CN108083818B - 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法 - Google Patents

结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法 Download PDF

Info

Publication number
CN108083818B
CN108083818B CN201711483908.2A CN201711483908A CN108083818B CN 108083818 B CN108083818 B CN 108083818B CN 201711483908 A CN201711483908 A CN 201711483908A CN 108083818 B CN108083818 B CN 108083818B
Authority
CN
China
Prior art keywords
ceramic
ceramic composite
temperature
composite material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711483908.2A
Other languages
English (en)
Other versions
CN108083818A (zh
Inventor
劳石英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Longer 3d Technology Co ltd
Original Assignee
Shenzhen Longer 3d Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Longer 3d Technology Co ltd filed Critical Shenzhen Longer 3d Technology Co ltd
Priority to CN201711483908.2A priority Critical patent/CN108083818B/zh
Publication of CN108083818A publication Critical patent/CN108083818A/zh
Application granted granted Critical
Publication of CN108083818B publication Critical patent/CN108083818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof

Abstract

本发明公开了一种结构增强的光固化树脂基陶瓷复合材料及陶瓷胚体的脱脂方法。通过优化设计树脂体系,使得能够在保持体系反应活性的同时,提高陶瓷浆料体系透射深度,减少成型尺寸误差;使得陶瓷胚体层间结合力及其与打印平台之间粘结力增加,减少陶瓷胚体与平台的脱离和陶瓷胚体表面的裂纹;同时改善成型件的拉伸强度,使该材料能够适应悬空和微细结构的打印需求。

