WO2021232600A1 - 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法 - Google Patents

一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法 Download PDF

Info

Publication number
WO2021232600A1
WO2021232600A1 PCT/CN2020/109989 CN2020109989W WO2021232600A1 WO 2021232600 A1 WO2021232600 A1 WO 2021232600A1 CN 2020109989 W CN2020109989 W CN 2020109989W WO 2021232600 A1 WO2021232600 A1 WO 2021232600A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
visible light
clo
oxidation
organic pollutants
Prior art date
Application number
PCT/CN2020/109989
Other languages
English (en)
French (fr)
Inventor
李倩
苏瑞典
苏园
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/781,551 priority Critical patent/US20230331611A1/en
Publication of WO2021232600A1 publication Critical patent/WO2021232600A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the invention relates to a method for efficiently removing organic pollutants in wastewater by combined use of visible light catalysis and ClO 2 oxidation, and belongs to the chemical and environmental technical fields of organic wastewater treatment.
  • Photocatalytic oxidation technology mostly uses semiconductors as catalysts and sunlight as driving energy to produce oxidizing active substances (such as hydroxyl radicals, superoxide radicals, etc.), which convert organic pollutants into non-toxic or low-toxic substances. It is a highly oxidizing, energy-saving, highly efficient and thorough pollutant removal technology.
  • photocatalytic oxidation technology represented by visible light catalytic technology often appears in wastewater treatment processes such as industrial organic wastewater and antibiotic pharmaceutical wastewater.
  • wastewater treatment processes such as industrial organic wastewater and antibiotic pharmaceutical wastewater.
  • the electron-hole recombination rate is high, the photon utilization rate is low, and the catalytic efficiency often cannot reach the theoretical value.
  • the active materials produced in the photocatalytic oxidation process have a very short lifespan and are easily quenched during the mass transfer process.
  • the oxidative degradation of pollutants is also limited to the solid-liquid interface of the catalyst, which restricts the improvement of pollutant removal efficiency and interaction with light. Large-scale industrial application of catalytic technology.
  • ClO 2 oxidation technology As a common effluent disinfection technology, is widely used in water treatment processes such as medical wastewater oxidation treatment, drinking water sterilization and disinfection, and ClO 2 has strong oxidation and durability. It has the advantages of long, high efficiency and few disinfection by-products.
  • the traditional ClO 2 generation method mostly uses chlorite as the raw material, and adopts ozone oxidation, strong acid oxidation and strong ultraviolet oxidation to convert chlorite into ClO 2 gas and store it, and its conversion efficiency is relatively low, and It is possible to bring unreacted chlorite ions into the effluent water.
  • the present invention provides a visible light photocatalytic oxidation -ClO 2 associated method for efficiently removing organic pollutants with wastewater.
  • the oxidative degradation of organic pollutants of the present invention is carried out in a quartz reactor containing a double-walled cooling circulating water interlayer, a visible light-responsive catalyst is used as a catalyst, chlorate is used as a ClO 2 precursor, and a xenon lamp with a certain optical power density is used as a light source. Construct a visible light catalysis-ClO 2 oxidation combined system to carry out catalytic oxidative degradation treatment of wastewater containing organic matter to achieve high-efficiency removal of organic pollutants in the wastewater.
  • a method for the combined use of visible light catalysis and ClO 2 oxidation to efficiently remove organic pollutants in wastewater includes the following steps:
  • step (2) Turn on the xenon lamp light source, adjust the distance between the light source and the liquid surface of the wastewater treated in step (1), add chlorate to the system, keep the reaction temperature constant, and fully stir to achieve the degradation of organic pollutants.
  • the pH is 3-11, and an acidic regulator or an alkaline regulator is used to adjust the pH.
  • step (1) the pH is 5-9.
  • the acid regulator is hydrochloric acid, acetic acid or nitric acid, and the alkali regulator is NaOH or ammonia.
  • the visible light responsive catalyst is one of Ag/TiO 2 , BiVO 4 , WO 3 , and Cu 2 O.
  • the visible light responsive catalyst is BiVO 4 .
  • the addition amount of the visible light responsive catalyst is 10-50 mg/L.
  • the organic matter in the wastewater is one or a mixture of two or more of norfloxacin, sulfadiazine, bisphenol A, and imidacloprid.
  • the wastewater body is tap water, surface river water, domestic sewage, printing and dyeing wastewater, medical wastewater, aquaculture wastewater or seawater.
  • the optical power density of the light source is 100-300 mW/cm 2 , and the distance from the liquid surface is 10-50 cm.
  • the chlorate is one of hypochlorite, chlorite, chlorate or perchlorate.
  • the chlorate is added in an amount such that its concentration reaches 0.1-1.0 mmol/L.
