯酚吸附剂再生与苯酚无害化处理的方法
Dai et al. Tuning oxygenated functional groups on biochar for water pollution control: A critical review
Zaeni et al. In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: characteristics and performance studies
Mi et al. FeNi-layered double hydroxide (LDH)@ biochar composite for, activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): Characterizations of the catalysts, catalytic performances, degradation pathways and mechanisms
CN100427389C (zh) 一种碳纳米管表面羟基改性的制备方法
CN103041811A (zh) 一种催化湿式氧化催化剂的制备方法和有机废水处理方法
CN101538097B (zh) 一种难降解有机废水的酶处理方法
Shangguan et al. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
CN107010709B (zh) 一种邻/对苯二酚生产过程中高浓度含酚废水的净化方法
CN1544360A (zh) 多相富集、微波协同、催化氧化降解水中有机污染物的方法
Shen et al. Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation
CN108187677A (zh) 一种利用超临界二氧化碳/超临界水热联合法制备脱除氰化氢催化剂的方法
Ye et al. Construction of adsorption-oxidation bifunction-oriented carbon by single boron doping for non-radical antibiotic degradation via persulfate activation
WO2021232600A1 (zh) 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法
CN112169798B (zh) 一种胶原基炭材料负载金属钴的催化剂及其制备方法与应用
CN108246259A (zh) 一种高效吸附挥发性有机物的生物质碳材料的制备方法
CN108246790A (zh) 一种修复酚类有机物污染土壤的方法
Hao et al. Applications of Carbon‐Based Materials in Activated Peroxymonosulfate for the Degradation of Organic Pollutants: A Review
CN109603827B (zh) 一种多相催化剂实施均相催化臭氧氧化降解水中有机污染物的方法
Zhu et al. Contribution of 1O2 in the efficient degradation of organic pollutants with Cu0/Cu2O/CuO@ N–C activated peroxymonosulfate: A Case study with tetracycline
CN113683178A (zh) 一种催化氧化法去除废水中甲醛的方法
CN116639789B (zh) 利用改性生物炭催化剂催化过硫酸盐去除废水中难降解有机物的方法
CN110342580B (zh) 一种微波辅助制备活性炭-二氧化锰纳米复合材料的方法
CN106082208B (zh) 一种催化脱嗅的改性活性炭的制备方法
CN115140824A (zh) 一种低碱浓度下的氯氧化铋湿法再生方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant