WO2023201974A1 - 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用 - Google Patents

一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用 Download PDF

Info

Publication number
WO2023201974A1
WO2023201974A1 PCT/CN2022/118403 CN2022118403W WO2023201974A1 WO 2023201974 A1 WO2023201974 A1 WO 2023201974A1 CN 2022118403 W CN2022118403 W CN 2022118403W WO 2023201974 A1 WO2023201974 A1 WO 2023201974A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxyhydroxide
persulfate
solution
antibiotic
antibiotics
Prior art date
Application number
PCT/CN2022/118403
Other languages
English (en)
French (fr)
Inventor
姚屹洋
青木功莊
三岛祐司
本名虎之
杨建明
邵玉祥
李金花
沈辉
Original Assignee
浙江华源颜料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华源颜料股份有限公司 filed Critical 浙江华源颜料股份有限公司
Publication of WO2023201974A1 publication Critical patent/WO2023201974A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the field of photocatalytic degradation, and in particular to an iron oxyhydroxide and its application as a photocatalytic material and persulfate to synergistically degrade antibiotics.
  • Antibiotics are the most widely used drugs in recent years. However, while bringing convenience, they also cause many problems. Only a small part of it can be degraded after entering the human body, and it is difficult to metabolize itself in the environment, seriously endangering people's lives and health and environmental safety. Excessive use of antibiotics or their accumulation in the body can cause serious side effects, such as nausea, vomiting, loss of appetite, secondary infections, affecting bone and tooth growth, etc. At the same time, its harm to the environment is also quite serious.
  • the photocatalytic method based on SO 4 ⁇ - is widely used to degrade organic pollutants due to its strong oxidation performance, good oxidant stability, environmental protection and harmlessness.
  • SO 4 ⁇ - can generally be activated and produced by light, microwaves, ultrasound, heating, transition metal ions, metal and metal-free catalysts, etc.
  • transition metal ions are easily activated without additional energy input and have been widely studied.
  • iron-based catalyst/persulfate is a highly flexible system due to the different chemical states of iron (Fe 0 , Fe 2+ , Fe 3+ ).
  • the object of the present invention is to provide an iron oxyhydroxide and its application as a photocatalytic material and persulfate to synergistically degrade antibiotics.
  • the iron oxyhydroxide provided by the invention has a relatively small bandgap width and crystal grain size, and can generate catalytically active electron-hole pairs under appropriate light.
  • antibiotics tetracycline
  • they When antibiotics (tetracycline) are adsorbed on the surface of hydrotalcite, they will Capture electron-hole pairs, activate persulfate radicals, and degrade tetracycline, thus achieving the purpose of purifying wastewater.
  • the invention provides a preparation method of iron oxyhydroxide, which includes the following steps: (1) Disperse CTAB (cetyltrimethylammonium bromide) in deionized water, and stir at room temperature for 30 to 60 minutes until the solution becomes Transparent, obtain solution A; (2) Dissolve FeCl 3 in solution A, stir at room temperature for 30 to 60 minutes until a homogeneous solution is formed; (3) Pour the solution in (2) into a Teflon stainless steel high-pressure reactor, and proceed Hydrothermal reaction, after the reaction is completed, cool to room temperature; (4) filter under reduced pressure, wash the filter cake with ethanol and distilled water three times respectively, and dry it in an oven to obtain iron oxyhydroxide.
  • CTAB cetyltrimethylammonium bromide