  • the stirring adsorption time is 30-60 min.
  • the reaction temperature is 25-45°C.
  • the treatment process of the present invention is not affected by inorganic substances and organic substances.
  • the present invention still has higher treatment efficiency, and the treatment process of the present invention is more stable.
  • the present invention adopts the combined process of visible light catalysis and ClO 2 oxidation to remove organic pollutants in wastewater.
  • the active substances produced in the photocatalytic process are used as oxidants to transfer electrons with chlorate radicals to generate ClO 2 and other chlorine-containing active substances. It can continue to oxidize and degrade organic pollutants with strong oxidizing ability and long duration, avoiding the short life of photobioactive substances and short mass transfer distance in the photocatalytic process, and effectively improving the degradation rate of pollutants.
  • ClO 2 has a tendency to specifically attack compounds containing phenol, aniline and other structures, and further degrade pollutants that cannot be completely degraded by photocatalysis, which is beneficial to increase the mineralization rate and reduce biological toxicity.
  • the treatment process of the present invention uses the active material produced in the photocatalytic process as an oxidant to oxidize the chlorate to generate ClO 2 and other chlorine-containing active materials, avoiding the strong oxidant, strong acid or strong light in the traditional ClO 2 production method.
  • the use reduces the cost of raw materials and production risks, and is conducive to the safe and orderly implementation of the actual water treatment process.
  • the treatment process of the present invention produces ClO 2 by adding solid chlorate medicaments in the photocatalytic system.
  • the operation is safe and simple, and the dosage is controllable. It can occur simultaneously and at the same time as the photocatalytic technology, which greatly reduces The cost of production and storage equipment and the cost of off-site transportation in the traditional ClO 2 production method also reduce the potential risks in the entire production process and enhance the safety and controllability of the reaction.
  • the dosage level of the chlorate is far lower than the dosage level of various chlorine-containing substances in the ClO 2 oxidation technology in the current industrial production, and meets the limit standard for the concentration of chlorate in the water body.
  • ClO 2 is partially converted into chlorate, and continues to participate in the new ClO 2 conversion process, which improves the utilization efficiency of ClO 2 and extends the combined use of visible light catalysis and ClO 2 oxidation. Catalytic lifetime in the system.
  • the photocatalyst used in the treatment process of the present invention has visible light responsiveness. Compared with ultraviolet light photocatalysts, this type of photocatalyst can more efficiently use sunlight and carry out organic pollutants for the photocatalytic technology driven by sunlight. The degradation provides the possibility to reduce energy consumption.
  • the treatment process of the present invention is not affected by inorganic substances and organic substances. In the case of inorganic substances and organic substances in the water body, it still has a higher treatment efficiency and the treatment process is more stable.
  • Figure 1 is a schematic diagram of a double-walled sandwich reactor used in the present invention
  • Figure 2 is a comparison diagram of the effect of the combined process of visible light catalysis-ClO 2 oxidation composed of different types of visible light responsive photocatalysts in the treatment of norfloxacin antibiotic organic wastewater in Examples 1, 2, 3, and 4 of the present invention; in the figure, a Where the visible light catalyst is bismuth vanadate, b is the visible light catalyst being Cu 2 O, c is the visible light catalyst being WO 3 , and d is the visible light catalyst being Ag/TiO 2 ;
  • FIG. 3 is a diagram showing the treatment effect of the combined process of visible light catalysis and ClO 2 oxidation composed of different concentrations of sodium hypochlorite precursors described in Examples 5, 6, and 7 of the present invention on norfloxacin antibiotic organic wastewater;
  • FIG. 4 is a comparison diagram of the effect of pH in the water body on the treatment of norfloxacin antibiotic organic wastewater by the combined process of visible light catalysis-ClO 2 oxidation in the embodiment 8 of the present invention
  • Fig. 6 is a comparison diagram of the effect of the combined visible light catalysis-ClO 2 oxidation process described in Examples 14, 15, 16, 17, 18, and 19 of the present invention in treating norfloxacin antibiotic organic wastewater in actual water bodies.
  • the double-wall sandwich reactor used in the embodiment includes a reactor body, the body includes an inner wall and an outer wall, the inner wall encloses a reaction cavity, the inner wall and the outer wall are sandwiched, the air inlet and the air outlet on the inner wall, and the air inlet Connect the air inlet pipe, the air inlet pipe extends to the bottom of the reaction cavity, the inner wall is also provided with a liquid inlet and a collection port, the liquid inlet and the collection port respectively pass through the outer wall, and a circulating cooling liquid inlet and a circulating cooling liquid are provided on the outer wall
  • the outlet, the circulating cooling liquid inlet and the circulating cooling liquid outlet are communicated with the interlayer, and the open end of the inner wall is provided with a sealing cover.
  • a method for the combined use of visible light catalysis and ClO 2 oxidation to efficiently remove organic pollutants in wastewater the steps are as follows:
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the visible light catalyst is Cu 2 O, and the rest are exactly the same as in Example 1.
  • Example 1 the visible light catalysis-ClO 2 oxidation combined use method to efficiently remove organic pollutants in wastewater, the difference is that the visible light catalyst is WO 3 , and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the visible light catalyst is Ag/TiO 2 , and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the ClO 2 precursor is sodium chlorite, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the ClO 2 precursor is sodium chlorate, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the ClO 2 precursor is sodium perchlorate, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is: before adding the bismuth vanadate catalyst, the pH of the wastewater is adjusted to 3, 5, and 5, respectively. 7, 9, 11, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is: while adding the ClO 2 precursor, the concentration of 10.0mmol/L Cl - solution is added, The rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is: while adding ClO 2 precursor, the concentration of 1.0mmol/L SO 4 2- The solution and the rest are exactly the same as in Example 1.
  • Example 1 -ClO 2 oxide The visible light of the catalyst in Example 1 -ClO 2 oxide on the method of efficient removal of organic pollutants in waste water, except that: the addition of ClO 2 precursor simultaneously, added at a concentration 10.0mmol / L HCO 3 - solution , And the rest are exactly the same as in Example 1.
  • Example 1 -ClO 2 oxide The visible light of the catalyst in Example 1 -ClO 2 oxide on the method of efficient removal of organic pollutants in waste water, except that: the addition of ClO 2 precursor simultaneously added at a concentration of 1.0mmol / L ClO 3 - solution , And the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is: while adding the ClO 2 precursor, add a fulvic acid solution with a concentration of 1.0 mg/L , And the rest are exactly the same as in Example 1.
  • the oxidative degradation experiment was carried out with norfloxacin simulated wastewater.
  • the oxidative degradation experiment was carried out in a double-walled sandwich reactor.
  • the initial concentration of norfloxacin in the simulated wastewater of norfloxacin was 10mg/L and the initial volume was 100mL.
  • Constant-temperature cooling circulating water is passed into the interlayer of the wall interlayer reactor to maintain the reactor temperature at about 25°C.
  • the treatment method of the application embodiment is used to degrade the simulated wastewater of norfloxacin.
  • a photocatalytic control group without hypochlorite was established. In the process of oxidative degradation of norfloxacin, samples are taken at a fixed time.
  • the sampling time is 2h, namely 0min, 5min, 10min, 30min, and 1mL at 60min.
  • Figure 4 shows the effect of water pH on the treatment of norfloxacin antibiotic organic wastewater by the combined process of visible light catalysis and ClO 2 oxidation.
  • the present invention also conducts single-factor experiments on the effect of inorganic substances and organic substances on the treatment effect of the visible light catalysis-ClO 2 oxidation combined process, and evaluates the degradation ability and anti-interference ability of the process in actual water bodies.
  • said inorganic substance is Cl -, Br -, ClO 3 -, NO 3 -, SO 4 2-, CO 3 2- or HCO 3 - in one or several ,
  • the concentration is 0.01-1.00 mmol/L;
  • the organic substance is fulvic acid, palm humic acid or black humic acid, and the concentration is 0.1-1.0 mg/L.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the organic solution is prepared with tap water, and the rest are completely the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that surface river water is used to prepare an organic solution, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the organic solution is prepared with tap water, and the rest are completely the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that domestic sewage is used to prepare an organic solution, and the rest are exactly the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that the printing and dyeing wastewater is used to prepare an organic solution, and the rest are completely the same as in Example 1.
  • Example 1 The visible light catalysis-ClO 2 oxidation combined method described in Example 1 to efficiently remove organic pollutants in wastewater, the difference is that seawater is used to prepare an organic solution, and the rest are exactly the same as in Example 1.

Abstract

本发明涉及一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,方法包括:(1)将含有有机物的废水调节至恒定pH,添加可见光响应催化剂后置于暗处,充分搅拌吸附直至达到吸附平衡;(2)打开氙灯光源,调节光源与液面间的距离,向体系中加入含氯酸盐,保持反应温度恒定,充分搅拌实现有机污染物的降解。本发明采用可见光催化-ClO 2氧化联用工艺去除废水中有机污染物,光催化过程中产生的活性物质作为氧化剂,与含氯酸根发生电子转移,进而生成ClO 2等含氯活性物质,能够继续氧化降解有机污染物,氧化能力强且持续时间长,避免了光催化过程中光生活性物质寿命较短、传质距离短等问题,有效地提高了污染物降解速率。

Description

一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法 技术领域
本发明涉及一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,属于有机废水处理的化学及环境技术领域。
背景技术
随着工业发展水平的提高和生产生活条件的改善,有机废水日益成为生态安全和人体健康的潜在威胁。目前,除了吸附、混凝以及膜过滤等传统废水处理技术,光催化、ClO 2氧化等高级氧化技术应用于有机污染物的降解逐渐成为研究热点。光催化氧化技术多以半导体为催化剂,以太阳光为驱动能量,产生氧化性的活性物质(如羟基自由基、超氧自由基等),将有机污染物转化为无毒或低毒物质,是一类氧化性强、节约能源、高效彻底的污染物去除技术。目前,以可见光催化技术为代表的光催化氧化技术常出现在工业有机废水、抗生素制药废水等废水处理工艺中。但是,在传统的光催化技术应用过程中,电子-空穴复合率高,光子利用率低,催化效率往往不能达到理论值。此外,光催化氧化过程中产生的活性物质寿命极短,在传质过程中容易发生猝灭,污染物的氧化降解也局限在催化剂的固液界面,制约着污染物去除效率的提高和与光催化技术的大规模工业化应用。
目前虽有光催化技术与其他技术联用来处理废水,但仍然无法解决光催化氧化过程中产生的活性物质寿命极短,在传质过程中容易发生猝灭的问题,污染物去除效率仍然得不到有效的提高,如中国专利文献CN105016526A公开的一种难降解有机废水的光催化-吸附絮凝联用技术。
除光催化氧化技术之外,ClO 2氧化技术作为一种常见的出水消毒技术,被广泛应用在医疗废水氧化处理、饮用水杀菌消毒等水处理工艺中,而且ClO 2具有氧化性强、持久性长、效率高以及消毒副产物少等优点。传统的ClO 2发生方式多以亚氯酸盐为原料,采用臭氧氧化、强酸氧化以及强紫外线氧化等方式,将亚氯酸盐转化为ClO 2气体并进行储存,其转化效率相对较低,并且有可能将未反应的亚氯酸根离子带入出水中。同时,由于很多国家和组织对水体中亚氯酸根离子的浓度提出了限制标准,ClO 2氧化技术产生的亚氯酸盐、氯酸盐等无机消毒副产物,成为了威胁人体健康的潜在风险。因此,ClO 2氧化技术在提高污染物氧化降解效率和降低消毒副产物超标风险之间进退两难。
针对现有光催化技术存在着光子利用率较低、活性物质寿命较短等缺点,而ClO 2氧化技术工艺复杂、操作繁琐,能耗大且无机消毒副产物难以消除等缺点,亟需提出一种绿色、高效、节能、环保的有机废水处理的新技术。
发明内容
针对现有光催化技术以及ClO 2氧化技术存在的缺陷,本发明提出了一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法。
发明概述:
本发明有机污染物的氧化降解在含有双壁冷却循环水夹层的石英反应器中进行,以可见光响应的催化剂为催化剂,含氯酸盐为ClO 2前驱体,一定光功率密度的氙灯为光源,构建可见光催化-ClO 2氧化联用体系,对含有有机物的废水进行催化氧化降解处理,实现对废水中有机污染物的高效去除。
发明详述:
本发明是通过如下技术方案实现的,
一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,包括步骤如下:
(1)将含有有机物的废水调节至恒定pH,添加可见光响应催化剂后置于暗处,充分搅拌吸附直至达到吸附平衡;
(2)打开氙灯光源,调节光源与步骤(1)处理后废水的液面间的距离,向体系中加入含氯酸盐,保持反应温度恒定,充分搅拌实现有机污染物的降解。
根据本发明优选的,步骤(1)中,所述的pH为3-11,采用酸性调节剂或碱性调节剂进行调节pH。
进一步优选的,步骤(1)中,所述的pH为5-9。
进一步优选的,酸性调节剂为盐酸、醋酸或硝酸,碱性调节剂为NaOH或氨水。
根据本发明优选的,步骤(1)中,所述的可见光响应催化剂为Ag/TiO 2、BiVO 4、WO 3、Cu 2O中的一种。
进一步优选的,所述的可见光响应催化剂为BiVO 4
根据本发明优选的,步骤(1)中,可见光响应催化剂的添加量为10-50mg/L。
根据本发明优选的,步骤(1)中,废水中有机物为诺氟沙星、磺胺嘧啶、双酚A、吡虫啉中的一种或两种以上混合。
根据本发明优选的,步骤(1)中,废水水体为自来水、地表河水、生活污水、印染废水、医疗废水、养殖废水或海水。
根据本发明优选的,步骤(2)中,所述的光源光功率密度为100-300mW/cm 2,与液面间的距离为10-50cm。