Description

结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法
技术领域
本发明涉及陶瓷材料领域,更具体地涉及一种具有改善的拉伸性能的用于增材成型的光固化树脂基陶瓷复合材料及由其制备的陶瓷胚体的脱脂方法。
背景技术
增材制造(也称为“3D打印”)是一种用数字文件生成三维物体的制造过程。在3D打印的过程中,一层层的材料被逐次叠加起来,直到形成最终的物体形态。每一层可以看作这个物体的一个很薄的横截面,而每层的厚度则决定了打印的精度,层的厚度越小,打印的精度越高,打印出来的实体与数字模型本身越接近。
增材成型的精度及效率与增材材料有着非常密切的关系,增材材料是增材制造领域中的一个研究热点。其中,陶瓷材料对于各种结构和建筑应用均具有优异的性能,诸如良好的耐热性、弹性、塑性、拉伸强度、抗压强度及剪切强度等,3D打印陶瓷能省去传统手工塑型制模的整个过程,以更高的精度完成传统陶瓷工业无法实现的三维结构,具有成型速度快,可打印复杂部件及个性化产品成本低等优点,且性能稳定,具有无菌等特点,可用于制备光线连接器用的陶瓷插针、电子陶瓷器件、多空陶瓷过滤件、陶瓷牙齿等尺寸小、形状复杂、精度高的产品,因此,增材成型用陶瓷材料目前成为一个重要的增材开发方向。例如,在CN201610398978.7号中国发明专利申请中公开了一种三维打印复合材料,其中指出在光固化树脂中添加陶瓷粉末形成的复合材料,可以借助光固化成型(SLA)或者数字化光处理(DLP)打印出表面直接具有陶瓷光泽和质感的物体。
CN201510590675号中国发明专利申请中对陶瓷浆料的组分进行了改进,提供了一种在浆料的固体含量低于40vol%时仍然能够用于制造高致密陶瓷的方法。CN201710035091号中国发明专利申请中公开了一种用于光固化的陶瓷浆料的制备方法,其中提出将25-85vol%的陶瓷粉体分散到15-75vol%的光敏树脂预混液体系中来获得具有高固相含量和低粘度的陶瓷浆料,从而解决由于固含量不高导致最终陶瓷制品收缩率高而引起的裂纹或变形等问题。US2015/0111176A1公开了一种树脂复合材料及其使用方法,其中从两种引发剂和吸收剂的最大吸收波长方面对材料组分进行了改进。
然而,现有的增材成型用光固化陶瓷复合材料中通常要求加入45-65vol%的陶瓷粉体材料。高含量的无机惰性粉体材料,使得陶瓷浆料体系粘度较大,文献资料表明,适合DLP 3D打印成型的陶瓷浆料体系的粘度应<3Pa.S。本发明人经研究发现,陶瓷浆料体系粘度超过1Pa.S时,打印平台和陶瓷胚体与料槽离型膜的粘结力过大,出现陶瓷胚体与打印平台频繁脱离的现象;发明人经研究还发现,高惰性粉体含量的陶瓷复合材料固化后各组分收缩不均匀,复合材料固化后存在较大的应力,进而引起复合材料固化后内部黏结力下降,且层间应力的存在使得陶瓷胚体表面出现裂纹。同时,陶瓷粉体的加入大大减弱了有机粘结剂与打印平台的粘结力,粘结力下降也是导致打印成型过程中频繁出现陶瓷胚体与打印平台的脱离的重要原因,造成打印失败。此外,在现有的增材成型用光固化陶瓷复合材料中,陶瓷粉体与树脂粘结剂之间的折射率差异导致的光散射,也是导致陶瓷浆料增材成型过程中精度产生偏差的主要原因。
进一步地,申请人还发现,当在树脂体系中加入大量粉体时,会导致模型成型后的拉伸强度明显下降,这会造成部分悬空结构和微细结构在打印过程中开裂甚至难以成型。
发明内容
针对现有技术中存在的上述问题,本发明通过优化设计树脂浆料,尤其选用了适当极性及折射率的树脂单体及交联剂成分、粉体稳定剂、聚合抗扰剂、界面增强剂、低温造孔剂及结构增强剂等组分,使得陶瓷浆料体系具有更适合3D打印的低粘度性能(<1Pa.S),树脂浆料与陶瓷粉体较小的折射率差值,与聚合抗扰剂共同作用,大大提高了陶瓷浆料体系的透射深度Cd,从而有效减少成型过程中光散射引起的尺寸误差及层间应力;活性单体与陶瓷粉体材料之间有较好的亲和性,活性单体及交联成分固化后,能形成氢键等较强的分子间作用力,使得陶瓷胚体层间结合力增加,陶瓷胚体与金属打印平台的粘结力也相应增加,该较强粘结力与较低体系粘度下平台、模型与离型膜较小的离型力共同作用,有效减少陶瓷胚体与平台的脱离现象,陶瓷胚体表面裂纹现象也得到很好解决;同时,借助与树脂体系相适配的结构增强剂及用量,可以大大提高成型件的拉伸强度,保证诸如悬空结构和微细结构模型的正常打印。此外,基于由本发明的陶瓷复合材料制备的陶瓷胚体,本发明还提出一种陶瓷胚体脱脂方法,用于与本发明的陶瓷复合材料配合使用以解决陶瓷胚体在脱脂过程中容易出现变形开裂等问题。
本发明公开了一种增材成型用光固化树脂基陶瓷复合材料,其可以包括陶瓷粉体和树脂浆料;所述陶瓷粉体占所述陶瓷复合材料的体积百分比为30%-80%;所述树脂浆料包括5-30重量份的光固化单体、10-30重量份的交联剂单体、0.05-5重量份的光固化引发剂、以及0.01-1重量份的结构增强剂。其中,所述光固化单体的折射率大于或等于1.5,并且/或者所述交联剂单体的折射率大于或等于1.5。
优选地,所述陶瓷粉体可以为氧化铝、氧化锆、氮化铝、碳化硅、氧化钇、氧化镁、氧化硅、氧化钙、氧化铋、羟基磷灰石及磷酸三钙中的一种或者多种。
优选地,所述光固化单体的折射率小于或等于1.8,并且/或者所述交联剂单体的折射率小于或等于1.8,从而提供折射率分布更为均匀的陶瓷复合材料体系。
优选地,所述光固化单体可以选自2-苯硫基乙基丙烯酸酯、双环苯氧乙基丙烯酸酯、邻苯基苯氧基乙基丙烯酸酯及N-乙烯基咔唑中的一种或多种。
优选地,所述交联剂单体可以具有苯环或者脂环族结构的刚性基团。
优选地,所述交联剂单体可以选自多官能团芳香族聚氨酯丙烯酸酯、乙氧化双酚A丙烯酸酯中的一种或多种。
优选地,所述光固化引发剂可以选自酰基氧化嶙、二酰基氧化嶙、二苯乙醇酮、安息香醚、硫杂蒽酮、苯偶酰、苯偶酰缩酮、苯乙酮及二苯甲酮中的一种或多种。
优选地,本发明的结构增强剂可以为螺旋状单壁纳米管和螺旋状多壁碳纳米管中的一种或多种。其中,所述碳纳米管的管直径优选为10-20纳米,螺旋直径优选为50-200纳米。
进一步地,本发明的树脂浆料优选还可以包括0.05-0.3重量份的结构增强助剂,用于改善结构增强剂的分散效果。优选地,所述结构增强助剂可以为苯甲酸聚乙二醇季铵硝酸盐和萘甲酸聚乙二醇季铵硝酸盐中的一种或多种,且具有500-800的分子量。
本发明的陶瓷复合材料优选还可以包括0.1-10重量份的粉体稳定剂。进一步地,所述粉体稳定剂可以包括至少一种分散剂和至少一种渗透性增强剂。
优选地,所述分散剂可以选自高分子超分散剂和聚丙(乙)氧基季铵盐中的一种或两种。其中,所述高分子超分散剂优选可以选自聚酯型超分散剂、聚醚性超分散剂、聚丙烯酸酯型超分散剂及聚氨酯嵌段共聚物超分散剂中的一种或多种,且分子量为1000-3000。
优选地,所述渗透性增强剂可以为含有羟基、氨基、羧基或乙氧基的物质。进一步地,所述渗透性增强剂可以具有小于10mPa.S的粘度,以及具有200-400的分子量。
优选地,所述渗透性增强剂可以选自氨基酸型两性表面活性剂、氨基/氧基硅烷表面活性剂及聚氧乙烯脂肪醇醚中的一种或多种。
本发明的树脂浆料优选还可以包括10-30重量份的聚合抗扰剂,用于抵抗来自所述陶瓷粉体的金属离子所产生的聚合抑制效应。
优选地,所述聚合抗扰剂可以为多官能团巯基丙酸酯组合物。所述组合物可以包括多官能团巯基丙酸酯与乙烯基醚稀释剂的组合。
优选地,所述多官能团巯基丙酸酯选自三羟甲基丙烷三(3-巯基丙酸酯)、季戊四醇四-3-巯基丙酸酯、异氟尔酮二氨基甲酸酯六巯基丙酸酯中的一种或多种。
优选地,所述多官能团巯基丙酸酯与所述乙烯基醚稀释剂的比例可以为8:2至2:8。
本发明的树脂浆料优选还可以包括5-20重量份的界面增强剂,用于快速扩散穿过所述陶瓷粉体之间的间隙。优选地,所述界面增强剂可以选自4-羟基丁基(甲基)丙烯酸酯、(甲基)丙烯酸酯羟乙酯、N丙烯酰吗啉中的一种或多种。
本发明的树脂浆料优选还可以包括5-20重量份的低温造孔剂,其温度优选为100-200℃。作为优选,所述低温造孔剂可以选自Mn:200-2000的线性聚脂肪烃、聚乙二醇、脂肪烃和(甲基)丙烯酸酯共聚物中的一种或多种。
本发明的树脂浆料优选还可以包括0.01-0.5重量份的阻聚剂,用于抑制低强度光引起的光聚合反应。
优选地,所述阻聚剂可以选自苯酚或苯醌系列中的一种或多种。
本发明的另一方面提供了一种利用本发明的陶瓷复合材料制备的陶瓷胚体的脱脂方法,该方法可以包括第一脱脂过程、第二脱脂过程、第三脱脂过程以及第四脱脂过程,其中,所述第一脱脂过程、所述第二脱脂过程、所述第三脱脂过程以及所述第四脱脂过程分别在彼此不同的第一温度、第二温度、第三温度和第四温度下进行,且所述第一温度、第二温度、第三温度和第四温度满足逐渐升高的关系。
优选地,所述第一温度可以为100℃-200℃,所述第二温度可以为250℃-350℃,所述第三温度可以为400℃-600℃,以及所述第四温度可以为600℃-800℃。
具体实施方式
在下文中,本发明的示例性实施例将以举例的方式提供,以便充分传达本发明的精神给本发明所属领域的技术人员。因此,本发明不限于本文公开的实施例。
用于三维打印的树脂基陶瓷复合材料主要包括陶瓷粉体和树脂浆料。其中,陶瓷粉体优选地可以选自氧化铝、氧化锆、氮化铝、碳化硅、氧化钇、氧化镁、氧化硅、氧化钙、氧化铋、羟基磷灰石及磷酸三钙等粉体的一种或几种。在本发明中,为了降低成型过程中的收缩率,抑制表面裂纹现象的发生,陶瓷复合材料将被设计成具有高的固相含量。优选地,陶瓷粉体可以占陶瓷复合材料体系的体积百分比为30-80%。其中,优选地,粉体粒径可以为0.1-25μm。
然而,这种高固相含量设计会引发一系列不利因素,例如成型尺寸精度差、陶瓷胚体层间结合力差以及与打印成型平台粘结力差、部分悬空结构或微细结构在打印过程中开裂甚至难以成型等。为此,本发明对树脂浆料进行了特殊设计,以便能够在高固相含量体系下提供优秀的陶瓷增材成型效果。
在本发明中,树脂浆料可以包括光固化单体,但该光固化单体要具有较低的粘度和较高的折射率;优选地,其粘度为1-150mPa.s,折射率为1.5-1.8。作为优选,光固化单体可以选自2-苯硫基乙基丙烯酸酯(PTEA)、双环苯氧乙基丙烯酸酯、邻苯基苯氧基乙基丙烯酸酯及N-乙烯基咔唑(NVC)中的一种或多种。
树脂浆料中还可以包括有交联剂单体。在本发明中,该交联剂单体被选择为具有较高折射率的组合物;优选地,该较高的折射率为1.5-1.8。此外,本发明中的交联剂单体还具有刚性结构,且优选为具有苯环或脂环族结构的刚性基团,从而能够提高陶瓷浆料体系固化后的硬度及刚性,使得陶瓷胚体细节能够得到很好地体现。作为优选,该交联剂单体可以选自多官能团芳香族聚氨酯丙烯酸酯、乙氧化双酚A丙烯酸酯中的一种或多种。
优选地,在本发明的树脂浆料中,光固化单体的用量可以为5-30重量份,交联剂单体为10-30重量份。
由于本发明的树脂浆料对光固化单体和交联剂单体在折射率方面的优化设计,使得陶瓷复合材料体系内部折射率分布更为均匀,相对于现有技术(其通常采用折射率在1.44-1.46之间的HDDA、TMPTA等单体和交联剂材料)能够显著减小因折射率差异造成的散射现象,从而有效增大陶瓷复合材料的固化深度,增强陶瓷胚体层间的结合力,尤其有利于改善高固相含量的陶瓷复合材料体系的性能。
本发明的树脂浆料还可以包括光固化引发剂,其用以对固化效果进行调节。作为优选,光固化引发剂可以选自酰基氧化嶙、二酰基氧化嶙、二苯乙醇酮(安息香)、安息香醚、硫杂蒽酮、苯偶酰、苯偶酰缩酮、苯乙酮及二苯甲酮中的一种或多种。
优选地,在本发明的树脂浆料中,光引发剂的用量可以为0.05-5重量份。
为了改善成型件的拉伸强度,本发明的陶瓷复合材料中还可以包括结构增强剂。作为优选,结构增强剂可以选自螺旋状单壁纳米管或螺旋状多壁碳纳米管。在本发明中,特别优选螺旋状碳纳米管作为结构增强剂的原因在于,其相对于直线碳纳米管能够更好地连接周围的浆料,得到更好的力学效果、尤其是拉伸性能;而采用纳米管作为结构增强剂,其相对于其他纤维增强材料的优势在于,在脱脂阶段能够通过氧化反应被去除,不留下任何残留物影响最终的陶瓷性能,从而能够与本发明的陶瓷胚体脱脂方法配合使用,获得最佳的成型效果。
优选地,螺旋状碳纳米管的管直径为10-20纳米,螺旋直径为50-200纳米。
本申请人经进一步研究发现,碳纳米管在本发明的树脂体系中的分散效果并非十分理想,因此,为了提高碳纳米管这种结构增强剂在本发明的陶瓷体系中的作用,在本发明中还提出在陶瓷材料中加入能够改善结构增强剂在陶瓷体系中分散效果的助剂,即结构增强助剂。经分析研究发现,苯甲酸聚乙二醇季铵硝酸盐或者萘甲酸聚乙二醇季铵硝酸盐对于碳纳米管在本发明的陶瓷体系中的分散能够提供最佳的改善效果。优选地,所述结构增强助剂具有500-800的分子量。