  • the molar ratio of CTAB and ferric chloride in the step (1) and step (2) is 1:1 to 1:3, and the molar ratio of CTAB in the step (2) ), the concentration of FeCl 3 is 0.1 ⁇ 0.3mol/L.
  • the hydrothermal reaction temperature in step (3) is 80-120°C, and the hydrothermal reaction time is 6-24 hours.
  • the drying temperature in step (4) is 50-60°C.
  • the invention also provides an application of iron oxyhydroxide photo-cooperatively activated persulfate to catalytically degrade antibiotics, which includes the following steps: (1) placing the aforementioned iron oxyhydroxide and persulfate in an antibiotic aqueous solution; (2) ) Place the mixed solution in (1) under a xenon lamp and irradiate it for 0.5 to 2 hours, and stir to degrade the antibiotics.
  • the antibiotic is tetracycline.
  • the initial mass concentration of tetracycline is 10 to 100 mg/L.
  • the persulfate in step (1) is sodium persulfate, potassium persulfate, sodium hydrogen persulfate, or hydrogen persulfate. Potassium.
  • the ratio of iron oxyhydroxide to antibiotic solution in step (1) is 10 to 100 mg:100 mL, and the ratio of persulfate to antibiotic is The ratio of the solution is 0.1 ⁇ 2g:100mL.
  • the visible light in the range of 400 to 800 nm of a xenon lamp is used in step (2).
  • the beneficial effects of the present invention include:
  • the preparation method of iron oxyhydroxide and its application of light synergistic activation of persulfate to catalyze the degradation of antibiotics according to the invention have easy-to-obtain raw materials and low cost, and the prepared iron oxyhydroxide has a relatively small bandgap width and grain size. , which makes the antibiotic degradation reaction conditions mild and the degradation efficiency high. It can catalyze the degradation of antibiotics under sunlight conditions. It can achieve good degradation efficiency without adding additional electric fields. The degradation effect is significant.
  • the catalytically degraded materials are easy to recycle. While controlling environmental pollution, it can save energy to the greatest extent and will not produce secondary pollution.
  • Figure 1 is an X-ray diffraction pattern of iron oxyhydroxide in Example 1;
  • Figure 2 is a degradation rate curve of tetracycline in Example 2;
  • Figure 3 is a standard curve diagram of tetracycline in Example 3.
  • Simulated sunlight degradation of tetracycline was used as a model reaction, and the absorbance of the tetracycline solution at 357 nm was measured with a UV-visible spectrophotometer to determine its relative concentration to evaluate the photocatalytic performance of the material.
  • the light source is a 300W xenon lamp (using a filter to filter out ultraviolet light and retain visible light of 400nm ⁇ 800nm).
  • the distance between the light source and the reaction solution is 25cm.
  • the preparation method of iron oxyhydroxide and its application of light synergistic activation of persulfate to catalyze the degradation of antibiotics according to the invention have easy-to-obtain raw materials and low cost, and the prepared iron oxyhydroxide has a relatively small bandgap width and grain size. , which makes the antibiotic degradation reaction conditions mild and the degradation efficiency high. It can catalyze the degradation of antibiotics under sunlight conditions. It can achieve good degradation efficiency without adding additional electric fields. The degradation effect is significant.
  • the catalytically degraded materials are easy to recycle. While controlling environmental pollution, it can save energy to the greatest extent and will not produce secondary pollution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种羟基氧化铁及其作为光催化材料与过硫酸盐协同降解抗生素的应用。所述羟基氧化铁化学通式为FeOOH,并公开了所述的羟基氧化铁与过硫酸盐共同作用用于光催化降解四环素的应用,该反应条件温和,四环素去除率高,催化降解后的材料易回收利用。