根据本发明优选的,步骤(2)中,所述的含氯酸盐为次氯酸盐、亚氯酸盐、氯酸盐或高氯酸盐中的一种。
根据本发明优选的,步骤(2)中,含氯酸盐的添加量使使其浓度达到0.1-1.0mmol/L。
根据本发明优选的,步骤(2)中,所述的搅拌吸附时间为30-60min。
根据本发明优选的,步骤(2)中,所述的反应温度为25-45℃。
本发明的处理工艺不受无机物质、有机物质的影响,在水体中存在无机物质、有机物质的情况下,本发明仍具有较高的处理效率,本发明的处理工艺更稳定。
与现有技术相比,本发明的有益效果为:
1、本发明采用可见光催化-ClO 2氧化联用工艺去除废水中有机污染物,光催化过程中产生的活性物质作为氧化剂,与含氯酸根发生电子转移,进而生成ClO 2等含氯活性物质,能够继续氧化降解有机污染物,氧化能力强且持续时间长,避免了光催化过程中光生活性物质寿命较短、传质距离短等问题,有效地提高了污染物降解速率。此外,ClO 2对含有苯酚、苯胺等结构的化合物具有特异性攻击的趋势,对光催化不能够完全降解的污染物进一步降解,有利于提高矿化率和降低生物毒性。
2、本发明的处理工艺,利用光催化过程中产生的活性物质作为氧化剂,氧化含氯酸根生成ClO 2等含氯活性物质,避免了传统的ClO 2产生方式中强氧化剂、强酸或强光的使用,降低了原料成本和生产风险,有利于实际水处理工艺的安全有序进行。
3、本发明的处理工艺,通过在光催化系统中以固体含氯酸盐药剂投加的方式产生ClO 2,操作安全简便且剂量可控,可以与光催化技术同时同地发生,大大降低了传统ClO 2生产方式中的生产及贮存设备成本和异地运输成本,同时降低了整个生产过程中潜在的风险,增强了反应的安全性和可控性。
4、本发明的处理工艺,含氯酸盐的使用剂量水平远低于目前工业生产中ClO 2氧化技术中的各种含氯物质的剂量水平,满足水体中含氯酸根浓度的限制标准。此外,理论上,ClO 2在完成污染物氧化后,部分转化为含氯酸根,继续参与到新的ClO 2转化过程中,提高了ClO 2的利用效率,延长了可见光催化-ClO 2氧化联用系统中的催化寿命。
5、本发明的处理工艺采用的光催化剂具有可见光响应能力,相比于紫外光光催化剂,该类光催化剂能够更加高效地利用太阳光,为太阳光的驱动下的光催化技术进行有机污染物的降解提供可能,降低能源消耗。
6、本发明的处理工艺不受无机物质、有机物质的影响,在水体中存在无机物质、有机物质的情况下,仍具有较高的处理效率,处理工艺更稳定。
附图说明
图1为本发明所使用双壁夹层反应器示意图;
图中,1、光源,2、密封盖,3、出气口,4、进液口,5、收集口,6、循环冷却水进口,7、进气口,8循环冷却水出口,9、废水,10、催化剂。
图2为本发明实施例1、2、3、4所述不同种类可见光响应光催化剂组成的可见光催化-ClO 2氧化联用工艺处理诺氟沙星抗生素有机废水的效果对比图;图中,a为可见光催化剂为钒酸铋,b为可见光催化剂为Cu 2O,c为可见光催化剂为WO 3,d为可见光催化剂为Ag/TiO 2
图3为本发明实施例5、6、7所述不同浓度次氯酸钠前驱体组成的可见光催化-ClO 2氧化联用工艺对诺氟沙星抗生素有机废水的处理效果图;
图4为本发明实施例8所述的水体中的pH对可见光催化-ClO 2氧化联用工艺的处理诺氟沙星抗生素有机废水的效果对比图;
图5为本发明实施例9、10、11、12、13所述的水体中的无机物质、有机物质对可见光催化-ClO 2氧化联用工艺处理诺氟沙星抗生素有机废水的效果对比图;
图6本发明实施例14、15、16、17、18、19所述的可见光催化-ClO 2氧化联用工艺在实际、水体中处理诺氟沙星抗生素有机废水的效果对比图。
具体实施方式
下面通过具体实施例并结合附图对本发明做进一步说明,但本发明的保护范围不限于下述实施例。
如无特殊说明,实施例中使用的原料均为常规市购产品。
实施例中使用的双壁夹层反应器,包括反应器本体,本体包括内壁和外壁,内壁围成反应空腔,内壁与外壁之间为夹层,在内壁上进气口和出气口,进气口连接进气管,进气管延伸至反应空腔底部,在内壁上还设置有进液口和收集口,进液口和收集口分别穿过外壁,在外壁上设置有循环冷却液进口和循环冷却液出口,循环冷却液进口和循环冷却液出口与夹层连通,在内壁的开口端设置有密封盖。
实施例1、
一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,步骤如下:
(1)将含有有机物的废水调节pH=7,添加30mg的可见光催化剂钒酸铋催化剂并置于暗处,充分搅拌吸附60min直至达到吸附平衡;
(2)打开氙灯光源,调节光源与液面间相距30cm,向体系中加入ClO 2前驱体次氯酸钠使其浓度达到1.0mmol/L,保持反应温度恒定,充分搅拌实现有机污染物的降解。
实施例2、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:可见光催化剂为Cu 2O,其余均与实施例1完全相同。
实施例3、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:可见光催化剂为WO 3,其余均与实施例1完全相同。
实施例4、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:可见光催化剂为Ag/TiO 2,其余均与实施例1完全相同。