优选地,所述结构增强剂的用量为0.01-0.1重量份,所述结构增强助剂的用量为0.05-0.3重量份。为了在高固相含量环境下改善陶瓷复合材料体系的稳定性和提供恰当的粘性,在本发明的树脂浆料中还可以包括粉体稳定剂。
根据本发明,粉体稳定剂可以包括至少一种分散剂成分和至少一种渗透性增强剂成分。其中,由于本发明的陶瓷复合材料体系体现出较强的极性,因此,在本发明中优选采用高分子超分散剂和/或聚丙(乙)氧基季铵盐等作为分散剂使用,以便与整体极性体系形成良好的匹配关系,其中,聚丙(乙)氧基季铵盐作为一种阳离子型分散剂可以赋予陶瓷体系的静电稳定作用,聚合物超分散剂可以赋予陶瓷体系的空间位阻稳定作用。优选地,超分散剂可以包括聚酯型超分散剂、聚醚性超分散剂、聚丙烯酸酯型超分散剂及聚氨酯嵌段共聚物超分散剂,它们将能够与本发明的陶瓷材料体系的主体成分形成良好的匹配。经研究发现,超分散剂的分子量在1000-3000之间时,将能够提供与本发明的陶瓷材料体系较好的相容性以及适中的体系粘度。然而,本发明人经研究发现,这种分散剂成分单独被加入到陶瓷复合材料体系中并不能很好地达到上述理论效果,为此,在本发明的粉体稳定剂中引入了渗透性增强剂成分,用于与分散剂成分配合作用,为整个陶瓷复合材料体系提供良好的粉体稳定作用。例如,渗透性增强剂成分可以与分散剂配合作用以提高分散剂分子在陶瓷粉体中的润湿效果,这对于改善分散剂在高固相含量环境下的作用就尤其有利。在本发明中,渗透性增强剂优选含有羟基、氨基、羧基或乙氧基等铆固基团的小分子低粘度物质,其中粘度优选小于10mPa.S,分子量优选为200-400。借助这种小分子的增强剂,可以在大分子分散剂与陶瓷粉体之间建立稳固的桥梁,从而赋予整个陶瓷体系稳定且适宜的粘度。经实验证明,借助这种渗透性增强剂,可以允许在本发明的陶瓷材料体系中将陶瓷粉体的加入量由40%的体积百分比提高到80%,同时使粘度由3Pa.S降低至低于1Pa.S,从而使得陶瓷材料更适合三维打印的需求。
更优选地,渗透性增强剂可以采用氨基酸型两性表面活性剂(其分子链中C原子数在8-12之间时较佳)、氨基/氧基硅烷表面活性剂及聚氧乙烯脂肪醇醚(其中EO(环氧乙烷)的数量在5-10之间时较佳)。
优选地,在本发明的树脂浆料中,粉体稳定剂的用量可以为0.1-10重量份。
本发明的树脂浆料优选还可以包括有聚合抗扰剂,其用于抵抗来自陶瓷粉体的各种金属离子所产生的聚合抑制效应,从而使得体系能达到足够的聚合度,保证成形的模型有足够强度。
在本发明中,优选采用多官能团巯基丙酸酯组合物作为聚合抗扰剂。本发明的多官能团巯基丙酸酯组合物可以是多官能团巯基丙酸酯与乙烯基醚稀释剂的组合,且二者比例可以优选为8:2至2:8之间。作为优选,多官能团巯基丙酸酯可以选自三羟甲基丙烷三(3-巯基丙酸酯)(TMPMP)、季戊四醇四-3-巯基丙酸酯(PETMP)、异氟尔酮二氨基甲酸酯六巯基丙酸酯中的一种或多种。乙烯基醚稀释剂可以为三乙二醇二乙烯基醚(DVE-3)。
通过在体系中加入多官能团巯基丙酸酯组合物作为聚合抗扰剂,能够为陶瓷复合材料固化后提供很好的柔韧性,缓解应力的产生,克服固化时的氧阻聚及陶瓷粉体中金属离子对固化的干扰,提高双键转化率;同时,这种聚合抗扰剂也具有较高的折射率,有利于提高树脂浆料的折射率,改善陶瓷复合材料体系的固化深度。
优选地,在本发明的树脂浆料中,聚合抗扰剂的用量可以为10-30重量份。
根据本发明,优选进一步在陶瓷浆料中设置界面增强剂成分,其可以快速扩散,穿过粉体间隙,达到界面,从而保证模型层与层之间的力学强度。借助这种成分,不仅可以增大树脂对陶瓷粉体的黏结,进而增大陶瓷胚体层间结合力,同时还可以促进陶瓷胚体与打印平台之间的黏结更为牢固。作为优选,界面增强剂可以选自4-羟基丁基(甲基)丙烯酸酯、(甲基)甲基丙烯酸酯羟乙酯、N丙烯酰吗啉(ACMO)中的一种或多种。
优选地,在本发明的树脂浆料中,界面增强剂的用量可以为5-20重量份。
为了能够提供改善的胚体脱脂效果,在本发明的陶瓷复合材料中还可以添加有低温造孔剂,其用于在相对较低的温度条件下在陶瓷颗粒间产生空隙,提供氧气和有机物的快速扩散通道,从而加速脱脂过程。因此,低温造孔剂可以选择为具有相对较低熔点的材料,且其对于本发明的树脂浆料体系应当表现出良好的相容性。优选地,低温造孔剂的熔点可以为100-200℃。作为优选,低温造孔剂可以选自Mn:200-2000的线性聚脂肪烃、聚乙二醇、脂肪烃和(甲基)丙烯酸酯共聚物中的一种或多种。低温造孔剂的存在,使得能够在胚体脱脂过程的初期在坯体中形成有利的富氧环境和流动通道,从而为后续脱脂过程提供便利条件,实现逐步分阶脱脂。