Description

一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用 技术领域
本发明涉及光催化降解领域,特别涉及一种羟基氧化铁及其作为光催化材料与过硫酸盐协同降解抗生素的应用。
背景技术
抗生素是近年来应用最广泛的一类药物,然而在带来便利的同时也产生了许多问题。其在进入人体后仅少部分能被降解,且在环境中难以自行代谢,严重危害到了人们的生命健康以及环境安全。过量使用抗生素或者在身体内堆积,会造成严重的副作用,如恶心、呕吐,食欲减退,二重感染,影响骨和牙生长等,同时其对环境的危害也相当严重。
目前,降解水中抗生素类型的污染物分别有以下几种方法,分别包括传统化学处理方法,电化学法,微生物氧化法和光降解法。但是由于传统化学方法不能有效地去除大量的四环素,且会引入新的污染物,电化学等方法耗能较高。相比于其他方法,光催化具有反应条件温和、设备简单、二次污染少、利用太阳光作为唯一的外部能量输入等优点,是一种很有前途的污染控制技术。
基于SO 4· -的光催化法因其氧化性能强、氧化剂稳定性好、环保无害等优点被广泛应用于降解有机污染物。SO 4· -通常可以通过光、微波、超声波、加热、过渡金属离子、金属和无金属催化剂等活化过硫酸盐和产生。其中,过渡金属离子易活化,无需额外能量输入,已被广泛研究。而在基于过渡金属的体系中,铁基催化剂/过硫酸盐由于铁的化学状态不同(Fe 0、Fe 2+、Fe 3+),是一个高度灵活的体系。
因此,将铁基催化剂/过硫酸盐体系与光催化耦合,构建多反应耦合型高级氧化体系用于高效降解水中有机污染物是目前研究的热点。在铁基催化剂中,羟基氧化铁由于环境友好性、相对稳定性、可见光响应、耐腐蚀性强和低成本而引起广泛关注。因此,本专利成功制备出羟基氧化铁光催化剂,并通过耦合过硫酸盐构建多反应耦合型高级氧化体系(光催化+过硫酸盐活化)。
发明内容
本发明的目的在提供一种羟基氧化铁及其作为光催化材料与过硫酸盐协同降解抗生素的应用。本发明提供的羟基氧化铁的禁带宽度和晶粒尺寸均比较小,在适宜光照下能产生带有催化活性的电子-空穴对,当抗生素(四环素)被吸附在水滑石表面时,会俘获电子-空穴对,激活过硫酸根,使四环素发生降解,从而达到净化废水的目的。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种羟基氧化铁的制备方法,包括以下步骤:(1)将CTAB(十六烷基三 甲基溴化铵)分散于去离子水中,室温下搅拌30~60min直至溶液变得透明,得到溶液A;(2)将FeCl 3溶于溶液A中,室温下搅拌30~60min直至形成均相溶液;(3)将(2)中溶液倒入Teflon的不锈钢高压反应釜中,进行水热反应,反应结束后,冷却至室温;(4)减压过滤,将滤饼用乙醇和蒸馏水分别洗涤3次,烘干干燥,得到羟基氧化铁。
优选的,在上述一种羟基氧化铁的制备方法中,所述的步骤(1)和步骤(2)中CTAB和氯化铁的摩尔比为1:1~1:3,所述步骤(2)中FeCl 3的浓度为0.1~0.3mol/L。
优选的,在上述一种羟基氧化铁的制备方法中,所述步骤(3)中水热反应温度为80~120℃,水热反应时间为6~24h。
优选的,在上述一种羟基氧化铁的制备方法中,所述步骤(4)中烘干干燥温度为50~60℃。
本发明还提供了一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用,其包括以下步骤:(1)将前述提供的羟基氧化铁和过硫酸盐共同置于抗生素水溶液中;(2)将(1)中混合溶液置于氙灯下照射0.5~2h,搅拌使抗生素降解。
优选的,在上述一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用中,所述的抗生素为四环素。
优选的,在上述一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用中,所述的四环素初始质量浓度为10~100mg/L。
优选的,在上述一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用中,所述步骤(1)中过硫酸盐为过硫酸钠、过硫酸钾、过硫酸氢钠、过硫酸氢钾。
优选的,在上述一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用中,所述步骤(1)中羟基氧化铁与抗生素溶液的比为10~100mg:100mL,过硫酸盐与抗生素溶液的比为0.1~2g:100mL。
优选的,在上述一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用中,所述步骤(2)中所用的是氙灯400~800nm范围内的可见光。
与现有技术相比,本发明的有益效果包括:
本发明所述一种羟基氧化铁的制备方法及其光协同活化过硫酸盐催化降解抗生素的应用,原料易得,成本较低,制备得到的羟基氧化铁禁带宽度和晶粒尺寸均比较小,使得抗生素降解反应条件温和,降解效率高,太阳光条件下即可催化抗生素降解,不需要添加额外的电场也能取得好的降解效率,降解效果显著,催化降解后的材料易回收利用,在治理环境污染的同时,能最大程度的节约能源,并且不会产生二次污染。
附图说明
为了更清楚地说明本发明实施例或现有技术方案中技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实施例1中羟基氧化铁的X射线衍射图;
图2为实施例2的四环素的降解率曲线图;
图3为实施例3中四环素的标准曲线图。