实施例5、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:ClO 2前驱体为亚氯酸钠,其余均与实施例1完全相同。
实施例6、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:ClO 2前驱体为氯酸钠,其余均与实施例1完全相同。
实施例7、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:ClO 2前驱体为高氯酸钠,其余均与实施例1完全相同。
实施例8、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在投加钒酸铋催化剂之前,将废水的pH分别调节至3、5、7、9、11,其余均与实施例1完全相同。
实施例9、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在加入ClO 2前驱体的同时,加入浓度为10.0mmol/L Cl -溶液,其余均与实施例1完全相同。
实施例10、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在加入ClO 2前驱体的同时,加入浓度为1.0mmol/L SO 4 2-溶液,其余均与实施例1完全相同。
实施例11、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在加入ClO 2前驱体的同时,加入浓度为10.0mmol/L HCO 3 -溶液,其余均与实施例1完全相同。
实施例12、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在加入ClO 2前驱体的同时,加入浓度为1.0mmol/L ClO 3 -溶液,其余均与实施例1完全相同。
实施例13、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:在加入ClO 2前驱体的同时,加入浓度为1.0mg/L黄腐酸溶液,其余均与实施例1完全相同。
应用实验例:
采用诺氟沙星模拟废水进行氧化降解实验,氧化降解实验在双壁夹层反应器中进行,诺氟沙星模拟废水中诺氟沙星的初始浓度为10mg/L,初始体积为100mL,向双壁夹层反应器的夹层中通入恒温冷却循环水,使反应器温度维持在25℃左右。应用实施例的处理方法对诺氟沙星模拟废水进行降解。同时,设立不加次氯酸盐的光催化对照组。在诺氟沙星的氧化降解过程中,在固定时间取样,取样时间为2h,即0min,5min,10min,30min,60min时取样1mL,经0.22μm滤膜过滤后使用高效液相色谱测定诺氟沙星溶液浓度的变化。
实验例1:
不同种类可见光响应光催化剂组成的可见光催化-ClO 2氧化联用工艺对诺氟沙星抗生素有机废水的处理效果见图2所示。
实验例2:
不同浓度次氯酸钠前驱体组成的可见光催化-ClO 2氧化联用工艺对诺氟沙星抗生素有机废水的处理效果见图3所示。
实验例3:
水体pH对可见光催化-ClO 2氧化联用工艺的处理诺氟沙星抗生素有机废水效果见图4。
实验例4:
本发明还进行无机物质、有机物质对可见光催化-ClO 2氧化联用工艺的处理效果的影响的单因素实验,并对该工艺在实际水体中的降解能力和抗干扰能力进行评估。在达到吸附平衡后的有机物溶液中加入一定浓度的干扰物质,包括实际水体中的无机物质和有机物质,并在同一反应器中加入一定浓度的含氯酸盐,通过夹套冷却水控制反应温度恒定,充分搅拌进行污染物的降解;所述的无机物质为Cl -,Br -,ClO 3 -,NO 3 -,SO 4 2-,CO 3 2-或HCO 3 -中的一种或几种,浓度为0.01-1.00mmol/L;所述的有机物质为黄腐酸、棕腐酸或黑腐酸,浓度为0.1-1.0mg/L。
在水体中存在无机物质、有机物质的情况下,可见光催化-ClO 2氧化联用工艺的处理诺氟沙星抗生素有机废水效果见图5。
实施例14、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用自来水配制有机物溶液,其余均与实施例1完全相同。
实施例15、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用地表河水配制有机物溶液,其余均与实施例1完全相同。
实施例16、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用自来水配制有机物溶液,其余均与实施例1完全相同。
实施例17、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用生活污水配制有机物溶液,其余均与实施例1完全相同。
实施例18、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用印染废水配制有机物溶液,其余均与实施例1完全相同。
实施例19、
如实施例1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,所不同的是:使用海水配制有机物溶液,其余均与实施例1完全相同。