优选地,在本发明的树脂浆料中,低温造孔剂的用量可以为5-20重量份。
在光固化成型过程中,由于诸如散射等现象的存在,会形成低强度的散射光,从而引发不期望的光聚合反应。为了抑制这种低光强下的光聚合反应,在本发明的树脂浆料还设有阻聚剂成分。作为优选,阻聚剂可以选自苯酚或苯醌系列中的一种或多种。
优选地,在本发明的树脂浆料中,阻聚剂的用量可以为0.01-0.5重量份。
需要特别说明的是,经实践证明,包含上文所述的各种组分且采用其优选用量的陶瓷复合材料体系能够最佳地适应陶瓷粉体占陶瓷复合材料体系的体积百分比为30-80%的高固相含量环境下成型高质量陶瓷件的要求,这种体系中各个组分之间的匹配关系是最为恰当的,将能够提供最佳的协同作用关系。
在制备本发明的陶瓷复合材料时,作为一个示例性的方式,可以采用以下步骤:首先,将上述组分,例如低粘度光固化单体、交联剂单体、粉体稳定剂、聚合抗扰剂和界面增强剂加入到干净的玻璃器皿中,经充分搅拌均匀形成预混液;随后,将适量陶瓷粉体加入上述预混液,在300-600r/min的速度下搅拌分散均匀,再放入球磨罐球磨至少8h;最终加入适量的引发剂、阻聚剂,混合均匀后待用。
本发明通过上述陶瓷复合材料的组分选择及用量设计,尤其是在引入了适当极性和折射率的树脂单体和交联剂成分、结构增强剂、粉体稳定剂、聚合抗扰剂及界面增强剂的情况下,确保在保持整个体系反应活性的同时,还能够缩小树脂体系与陶瓷粉体之间的折射率差值,提高陶瓷浆料体系的透射深度,有效减少增材成型过程中由光散射引起的尺寸误差;同时,还能确保活性单体与陶瓷粉体材料具有良好的亲和性,活性单体及交联成分固化后,能够形成氢键等较强的分子间作用力,使得陶瓷胚体层间结合力增加,陶瓷胚体与金属打印平台的粘结力也相应增加,有效减少陶瓷胚体与平台的脱离现象,从而很好地解决陶瓷胚体表面裂纹的问题。结构增强剂的加入显著改善了成型件的拉伸强度,悬空结构或微细结构在打印过程中得以很好呈现。
另外,在利用陶瓷复合材料制备陶瓷胚体时,现有技术中的陶瓷胚体树脂体系由于树脂结构相近,在脱脂工艺中集中在某一个较窄的温度范围发生化学分解,快速脱脂,导致胚体支撑结构在较短时间内出现瓦解,导致陶瓷结构的变形甚至开裂。借助本发明的陶瓷复合材料,归功于上述独特的组分设计方案,使得由其形成的陶瓷胚体能够在较宽的温度范围内逐步地进行脱脂,从而有效解决现有技术中陶瓷胚体在脱脂过程中发生变形开裂的问题,提供高质量的陶瓷增材成型效果。
具体地,基于本发明的陶瓷复合材料形成的陶瓷胚体可以采用如下方法进行脱脂。根据本发明的脱脂方法包括第一脱脂过程、第二脱脂过程、第三脱脂过程以及第四脱脂过程,其中,第一脱脂过程、第二脱脂过程、第三脱脂过程以及第四脱脂过程分别在彼此不同的第一温度、第二温度、第三温度和第四温度下进行,且所述第一温度、第二温度、第三温度和第四温度满足逐渐升高的关系。
作为一个优选的示例,在第一脱脂过程中,第一温度可以为100℃-200℃之间。此时,低温造孔剂,例如惰性低分子量聚烯烃、聚乙二醇及聚烯烃-(甲基)丙烯酸酯共聚物等,将以流体形式脱出胚体材料网状结构,使得胚体在保持基本结构完整的情况下,有较多的空隙出现,为氧气进入陶瓷胚体结构提供了便利。
在随后的第二脱脂过程中,第二温度可以升高为250℃-350℃之间。在此温度范围内,陶瓷胚体中的聚氨酯基团及聚醚基团开始氧化或热分解。
在接下来的第三脱脂过程中,第三温度可以继续提升至400℃-600℃之间。在这一过程中,胚体中残留的芳香基等其他基团将发生热氧化分解脱脂。
最终,在第四脱脂过程中,第四温度可以设置在600℃-800℃之间,以便使得所有的残留炭均热氧化完毕。
由此可见,借助本发明的陶瓷复合材料,避免了脱脂过程中陶瓷胚体支撑结构短时集中瓦解,有效缓解了陶瓷结构的变形开裂现象。
尽管前面通过具体实施例对本发明的光固化树脂基陶瓷复合材料及其胚体脱脂方法进行了说明,但是,本领域技术人员容易认识到,上述实施例仅仅是示例性的,用于说明本发明的原理,其并不会对本发明的范围造成限制,本领域技术人员可以对上述实施例进行各种组合、修改和等同替换,而不脱离本发明的精神和范围。