具体实施方式
实施例1
制备羟基氧化铁催化剂
称取1.4578g CTAB(4.0mmol)分散于30mL去离子水中,室温下搅拌30min直至溶液变得透明,记为溶液A;分别称取1.0800g FeCl 3(6.7mmol)溶于溶液A中,搅拌30min直至形成均相溶液;将溶液倒入50mL Teflon的不锈钢高压反应釜中,在90℃下水热12h;反应结束后,反应釜冷却至室温。减压过滤,将滤饼用乙醇和蒸馏水分别洗涤3次,60℃下烘干12h,得到羟基氧化铁催化剂。X射线衍射图(XRD)如图1所示。
实施例2
光催化实验
采用模拟太阳光降解四环素作为模型反应,通过紫外可见分光光度仪测定四环素溶液在357nm处的吸光度以确定其相对浓度,以此评价材料的光催化性能。光源为300W氙灯(采用滤光片,滤去紫外光,保留400nm<λ<800nm的可见光),光源距离反应液为25cm。在一定的温度和pH值下,向含有100mL 20mg/L的四环素溶液的双层石英反应管中加入10mg催化材料,随后加入0.9524g过硫酸钠。随后开启氙灯在持续光照和磁力搅拌下进行光催化实验。反应开始后,每隔5min取样,经0.22μm有机滤膜过滤后使用紫外可见分光光度仪测定滤液在357nm处的吸光度,依据标准曲线,换算为四环素的相对质量浓度C(mg/L)。依据C/C 0计算四环素的降解率(η%),C 0(mg/L)是四环素的起始质量浓度。
η=C/C 0   (1)
在光照情况下分别做了1.空白实验(无催化剂);2.仅添加催化剂羟基氧化铁;3.添加催化剂羟基氧化铁和过硫酸盐Na 2S 2O 8;4.在无光条件下添加催化剂羟基氧化铁和过硫酸盐Na 2S 2O 8。降解率曲线由图2所示。
由图2可知,在40min时,四环素的降解率已经达到0.18,并且还有持续降低的趋势。
实施例3
标准曲线的制备
以初始浓度为100mg/L的四环素溶液为基础,配制浓度为5.00mg/L、10.00mg/L、20.00 mg/L、30.00mg/L、40.00mg/L、50.00mg/L的溶液,以去离子水作为空白参比,用岛津2550型紫外-可见分光光度计于357nm处测定各溶液的吸光度,进行线性拟合得到四环素液吸光度A-浓度C的标准曲线,见图3所示。
本发明所述一种羟基氧化铁的制备方法及其光协同活化过硫酸盐催化降解抗生素的应用,原料易得,成本较低,制备得到的羟基氧化铁禁带宽度和晶粒尺寸均比较小,使得抗生素降解反应条件温和,降解效率高,太阳光条件下即可催化抗生素降解,不需要添加额外的电场也能取得好的降解效率,降解效果显著,催化降解后的材料易回收利用,在治理环境污染的同时,能最大程度的节约能源,并且不会产生二次污染。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种羟基氧化铁,其特征在于,羟基氧化铁采用如下制备方法获得:(1)将十六烷基三甲基溴化铵分散于去离子水中,室温下搅拌30~60min直至溶液变得透明,得到溶液A;(2)将FeCl 3溶于溶液A中,室温下搅拌30~60min直至形成均相溶液;(3)将(2)中溶液倒入Teflon的不锈钢高压反应釜中,进行水热反应,反应结束后,冷却至室温;(4)减压过滤,将滤饼用乙醇和蒸馏水分别洗涤3次,烘干干燥,得到羟基氧化铁。
  2. 根据权利要求1所述的羟基氧化铁,其特征在于,所述的步骤(1)和步骤(2)中十六烷基三甲基溴化铵和FeCl 3的摩尔比为1:1~1:3,所述步骤(2)中FeCl 3的浓度为0.1~0.3mol/L。
  3. 根据权利要求1所述的羟基氧化铁,其特征在于,所述步骤(3)中水热反应温度为80~120℃,水热反应时间为6~24h。
  4. 根据权利要求1所述的羟基氧化铁,其特征在于,所述步骤(4)中烘干干燥温度为50~60℃。
  5. 一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用,其特征在于,包括以下步骤:
    (1)将权利要求1~4任意一项所述的羟基氧化铁和过硫酸盐共同置于抗生素水溶液中;
    (2)将(1)中混合溶液置于氙灯下照射0.5~2h,搅拌使抗生素降解。
  6. 根据权利要求5所述的一种羟基氧化铁光协同活化过硫酸盐催化降解抗生素的应用,其特征在于,所述的抗生素为四环素。
  7. 根据权利要求5的应用,其特征在于,所述的四环素初始质量浓度为10~100mg/L。
  8. 根据权利要求5的应用,其特征在于,所述步骤(1)中过硫酸盐为过硫酸钠、过硫酸钾、过硫酸氢钠、过硫酸氢钾。
  9. 根据权利要求5的应用,其特征在于,所述步骤(1)中羟基氧化铁与抗生素溶液的比为10~100mg:100mL,过硫酸盐与抗生素溶液的比为0.1~2g:100mL。
  10. 根据权利要求5的应用,其特征在于,所述步骤(2)中所用的是氙灯400~800nm范围内的可见光。
PCT/CN2022/118403 2022-04-22 2022-09-13 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用 WO2023201974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210427751.6 2022-04-22
CN202210427751.6A CN114956194A (zh) 2022-04-22 2022-04-22 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用