Claims (10)

  1. 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,包括步骤如下:
    (1)将含有有机物的废水调节至恒定pH,添加可见光响应催化剂后置于暗处,充分搅拌吸附直至达到吸附平衡;
    (2)打开氙灯光源,调节光源与步骤(1)处理后废水的液面间的距离,向体系中加入含氯酸盐,保持反应温度恒定,充分搅拌实现有机污染物的降解。
  2. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(1)中,所述的pH为3-11,采用酸性调节剂或碱性调节剂进行调节pH,优选的,所述的pH为5-9。
  3. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,酸性调节剂为盐酸、醋酸或硝酸,碱性调节剂为NaOH或氨水。
  4. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(1)中,所述的可见光响应催化剂为BiVO 4、Cu 2O、WO 3、Ag/TiO 2中的一种;优选的,所述的可见光响应催化剂为BiVO 4
  5. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(1)中,可见光响应催化剂的添加量为10-50mg/L。
  6. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(1)中,废水中有机物为诺氟沙星、磺胺嘧啶、双酚A、吡虫啉中的一种或两中以上混合;废水水体为自来水、地表河水、生活污水、印染废水、医疗废水、养殖废水或海水。
  7. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(2)中,所述的光源光功率密度为100-300mW/cm 2,与液面间的距离为10-50cm。
  8. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(2)中,所述的含氯酸盐为次氯酸盐、亚氯酸盐、氯酸盐或高氯酸盐中的一种。
  9. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(2)中,含氯酸盐的添加量使使其浓度达到0.1-1.0mmol/L。
  10. 根据权利要求1所述的可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法,其特征在于,步骤(2)中,所述的搅拌吸附时间为30-60min,所述的反应温度为25-45℃。
PCT/CN2020/109989 2020-05-20 2020-08-19 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法 WO2021232600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,551 US20230331611A1 (en) 2020-05-20 2020-08-19 Method of visible-light photocatalysis combined with clo2 oxidation for highly efficient removal of organic pollutants in wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010430301.3A CN111573930B (zh) 2020-05-20 2020-05-20 一种可见光催化-ClO2氧化联用高效去除废水中有机污染物的方法
CN202010430301.3 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021232600A1 true WO2021232600A1 (zh) 2021-11-25

Family

ID=72119081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109989 WO2021232600A1 (zh) 2020-05-20 2020-08-19 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法

Country Status (3)

Country Link
US (1) US20230331611A1 (zh)
CN (1) CN111573930B (zh)
WO (1) WO2021232600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291886A (zh) * 2022-01-11 2022-04-08 哈尔滨工业大学(深圳) 一种亚硫酸盐联合二氧化氯处理水中难降解有机物的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090951A (zh) * 2020-08-28 2020-12-18 上海应用技术大学 一种基于次氯酸钠氧化修复污染土壤的方法
CN112875791B (zh) * 2020-12-21 2022-07-15 中国科学技术大学 基于基态氧原子主导的光催化剂在污染物光催化降解中的应用
CN115321660B (zh) * 2022-08-09 2023-12-01 山东大学 一种过渡金属氧化物活化亚氯酸盐选择性去除有机污染物的方法
CN115308334A (zh) * 2022-08-22 2022-11-08 哈尔滨工业大学 一种对吡虫啉进行生态毒性评估的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314512A (zh) * 2001-04-26 2001-09-26 中国科学院广州化学研究所 一种催化漂白纸浆的方法
CN101565219A (zh) * 2008-04-25 2009-10-28 北京化工大学 一种光催化处理工业废水的工艺
WO2012154696A1 (en) * 2011-05-06 2012-11-15 Miox Corporation Organic contaminant destruction using chlorine or mixed oxidant solution and ultraviolet light
CN106414699A (zh) * 2014-01-24 2017-02-15 宝洁公司 用于处理表面的系统和方法
CN106673121A (zh) * 2017-01-05 2017-05-17 北京师范大学 一种光催化法净化污水中四环素的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273567B1 (en) * 1999-11-24 2007-09-25 Microactive Corp. Energy-activated compositions for controlled sustained release of a gas
US7378371B2 (en) * 2001-12-21 2008-05-27 Show A Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
US20070020300A1 (en) * 2002-03-12 2007-01-25 Ecolab Inc. Recreational water treatment employing singlet oxygen
CN1984846A (zh) * 2004-07-21 2007-06-20 纳幕尔杜邦公司 水处理
EP1857179A1 (en) * 2005-01-18 2007-11-21 Nippon Shokubai Kagaku Kogyo Co. Ltd. Visible light-responsive photocatalyst composition and process for producing the same
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN101810874B (zh) * 2009-12-15 2013-04-24 北京欧凯纳斯科技有限公司 一种缓释二氧化氯凝胶、其制备方法及其应用
JP2012111673A (ja) * 2010-11-25 2012-06-14 Cleancare Inc 可視光応答性二酸化塩素発生剤の組成ならびに当該組成による二酸化塩素徐放製品
CN102641742A (zh) * 2011-02-16 2012-08-22 香港城市大学 氮掺杂A2Nb4O11及其制备方法和在降解有机污染物中的应用
CN102826693B (zh) * 2012-08-08 2015-09-30 青岛昊源环境工程技术有限公司 一种电辅助结合紫外光催化氧化高盐有机废水的方法及系统
JP6049384B2 (ja) * 2012-10-03 2016-12-21 株式会社東芝 光触媒注入方法および光触媒注入システム
CN102936081B (zh) * 2012-10-30 2014-10-22 山东大学 一种光催化、内循环厌氧流化膜生物反应器及其工作方法
CN104276705A (zh) * 2013-07-14 2015-01-14 上海净意环保设备有限公司 一种处理苯酚废水的方法
CN103641265A (zh) * 2013-12-24 2014-03-19 河南省邦源环保工程有限公司 一种光催化氧化处理高浓度含酚工业废水的方法
CN103721564B (zh) * 2013-12-31 2016-06-08 深圳先进技术研究院 一种光催化剂-ClO2联用除臭装置及除臭方法
US9834740B2 (en) * 2014-01-24 2017-12-05 The Procter & Gamble Company Photoactivators
CN114907188B (zh) * 2015-12-18 2024-02-20 阿斯制药株式会社 烃或其衍生物的氧化反应产物的制造方法、烯烃的氧化反应产物的制造方法
CN106188164B (zh) * 2016-06-29 2018-04-06 中国矿业大学 一种光催化氧化降解生物质制备有机化学品的方法
CN108993488A (zh) * 2018-07-08 2018-12-14 启东祥瑞建设有限公司 一种Ag/TiO2催化剂的制备方法
CN111072097A (zh) * 2019-10-10 2020-04-28 北京北控京仪环保科技有限公司 一种高效去除含氯废水中有机物的处理装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314512A (zh) * 2001-04-26 2001-09-26 中国科学院广州化学研究所 一种催化漂白纸浆的方法
CN101565219A (zh) * 2008-04-25 2009-10-28 北京化工大学 一种光催化处理工业废水的工艺
WO2012154696A1 (en) * 2011-05-06 2012-11-15 Miox Corporation Organic contaminant destruction using chlorine or mixed oxidant solution and ultraviolet light
CN106414699A (zh) * 2014-01-24 2017-02-15 宝洁公司 用于处理表面的系统和方法
CN106673121A (zh) * 2017-01-05 2017-05-17 北京师范大学 一种光催化法净化污水中四环素的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291886A (zh) * 2022-01-11 2022-04-08 哈尔滨工业大学(深圳) 一种亚硫酸盐联合二氧化氯处理水中难降解有机物的方法