Claims (22)

1.一种增材成型用光固化树脂基陶瓷复合材料,其包括陶瓷粉体和树脂浆料;所述陶瓷粉体占所述陶瓷复合材料的体积百分比为30%-80%;所述树脂浆料包括5-30重量份的光固化单体、10-30重量份的交联剂单体、0.05-5重量份的光固化引发剂、以及0.01-0.1重量份的结构增强剂,所述光固化单体的折射率大于或等于1.5,并且/或者所述交联剂单体的折射率大于或等于1.5;
所述树脂浆料还包括10-30重量份的聚合抗扰剂,用于抵抗来自所述陶瓷粉体的金属离子所产生的聚合抑制效应;
所述陶瓷粉体为氧化铝、氧化锆、氮化铝、碳化硅、氧化钇、氧化镁、氧化硅、氧化钙、氧化铋、羟基磷灰石及磷酸三钙中的一种或者多种;
所述光固化单体的折射率小于或等于1.8,并且/或者所述交联剂单体的折射率小于或等于1.8。
2.如权利要求1所述的陶瓷复合材料,其中,所述光固化单体选自2-苯硫基乙基丙烯酸酯、双环苯氧乙基丙烯酸酯、邻苯基苯氧基乙基丙烯酸酯及N-乙烯基咔唑中的一种或多种。
3.如权利要求1所述的陶瓷复合材料,其中,所述交联剂单体具有苯环或者脂环族结构的刚性基团。
4.如权利要求3所述的陶瓷复合材料,其中,所述交联剂单体选自多官能团芳香族聚氨酯丙烯酸酯、乙氧化双酚A丙烯酸酯中的一种或多种。
5.如权利要求1所述的陶瓷复合材料,其中,所述光固化引发剂选自酰基氧化嶙、二酰基氧化嶙、二苯乙醇酮、安息香醚、硫杂蒽酮、苯偶酰、苯偶酰缩酮、苯乙酮及二苯甲酮中的一种或多种。
6.如权利要求1所述的陶瓷复合材料,其中,所述结构增强剂为螺旋状单壁纳米管和螺旋状多壁碳纳米管中的一种或多种。
7.如权利要求6所述的陶瓷复合材料,其中,所述碳纳米管的管直径为10-20纳米,螺旋直径为50-200纳米。
8.如权利要求1所述的陶瓷复合材料,其中,所述树脂浆料还包括0.1-10重量份的粉体稳定剂,所述粉体稳定剂包括至少一种分散剂和至少一种渗透性增强剂。
9.如权利要求8所述的陶瓷复合材料,其中,所述分散剂为高分子超分散剂。
10.如权利要求9所述的陶瓷复合材料,其中,所述高分子超分散剂选自聚酯型超分散剂、聚醚型超分散剂、聚丙烯酸酯型超分散剂中的一种或多种,且分子量为1000-3000。
11.如权利要求8所述的陶瓷复合材料,其中,所述渗透性增强剂为含有羟基、氨基、羧基或乙氧基的物质。
12.如权利要求11所述的陶瓷复合材料,其中,所述渗透性增强剂具有小于10mPa.S的粘度,并且具有200-400的分子量。
13.如权利要求12所述的陶瓷复合材料,其中,所述渗透性增强剂选自氨基酸型两性表面活性剂、氨基/氧基硅烷表面活性剂及聚氧乙烯脂肪醇醚中的一种或多种。
14.如权利要求1所述的陶瓷复合材料,其中,所述聚合抗扰剂为多官能团巯基丙酸酯组合物,其包括多官能团巯基丙酸酯与乙烯基醚稀释剂的组合。
15.如权利要求14所述的陶瓷复合材料,其中,所述多官能团巯基丙酸酯选自三羟甲基丙烷三(3-巯基丙酸酯)、季戊四醇四-3-巯基丙酸酯、异氟尔酮二氨基甲酸酯六巯基丙酸酯中的一种或多种,并 且所述多官能团巯基丙酸酯与所述乙烯基醚稀释剂的比例为8:2至2:8。
16.如权利要求1所述的陶瓷复合材料,其中,所述树脂浆料还包括5-20份重量份的界面增强剂,用于快速扩散穿过所述陶瓷粉体之间的间隙。
17.如权利要求16所述的陶瓷复合材料,其中,所述界面增强剂选自4-羟基丁基(甲基)丙烯酸酯、(甲基)丙烯酸酯羟乙酯、N丙烯酰吗啉中的一种或多种。
18.如权利要求1所述的陶瓷复合材料,其中,所述树脂浆料还包括5-20份重量份的低温造孔剂。
19.如权利要求18所述的陶瓷复合材料,其中,所述低温造孔剂选自Mn:200-2000的线性聚脂肪烃、聚乙二醇、脂肪烃和(甲基)丙烯酸酯共聚物中的一种或多种。
20.如权利要求1所述的陶瓷复合材料,其中,所述树脂浆料还包括0.01-0.5重量份的阻聚剂,用于抑制低强度光引起的光聚合反应;所述阻聚剂选自苯酚或苯醌系列中的一种或多种。
21.一种利用如权利要求1-20中任一项所述的陶瓷复合材料制备的陶瓷胚体的脱脂方法,其特征在于包括第一脱脂过程、第二脱脂过程、第三脱脂过程以及第四脱脂过程,其中,所述第一脱脂过程、所述第二脱脂过程、所述第三脱脂过程以及所述第四脱脂过程分别在彼此不同的第一温度、第二温度、第三温度和第四温度下进行,且所述第一温度、第二温度、第三温度和第四温度满足逐渐升高的关系。
22.如权利要求21所述的脱脂方法,其中,所述第一温度为100℃-200℃,所述第二温度为250℃-350℃,所述第三温度为400℃-600℃,以及所述第四温度为600℃-800℃。
CN201711483908.2A 2017-12-29 2017-12-29 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法 Active CN108083818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711483908.2A CN108083818B (zh) 2017-12-29 2017-12-29 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711483908.2A CN108083818B (zh) 2017-12-29 2017-12-29 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法