Publications (1)

Publication Number Publication Date
WO2023201974A1 true WO2023201974A1 (zh) 2023-10-26

Family

ID=82979176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118403 WO2023201974A1 (zh) 2022-04-22 2022-09-13 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用

Country Status (2)

Country Link
CN (1) CN114956194A (zh)
WO (1) WO2023201974A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956194A (zh) * 2022-04-22 2022-08-30 浙江华源颜料股份有限公司 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148090A (zh) * 2014-07-30 2014-11-19 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构光催化降解有机污染物的方法
CN105600833A (zh) * 2015-10-15 2016-05-25 齐鲁工业大学 一种球状介孔氧化铁及其制备方法
CN105921151A (zh) * 2016-04-29 2016-09-07 华东师范大学 一种β-羟基氧化铁负载氧化石墨烯催化剂的制备方法及应用
CN107285452A (zh) * 2017-06-15 2017-10-24 昆明理工大学 一种快速降解抗生素的方法
CN107298477A (zh) * 2017-06-22 2017-10-27 武汉纺织大学 一种催化过硫酸盐降解废水中有机污染物的方法
CN108675430A (zh) * 2018-05-15 2018-10-19 吉林大学 产生硫酸根自由基和活性氧物种的催化方法及难生物降解有机污染物的高级氧化方法
CN112320852A (zh) * 2020-11-23 2021-02-05 湖北大学 一种纺锤形纳米羟基氧化铁的制备方法
CN114044554A (zh) * 2021-10-08 2022-02-15 东北大学 光电协同强化铁基催化剂活化过硫酸盐降解抗生素的方法
CN114956194A (zh) * 2022-04-22 2022-08-30 浙江华源颜料股份有限公司 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368201B2 (ja) * 2009-07-21 2013-12-18 オルガノ株式会社 化学物質汚染の処理方法及び処理装置
CN110092437A (zh) * 2019-04-09 2019-08-06 华东师范大学 一种餐厨垃圾废水中抗生素的降解方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148090A (zh) * 2014-07-30 2014-11-19 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构光催化降解有机污染物的方法
CN105600833A (zh) * 2015-10-15 2016-05-25 齐鲁工业大学 一种球状介孔氧化铁及其制备方法
CN105921151A (zh) * 2016-04-29 2016-09-07 华东师范大学 一种β-羟基氧化铁负载氧化石墨烯催化剂的制备方法及应用
CN107285452A (zh) * 2017-06-15 2017-10-24 昆明理工大学 一种快速降解抗生素的方法
CN107298477A (zh) * 2017-06-22 2017-10-27 武汉纺织大学 一种催化过硫酸盐降解废水中有机污染物的方法
CN108675430A (zh) * 2018-05-15 2018-10-19 吉林大学 产生硫酸根自由基和活性氧物种的催化方法及难生物降解有机污染物的高级氧化方法
CN112320852A (zh) * 2020-11-23 2021-02-05 湖北大学 一种纺锤形纳米羟基氧化铁的制备方法
CN114044554A (zh) * 2021-10-08 2022-02-15 东北大学 光电协同强化铁基催化剂活化过硫酸盐降解抗生素的方法
CN114956194A (zh) * 2022-04-22 2022-08-30 浙江华源颜料股份有限公司 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEN WEI ET AL.: "The properties of FeOOH precipitates formed in CTAB-rich FeCl3 solutions at various pH and ethanol contents", COLLOID AND POLYMER SCIENCE, vol. 296, 27 May 2018 (2018-05-27), pages 1205 - 1212, XP036529112, DOI: 10.1007/s00396-018-4340-9 *
ZUHONG LIN ET AL.: "CTAB-functionalized delta-FeOOH for the simultaneous removal of arsenate and phenylarsonic acid in phenylarsenic chemical warfare", CHEMOSPHERE, vol. 292, 24 December 2021 (2021-12-24), pages 1 - 11, XP086953326, DOI: 10.1016/j.chemosphere.2021.133373 *

Also Published As

Publication number Publication date
CN114956194A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
CN104722302B (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
Tang et al. Ru single atom catalyst with dual reaction sites for efficient fenton-like degradation of organic contaminants
CN108212192A (zh) 一种光-芬顿催化剂及其制备方法
CN106732524A (zh) 一种α/β‑氧化铋相异质结光催化剂及其制法和用途
CN113244962B (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
WO2021232600A1 (zh) 一种可见光催化-ClO 2氧化联用高效去除废水中有机污染物的方法
CN109261172A (zh) 一种碘氧化铋/溴氧化铋异质结光催化剂的制备方法和用途
CN108264127A (zh) 一种纳米级氧化镓真空紫外光催化降解全氟辛酸的方法
WO2023201974A1 (zh) 一种羟基氧化铁及其与过硫酸盐协同降解抗生素的应用
CN108579786A (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
Tang et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant
CN110841669B (zh) 利用零维黑磷量子点/一维管状氮化碳复合光催化剂处理重金属和有机污染物的方法
Ghazzaf et al. Synthesis of heterogeneous photo-Fenton catalyst from iron rust and its application to degradation of Acid Red 97 in aqueous medium
Liu et al. Construction of high-proportion dual bismuth-based Z-scheme Bi3O4Cl/Bi2MoO6 photocatalytic system via in-situ growth of Bi2MoO6 on Bi3O4Cl for enhanced photocatalytic degradation of organic pollutants
Zhang et al. Dual sites design of CoFe/Mg MMO catalyst for effectively suppressing dimethylamine re-emission: Degradation products and DFT calculation
Gao et al. Ti-doped Zr-UiO-66-NH2 boosting charge transfer for enhancing the synergistic removal of Cr (VI) and TC-HCl in wastewater
CN110605138A (zh) 一种钽氧氮/泡沫镍光催化接触氧化膜的制备方法和应用
Li et al. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism
CN105618030A (zh) 一种高效光催化剂SrTiO3/Bi2WO6的制备方法及其应用
Zhang et al. Photocatalytic degradation of sulfamethoxazole over S-scheme Fe2O3/g-C3N4 photocatalyst under visible light
CN103506104B (zh) 玻璃片载体上碳掺杂TiO2可见光响应催化膜及其制备方法
Wang et al. Efficient removal of ciprofloxacin by BiFe1− xCuxO3 for the photo assisted heterogeneous peroxymonosulfate activation
CN114433107B (zh) 一种Co3O4/Bi4O7/Bi2O3异质结光催化剂及其应用
CN111135839A (zh) 一种氧化铁改性凹凸棒石/钼酸铋复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938199

Country of ref document: EP

Kind code of ref document: A1