Also Published As

Publication number Publication date
US20230331611A1 (en) 2023-10-19
CN111573930B (zh) 2022-04-05
CN111573930A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021232600A1 (zh) 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法
WO2021227213A1 (zh) 用于活化过单硫酸盐去除水体中抗生素的催化剂及其制备方法与应用
CN102276095B (zh) 梯度臭氧催化氧化降解水中有机污染物的方法
CN101597104B (zh) 一种芬顿光催化氧化降解水中多种微囊藻毒素的方法
US10662095B2 (en) Ozone-photocatalysis reactor and water treatment method
Youji et al. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study
CN101863526A (zh) 紫外催化湿式氧化降解污染物的方法及装置
Kang et al. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor
CN103130307A (zh) 一种臭氧、光电化学耦合氧化的水处理装置及方法
CN113929197A (zh) 一种可见光辅助活化过一硫酸盐处理有机废水的方法
Thomas et al. Combining “chimie douce” and green principles for the developing world: Improving industrial viability of photocatalytic water remediation
CN104386799B (zh) 一种去除水中微量有机污染物的方法
CN110813087B (zh) 一种处理高浓度VOCs废气的方法及处理系统
CN106946312A (zh) 利用光催化水泥基材料降解饮用水消毒副产物三氯乙酰胺的方法
WO2023201974A1 (zh) 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用
CN202785888U (zh) 一种微波无极紫外光催化氧化反应器
WO2021218630A1 (zh) 一种多相催化反应器
CN109876816A (zh) 一种微波辅助催化湿式氧化纳米催化剂及其应用
CN213679931U (zh) 一种uv光氧高效催化净化器
CN114180702A (zh) 一种过渡金属负载生物炭活化过一硫酸盐的高级氧化杀菌方法
CN112844437A (zh) 一种高结晶氮化碳光-芬顿催化剂的制备方法及其在降解新兴污染物中的应用
Austen et al. Fenton reagent for organic compound removal in wastewater
CN201770512U (zh) 紫外催化湿式氧化降解污染物的装置
CN111320233A (zh) 一种耦合光与粒子响应水处理设备及光反应器及处理方法
CN111072101A (zh) 一种多相催化反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937026

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20937026

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18//01/2023)