Publications (2)

Publication Number Publication Date
CN108083818A CN108083818A (zh) 2018-05-29
CN108083818B true CN108083818B (zh) 2021-10-22

Family

ID=62181335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711483908.2A Active CN108083818B (zh) 2017-12-29 2017-12-29 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法

Country Status (1)

Country Link
CN (1) CN108083818B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081698B (zh) * 2018-07-23 2021-12-10 广东工业大学 一种光固化3d打印制备非氧化物陶瓷的方法
CN109227877A (zh) * 2018-10-31 2019-01-18 南京航空航天大学 一种基于光固化3d打印技术成型的多孔骨羟基磷灰石陶瓷细胞支架的方法
CN110092652A (zh) * 2019-04-23 2019-08-06 四川大学 基于dlp面曝光成型技术的生物活性多孔陶瓷制备方法
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法
CN112171848A (zh) * 2020-09-29 2021-01-05 江西金石三维智能制造科技有限公司 一种光固化碳化硅陶瓷浆料及其制备方法与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193311A (zh) * 1996-06-17 1998-09-16 东丽株式会社 感光性陶瓷坯板、陶瓷组件及其制造方法
JP2004143247A (ja) * 2002-10-23 2004-05-20 Jsr Corp 光硬化性液状組成物、立体形状物及びこれらの製造方法
CN1675044A (zh) * 2002-08-20 2005-09-28 科罗拉多大学董事会 聚合物衍生的陶瓷材料
JP2005266232A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
EP1970043A2 (en) * 1998-11-30 2008-09-17 Trustees of Boston University Method for fabricating endodontic, orthodontic and direct restorations having infused ceramic network
WO2015147002A1 (ja) * 2014-03-26 2015-10-01 株式会社ミマキエンジニアリング 三次元造形物製造用インク及びその利用
JP2016164253A (ja) * 2015-02-10 2016-09-08 日本電気硝子株式会社 立体造形用樹脂組成物
CN106495670A (zh) * 2016-10-13 2017-03-15 深圳市撒比斯科技有限公司 用于光固化陶瓷3d打印的胶粘剂、其制备方法和应用
CN106747429A (zh) * 2017-01-18 2017-05-31 武汉纺织大学 一种氧化锆增强3d打印陶瓷浆料及其制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN106830843A (zh) * 2017-03-05 2017-06-13 北京工业大学 一种适用于3d打印快速成型工艺的水泥基复合材料
CN107108768A (zh) * 2014-11-12 2017-08-29 日本电气硝子株式会社 立体造形用树脂组合物、立体造形物的制造方法及无机填料粒子
CN107353028A (zh) * 2017-08-24 2017-11-17 佛山科学技术学院 一种缠绕型碳纳米管增强陶瓷基复合材料
CN107500736A (zh) * 2017-09-15 2017-12-22 华中科技大学 一种用于光固化成型的陶瓷膏体及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193311A (zh) * 1996-06-17 1998-09-16 东丽株式会社 感光性陶瓷坯板、陶瓷组件及其制造方法
EP1970043A2 (en) * 1998-11-30 2008-09-17 Trustees of Boston University Method for fabricating endodontic, orthodontic and direct restorations having infused ceramic network
CN1675044A (zh) * 2002-08-20 2005-09-28 科罗拉多大学董事会 聚合物衍生的陶瓷材料
JP2004143247A (ja) * 2002-10-23 2004-05-20 Jsr Corp 光硬化性液状組成物、立体形状物及びこれらの製造方法
JP2005266232A (ja) * 2004-03-18 2005-09-29 Konica Minolta Opto Inc 光学フィルム、偏光板及び画像表示装置
WO2015147002A1 (ja) * 2014-03-26 2015-10-01 株式会社ミマキエンジニアリング 三次元造形物製造用インク及びその利用
CN107108768A (zh) * 2014-11-12 2017-08-29 日本电气硝子株式会社 立体造形用树脂组合物、立体造形物的制造方法及无机填料粒子
JP2016164253A (ja) * 2015-02-10 2016-09-08 日本電気硝子株式会社 立体造形用樹脂組成物
CN106495670A (zh) * 2016-10-13 2017-03-15 深圳市撒比斯科技有限公司 用于光固化陶瓷3d打印的胶粘剂、其制备方法和应用
CN106747429A (zh) * 2017-01-18 2017-05-31 武汉纺织大学 一种氧化锆增强3d打印陶瓷浆料及其制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN106830843A (zh) * 2017-03-05 2017-06-13 北京工业大学 一种适用于3d打印快速成型工艺的水泥基复合材料
CN107353028A (zh) * 2017-08-24 2017-11-17 佛山科学技术学院 一种缠绕型碳纳米管增强陶瓷基复合材料
CN107500736A (zh) * 2017-09-15 2017-12-22 华中科技大学 一种用于光固化成型的陶瓷膏体及其制备方法

Also Published As

Publication number Publication date
CN108083818A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN108218440B (zh) 光固化树脂基陶瓷复合材料及陶瓷胚体脱脂方法
CN108083818B (zh) 结构增强的光固化树脂基陶瓷复合材料及胚体脱脂方法
CN108249930B (zh) 提供光洁轮廓的光固化树脂基陶瓷复合材料及胚体脱脂方法
Xing et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent
CN109437893B (zh) 一种高固含量/低粘度光固化氧化锆陶瓷浆料及其制备方法
JP2004504490A (ja) 金属粉末が充填されたペースト組成物、その組成物から金属製品を得る方法、およびその方法により得られた金属製品
CN110803915A (zh) 一种陶瓷光固化材料及其制备方法
CN110683842B (zh) 一种用于高性能dlp打印的生物陶瓷浆料及其制备方法
US20240052081A1 (en) Photo-curable compositions containing high refractive index monomers for use in 3d printing applications
KR20080070238A (ko) 아스팔트 도로 피복용 시럽 조성물
WO2017099184A1 (ja) 硬化性組成物および硬化物
CN107249762A (zh) 低密度可紫外线固化的光纤涂层,用其制造的光纤,和光纤的制造方法
CN104114593A (zh) 固化性树脂用韧性改性剂和固化性树脂组合物
CN113388073A (zh) 可光固化柔性光敏树脂以及制备方法、3d打印制品及其制备方法
CN112752816A (zh) 快速固化的环氧丙烯酸类液体垫片
JP4482463B2 (ja) ラジカル硬化性樹脂組成物
CN1436824A (zh) 用于木器的紫外光固化哑光涂料
WO2019225055A1 (ja) 樹脂組成物、研磨パッド、及び研磨パッドの製造方法
US20230150020A1 (en) Method for manufacturing sintered product from three-dimensional object, and 3d shaping inkjet ink
JPH07496B2 (ja) 人造石成形品の製造法
CN110002884B (zh) 一种3d打印用陶瓷料浆及其制备方法和应用
KR102351925B1 (ko) 광경화성 조성물
JP3361858B2 (ja) 人造石および人造石用バインダー樹脂
JP2014189572A (ja) 光硬化樹脂組成物
CN115838288B (zh) 一种光固化3D打印用SiC陶瓷光敏浆料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant