CN107936276A - 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法 - Google Patents

基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法 Download PDF

Info

Publication number
CN107936276A
CN107936276A CN201711336946.5A CN201711336946A CN107936276A CN 107936276 A CN107936276 A CN 107936276A CN 201711336946 A CN201711336946 A CN 201711336946A CN 107936276 A CN107936276 A CN 107936276A
Authority
CN
China
Prior art keywords
pyroelectricity
polymer
film
curtain coating
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711336946.5A
Other languages
English (en)
Other versions
CN107936276B (zh
Inventor
杜晓松
李吉蒙
吴玉明
李海洲
黎威志
太惠玲
于贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201711336946.5A priority Critical patent/CN107936276B/zh
Priority to US15/893,678 priority patent/US10730226B2/en
Publication of CN107936276A publication Critical patent/CN107936276A/zh
Application granted granted Critical
Publication of CN107936276B publication Critical patent/CN107936276B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0073Solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/20Homopolymers or copolymers of hexafluoropropene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本发明提供了一种基于流延及拉伸工艺的热释电聚合物薄膜制备方法,属于热释电材料制备技术领域。本发明利用热释电聚合物溶液流延处于半固化状态时经低温拉伸再完全固化成膜,克服了现有热释电聚合物薄膜拉伸工艺中拉伸温度与薄膜质量与压电/热释电性能之间的矛盾关系,有利于实现拉伸过程中薄膜非压电相向压电相的充分转化,并且实现了压电相的有序取向,从而获得无需极化即具压电/热释电响应的热释电薄膜。本发明制备方法操作简单、成本低,可大面积制得表面缺陷少的热释电聚合物薄膜,并且使得薄膜的拉伸比(>10)高于传统拉伸工艺的拉伸比的同时也显著提高了拉伸速率,因而有利于推进热释电薄膜的工业化生产。

Description

基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法
技术领域
本发明属于压电材料制备技术领域,特别涉及一种基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法。
背景技术
PVDF及其共聚物是一类具有压电和热释电性能的功能材料,该类材料通常需制备成为薄膜以应用于各种器件中。聚合物薄膜制备过程主要包括成膜、拉伸和极化三个独立的部分,其中成膜工艺又分为流延、热压、挤出三种方式,但无论哪种方法所成的膜,压电相含量都偏低;而拉伸工艺有利于提高压电相的含量,但取向度仍然较差;因此拉伸膜还需要经过极化过程以提高聚合物薄膜中的偶极子有序取向,从而提高薄膜剩余极化强度,提升该种材料的压电及热释电性能。
传统压电聚合物薄膜的拉伸工艺通常为:将压电聚合物薄膜(流延、热压或挤出成膜)裁剪成片材,两端用夹具固定,放到拉伸机上,之后将薄膜加热到较高温度,待温度恒定后按照设定的拉伸长度和拉伸速率拉伸,拉至设定位置后维持拉伸温度一定时间,最后保持薄膜拉力的情况下冷却到适当温度,得到拉伸薄膜。传统拉伸工艺具有以下缺陷:由于拉伸往往要在较高温度下进行,而且温度越高拉伸比越大,但是高温会导致压电聚合物薄膜性能退化,因此,此工艺获得压电聚合物薄膜的拉伸比不高,如2010年度IOP science杂志中的文章《Influence of theβ-phase content and degree of crystallinity on thepiezoand ferroelectric properties of poly(vinylidene fluoride)》(《β相含量和结晶度对聚偏氟乙烯压电性能和铁电性能的影响》)中提到:对于PVDF薄膜拉伸温度不能低于80℃,因为低于此温度时薄膜的延展性不好,很容易将薄膜撕裂,并且会产生很多缺陷;但是温度越高,又会降低从α到β相的转变效率,从而降低了薄膜的压电/热释电性能,当薄膜拉伸温度超过90℃之后,压电/热释电性能下降很快,其原因就是β相含量随温度升高急剧减少。考虑到薄膜的缺陷与压电/热释电性能之间的折中关系,该文采用在80℃~90℃温度下进行拉伸,然而获得的最大拉伸比仅为5。
由此可看出,现有拉伸工艺都是一个独立的工艺步骤,是对前道工艺(流延、热压、挤出)所制备的、完全固化的薄膜进行拉伸,因此存在着拉伸比不高,薄膜中的非压电相向压电相的转化不充分的技术缺陷。
发明内容
鉴于上文所述,本发明针对现有热释电聚合物薄膜拉伸工艺中拉伸温度与薄膜质量和薄膜的压电/热释电性能之间存在矛盾关系、薄膜拉伸比低以及拉伸工艺繁杂、成本高等问题,提供了一种基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,利用热释电聚合物溶液流延处于半固化状态时经低温拉伸再完全固化成膜,从而获得大面积无需极化即具压电/热释电响应且表面缺陷少的热释电薄膜,有利于热释电薄膜的工业化生产。
为了实现上述目的,本发明提供的技术方案具体如下:
一方面本发明提供一种基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于:在配制热释电聚合物溶液的基础上,将所述热释电聚合物溶液流延形成液膜,并通过控制流延温度和时间使得热释电聚合物溶液中的溶剂部分挥发后形成半固态的湿膜,然后将半固态的湿膜进行拉伸,最后将拉伸后的湿膜完全固化即制得热释电聚合物薄膜。
作为优选方式,所述热释电聚合物包括聚偏氟乙烯、聚(偏氟乙烯-三氟乙烯)共聚物和聚(偏氟乙烯-六氟丙烯)的共聚物中任一种。
作为优选方式,所述热释电聚合物溶液中热释电聚合物的质量百分数为10%~35%。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~5小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.25小时~2.5小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~4小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.2小时~2小时。进一步的是,本发明中拉伸的温度为20℃~80℃。
另一方面,本发明提供一种流延-拉伸复合制备热释电聚合物薄膜的装置,其特征在于:包括与温控装置相连的第一平板,第一平板上表面一侧设置有第二平板和第三平板,第二平板固定于第一平板上,第三平板可平移运动且与第二平板相邻设置。
进一步的是,第三平板通过传动装置与牵引装置相连以实现背离第二平板方向的平移运动。
本发明还提供一种基于上述流延-拉伸装置而制备热释电聚合物薄膜的方法,其特征在于,包括以下步骤:将热释电聚合物溶液流延于第二平板和第三平板的贴合处形成液膜,通过调节温控装置控制流延温度和流延时间使得热释电聚合物溶液中有机溶剂部分挥发形成半固态的湿膜,移动第三平板进而对半固态的热释电聚合物进行拉伸,并在重力作用下附着于第一平板表面,调节温控装置使得半固态的热释电聚合物中溶剂完全挥发,即可制得热释电聚合物薄膜。
进一步的是,所述移动第三平板具体是:牵引装置通过与第三平板相连的传动装置带动第三平板实现平移运动。
作为优选方式,所述热释电聚合物包括聚偏氟乙烯、聚(偏氟乙烯-三氟乙烯)共聚物和聚(偏氟乙烯-六氟丙烯)的共聚物中任一种。
作为优选方式,所述热释电聚合物溶液中热释电聚合物的质量百分数为10%~35%。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~5小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.25小时~2.5小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~4小时。
作为优选方式,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.2小时~2小时。进一步的是,本发明中拉伸的温度为20℃~80℃。
本发明将热释电聚合物溶液流延在平板上加热使其成为半固化状态,半固态热释电聚合物在拉伸同时受到重力作用在平板表面成膜,拉伸有利于提高压电晶相的含量,同时由于半固化态下的热释电聚合物分子之间阻力远小于固态薄膜中分子间阻力,此时热释电聚合物分子受到拉伸力作用能够克服分子间阻力,进而实现压电晶相有序取向,并且有利于愈合缺陷,提高薄膜质量;此外,由于拉伸是在较低温度下进行,使得有序取向的偶极子不容易发生退极化,保证烘干所得薄膜材料中偶极子仍然保持有序取向,因此,本发明制得热释电聚合物薄膜未经极化即具备压电/热释电响应特性。
相比现有技术,本发明的有益效果是:
本发明利用热释电聚合物溶液流延处于半固化状态时经低温拉伸再完全固化成膜,避免高温对于压电/热释电性能的不利影响,克服了现有热释电聚合物薄膜拉伸工艺中拉伸温度与薄膜质量与压电/热释电性能之间的矛盾关系;同时,有利于实现拉伸过程中薄膜非压电相向压电相的充分转化,并且实现了压电相的有序取向,可获得无需极化即具压电/热释电响应的热释电薄膜;本发明相比传统拉伸工艺,无需设计专门的拉伸夹具,制备工艺简单、成本低廉,可大面积制得表面缺陷少的热释电聚合物薄膜,并且使得制得薄膜的拉伸比(>10)高于传统拉伸工艺的拉伸比的同时也显著提高了拉伸速率,因而有利于推进热释电薄膜的工业化生产。
附图说明
图1是本发明提供的用于制备热释电聚合物薄膜的装置的结构示意图。
图2是本发明装置拉伸前的示意图。
图3是本发明装置拉伸过程的示意图。
图4是本发明装置拉伸后成膜的示意图。
图5为本发明实施例1制得热释电聚合物薄膜的热释电响应对比图。
图中:1为成膜平板,2为固定拉伸平板,3为移动拉伸平板,4为热释电聚合物薄膜,5为传动装置,6为步进电机。
具体实施方式
下面结合说明书附图进一步说明本发明:
如图1所示为本发明公开的用于制备热释电聚合物薄膜的装置,包括:与温控装置相连的成膜平板1,成膜平板1上表面一侧设置有固定拉伸平板2和移动拉伸平板3,固定拉伸平板2固定于成膜平板1上,移动拉伸平板3与固定拉伸平板2相邻设置,并且移动拉伸平板通过传动装置5与步进电机6相连以实现平移运动,即移动拉伸平板2可在成膜平板1上表面所在水平面上向背离固定拉伸平板2的方向运动。
一种热释电聚合物薄膜的制备方法,包括如下步骤:
步骤A:热释电聚合物溶液的配制;
根据实际需要选择合适的热释电聚合物材料种类以及溶剂种类,将热释电聚合物粉体或者颗粒溶入合适溶剂中,加热条件下搅拌均匀以获得热释电聚合物溶液;
步骤B:搭建装置;
在可控温加热板上水平放置成膜平板1,成膜平板1上表面一侧设置固定拉伸平板2,再将移动拉伸平板3放置于固定拉伸平板2旁侧,并使得固定拉伸平板2与移动拉伸平板3紧密贴合,移动拉伸平板2通过传动装置5与步进电机6相连,使得移动拉伸平板3可在成膜平板1上表面所在水平面上向背离固定拉伸平板2的方向运动,即移动拉伸平板可平移运动;
步骤C:热释电聚合物薄膜的制备;
将步骤A制得热释电聚合物溶液流延在固定拉伸平板2和移动拉伸平板的贴合处,拉伸前的示意图如图2所示,通过调节可控加热板来控制流延温度和流延时间,使得热释电聚合物溶液半固化,此时启动步进电机,根据所需拉伸比和拉伸速度对薄膜进行拉伸,拉伸过程的示意图如图3所示,拉伸后的薄膜受到重力作用在成膜平板1形成均匀性高的薄膜,拉伸后的示意图如图4所示,再调节可控加热板来使得拉伸后薄膜中溶剂完全挥发,从而得到热释电聚合物薄膜。
为了便于更清楚、完整的理解本发明的技术方案,下面结合具体实施例对本发明的原理和特性进行详细说明:
实施例1:
将PVDF(聚偏氟乙烯)粉末溶解于N-甲基吡咯烷酮(NMP)溶剂中,PVDF与NMP的质量比为25∶75,70℃水浴加热条件下磁力搅拌12小时,使其PVDF完全溶解;
在可控温加热板上水平放置成膜平板1,成膜平板1上表面一侧设置拉伸平板2,再将移动拉伸平板3放置于固定拉伸平板2旁侧,并使得固定拉伸平板2与移动拉伸平板3紧密贴合,移动拉伸平板2通过传动装置5与步进电机6相连;
将上述热释电聚合物溶液流延于固定拉伸平板和移动拉伸平板的贴合处,设定可控温加热板的温度为50℃使得溶剂挥发;溶剂挥发4小时后,流延的热释电聚合物尚处于半固化状态时,通过伺服控制器编程控制步进电机6的行进速度和行进路程,以400mm/s使得移动拉伸平板3向背离固定拉伸平板2的方向平移了200mm,将薄膜拉伸了20倍,拉伸完成后的PVDF在成膜平板1上形成一层均匀的薄膜;然后保持可控温加热板的温度为50℃,使得PVDF薄膜中溶剂挥发完毕,即完成制备。
为测试薄膜的热释电响应,本实施例将制得PVDF薄膜的两面真空蒸镀铝电极,将PVDF薄膜两面的铝电极通过导电引线与信号放大器连接,信号放大器通过同轴电缆将测得热释电信号传输至示波器,具体测试过程如下:
采用红外激光器发射红外激光,通过信号发生器控制红外激光器的输出功率和输出频率为20mw和1Hz,使得红外激光照射在本实施例制得的PVDF薄膜上,由于PVDF薄膜表面的温度变化,PVDF薄膜两面产生热释电电流,如图5所示,示波器读取得到1Hz的热释电响应。
对比实施例:
配制与实施例1完全一样的PVDF的NMP溶液,将上述溶液流延于成膜平板上,于90℃加热4小时烘干成膜;然后将制得PVDF薄膜裁剪成大小为2cm×4cm的长方形;将所述长方形薄膜通过夹具固定在GGP1204光轴滚珠直线滑台(型号:EBX1204-100)上,加热薄膜至80℃时使用设备配套的57步进电机开始拉伸,传统拉伸方式拉伸速率慢,拉伸速率仅为0.5mm/s,拉伸比为5,拉伸后保持拉力并自然冷却到常温,即完成制备。
采用与实施例1完全相同的方法进行了热释电响应测试,结果示波器未读取到任何响应。
实施例2:
将P(VDF-TrFE)(聚偏氟乙烯-三氟乙烯)粉末溶解于N,N-甲基甲酰胺(DMF)溶剂中,P(VDF-TrFE)与DMF的质量比为20∶80,70℃水浴加热条件下磁力搅拌12小时,使其P(VDF-TrFE)完全溶解;
搭建同实施例1相同的流延-拉伸装置,将上述热释电聚合物溶液流延于固定拉伸平板和移动拉伸平板的贴合处,设定可控温加热板的温度为55℃使得溶剂挥发;溶剂挥发2小时后,流延的热释电聚合物尚处于半固化状态时,通过伺服控制器编程控制步进电机6的行进速度和行进路程,以150mm/s使得移动拉伸平板3向背离固定拉伸平板2的方向平移了150mm,将薄膜拉伸了15倍,拉伸完成后的P(VDF-TrFE)在成膜平板1上形成一层均匀的薄膜;然后保持可控温加热板的温度为55℃,使得P(VDF-TrFE)薄膜中溶剂挥发完毕,即完成制备。
采用与实施例1完全相同的方法进行了热释电响应测试,结果示波器读取得到1Hz的热释电响应。
实施例3:
将PVDF-HFP(聚偏氟乙烯-六氟丙烯)粉末溶解于N,N-甲基乙酰胺(DMAC)吡咯溶剂中,PVDF-HFP与DMAC的质量比为35∶65,70℃水浴加热条件下磁力搅拌12小时,使其PVDF-HFP完全溶解;
搭建同实施例1相同的流延-拉伸装置,将上述热释电聚合物溶液流延于固定拉伸平板和移动拉伸平板的贴合处,设定可控温加热板的温度为60℃使得溶剂挥发;溶剂挥发1.5小时后,,流延的热释电聚合物尚处于半固化状态时,通过伺服控制器编程控制步进电机6的行进速度和行进路程,以50mm/s使得移动拉伸平板3向背离固定拉伸平板2的方向平移了100mm,将薄膜拉伸了10倍,拉伸完成后的PVDF-HFP在成膜平板1上形成一层均匀的薄膜;然后保持可控温加热板的温度为60℃,使得PVDF-HFP薄膜中溶剂挥发完毕,即完成制备。
采用与实施例1完全相同的方法进行了热释电响应测试,结果示波器读取得到1Hz的热释电响应。
实施例4:
将PVDF(聚偏氟乙烯)粉末溶解于N-甲基吡咯烷酮(NMP)溶剂中,PVDF与NMP的质量比为35∶65,70℃水浴加热条件下磁力搅拌12小时,使其PVDF完全溶解;
搭建同实施例1相同的流延-拉伸装置,将上述热释电聚合物溶液流延于固定拉伸平板和移动拉伸平板的贴合处,设定可控温加热板的温度为60℃使得溶剂挥发;溶剂挥发0.5小时后,流延的热释电聚合物尚处于半固化状态时,通过伺服控制器编程控制步进电机6的行进速度和行进路程,以200mm/s使得移动拉伸平板3向背离固定拉伸平板2的方向平移了100mm,将薄膜拉伸了10倍,拉伸完成后的PVDF-HFP在成膜平板1上形成一层均匀的薄膜;然后保持可控温加热板的温度为50℃,使得PVDF-HFP薄膜中溶剂挥发完毕,即完成制备。
采用与实施例1完全相同的方法进行了热释电响应测试,结果示波器读取得到1Hz的热释电响应。
以上结合附图对本发明的实施例进行了阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (8)

1.基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于:在配制热释电聚合物溶液的基础上,将所述热释电聚合物溶液流延形成液膜,并通过控制流延温度和时间使得热释电聚合物溶液中的溶剂部分挥发后形成半固态的湿膜,然后将半固态的湿膜进行拉伸,最后将拉伸后的湿膜完全固化即制得热释电聚合物薄膜。
2.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述热释电聚合物包括聚偏氟乙烯、聚(偏氟乙烯-三氟乙烯)共聚物和聚(偏氟乙烯-六氟丙烯)的共聚物中任一种。
3.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述热释电聚合物溶液中热释电聚合物的质量百分数为10%~35%。
4.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~5小时。
5.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为45~55℃条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.25小时~2.5小时。
6.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65℃条件下,热释电聚合物N-甲基吡咯烷酮溶液的流延时间为0.5小时~4小时。
7.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,所述控制流延温度和时间使得热释电聚合物形成半固态的湿膜的具体操作为:在流延温度为55~65条件下,热释电聚合物N,N-甲基甲酰胺溶液的流延时间为0.2小时~2小时。
8.根据权利要求1所述的基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法,其特征在于,拉伸的温度为20℃~80℃。
CN201711336946.5A 2017-12-14 2017-12-14 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法 Expired - Fee Related CN107936276B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711336946.5A CN107936276B (zh) 2017-12-14 2017-12-14 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法
US15/893,678 US10730226B2 (en) 2017-12-14 2018-02-11 Method for preparing pyroelectric polymer film based on combined process of solution casting and uniaxial stretching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711336946.5A CN107936276B (zh) 2017-12-14 2017-12-14 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法

Publications (2)

Publication Number Publication Date
CN107936276A true CN107936276A (zh) 2018-04-20
CN107936276B CN107936276B (zh) 2020-11-27

Family

ID=61943245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711336946.5A Expired - Fee Related CN107936276B (zh) 2017-12-14 2017-12-14 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法

Country Status (2)

Country Link
US (1) US10730226B2 (zh)
CN (1) CN107936276B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409935A (zh) * 2021-12-24 2022-04-29 苏州大学 基于挠曲电效应的压电聚合物膜及其制备方法
CN115101662A (zh) * 2022-08-24 2022-09-23 三三智能科技(日照)有限公司 一种压电薄膜制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2787323T3 (es) * 2016-05-31 2020-10-15 Philip Morris Products Sa Aparato de moldeo y método para verificar el grosor de una lámina moldeada
CN113002003A (zh) * 2021-03-18 2021-06-22 成都希瑞方晓科技有限公司 一种均匀膨化聚四氟乙烯带材的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298719A (en) * 1978-07-27 1981-11-03 Kureha Kagaku Kogyo Kabushiki Kaisha Doubly oriented film of polyvinylidene fluoride
CN102167836A (zh) * 2011-03-01 2011-08-31 宜兴市高拓高分子材料有限公司 一种聚偏氟乙烯薄膜的制备方法
CN104448360A (zh) * 2013-09-22 2015-03-25 福建省辉锐材料科技有限公司 一种压电性聚偏氟乙烯薄膜的制备方法
CN105968392A (zh) * 2016-05-25 2016-09-28 江苏科技大学 一种高含量聚偏氟乙烯压电β相的制备方法
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059284A (en) * 1933-04-04 1936-11-03 Goodrich Co B F Rubber manufacture
US2163784A (en) * 1937-01-18 1939-06-27 John R Gammeter Method of treating dipped rubber articles
US2405008A (en) * 1943-09-21 1946-07-30 Du Pont Treatment of oriented halogencontaining polymers
US2953818A (en) * 1958-02-14 1960-09-27 E I De Pont De Nemours And Com Process for producing polyvinyl fluoride film from mixture of polyvinyl fluoride particles and latent solvent therefor
GB936398A (en) * 1959-03-24 1963-09-11 Du Pont Improvements relating to films of fluorine-containing polymers
US3081208A (en) * 1960-02-17 1963-03-12 Du Pont Hazy polyvinyl fluoride film and process
US3197538A (en) * 1960-10-31 1965-07-27 Pennsalt Chemicals Corp Stretch orientation of polyvinylidene fluoride
GB1042305A (en) * 1963-03-14 1966-09-14 Pennsalt Chemicals Corp Vinylidene fluoride yarns and process for producing them
US3325330A (en) * 1965-06-24 1967-06-13 Gen Electric Thin, substantially defect-free organopolysiloxane films and preparation thereof
US3139470A (en) * 1963-05-03 1964-06-30 Du Pont Process for preparing oriented, organic, thermoplastic polymeric film
US3751531A (en) * 1967-11-24 1973-08-07 Union Carbide Corp Method of biaxially stretching tubes of polyvinyl fluoride polymers
US3931446A (en) * 1970-09-26 1976-01-06 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing polymeric piezoelectric elements and the article formed thereby
FR2232621B1 (zh) * 1973-06-06 1976-04-23 Rhone Poulenc Textile
NL177759B (nl) * 1979-06-27 1985-06-17 Stamicarbon Werkwijze ter vervaardiging van een polyetheendraad, en de aldus verkregen polyetheendraad.
US4448742A (en) * 1982-04-21 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Low cost thermal protection system processing
JPS60228122A (ja) * 1984-04-27 1985-11-13 Toa Nenryo Kogyo Kk ポリエチレン極薄フイルムの製造方法
US4868284A (en) * 1986-09-18 1989-09-19 Director-General Of The Agency Of Industrial Science And Technology Process for producing stretched molded articles of conjugated polymers and highly conductive compositions of said polymers
EP0301625B1 (en) * 1987-07-23 1994-06-01 Dsm N.V. Process for the production of thin stretched films from polyolefins of ultrahigh molecular weight
DE3850820T2 (de) * 1987-07-23 1995-03-09 Dsm Nv Verfahren zur Herstellung von teilweise mit Versteifungen ausgerüsteten Polymerfolien.
US4935181A (en) * 1989-02-03 1990-06-19 Trustess Of The University Of Pennsylvania Process of making oriented films of conductive polymers
US5217650A (en) * 1989-02-03 1993-06-08 Trustees Of The University Of Pennsylvania Oriented films of conductive polymers
US5171632A (en) * 1990-01-24 1992-12-15 Regents Of The University Of California Conductive polymer blends and methods for making the same
NL9101503A (nl) * 1991-09-06 1993-04-01 Dsm Nv Werkwijze voor het verstrekken van een gezwollen flexibele-ketenpolymeer.
NL9102188A (nl) * 1991-12-30 1993-07-16 Dsm Nv Werkwijze voor het vervaardigen van een electrisch geleidend voorwerp.
WO2005081676A2 (en) * 2003-08-29 2005-09-09 Sri International Electroactive polymer pre-strain
CA2602830A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing microporous polyolefin membrane and microporous membrane
WO2007046473A1 (ja) * 2005-10-19 2007-04-26 Tonen Chemical Corporation ポリオレフィン多層微多孔膜の製造方法
ATE525422T1 (de) * 2006-09-28 2011-10-15 3M Innovative Properties Co Verfahren, system und dessen verwendung zur bekämpfung der rollneigung bei mehrschichtigen bahnen
JP5002425B2 (ja) * 2007-11-15 2012-08-15 東海ゴム工業株式会社 アクチュエーターの製造方法
CN102484199B (zh) * 2010-08-25 2014-09-10 三井化学株式会社 高分子压电材料和其制造方法
WO2013140453A1 (ja) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 長尺延伸フィルムの製造方法及び製造装置
KR101661268B1 (ko) * 2014-11-28 2016-09-30 한국과학기술연구원 콜라젠 섬유를 정렬하기 위한 신장 장치 및 방법
US10770707B2 (en) * 2015-12-04 2020-09-08 Toray Industries, Inc. Battery separator and method of manufacturing same
US10105877B2 (en) * 2016-07-08 2018-10-23 The Boeing Company Multilayer riblet applique and methods of producing the same
US10336018B2 (en) * 2016-09-28 2019-07-02 Acushnet Company Method of making a golf ball incorporating at least one elongated thermoset layer
CN106528497B (zh) * 2016-09-30 2018-10-26 西北核技术研究所 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298719A (en) * 1978-07-27 1981-11-03 Kureha Kagaku Kogyo Kabushiki Kaisha Doubly oriented film of polyvinylidene fluoride
CN102167836A (zh) * 2011-03-01 2011-08-31 宜兴市高拓高分子材料有限公司 一种聚偏氟乙烯薄膜的制备方法
CN104448360A (zh) * 2013-09-22 2015-03-25 福建省辉锐材料科技有限公司 一种压电性聚偏氟乙烯薄膜的制备方法
CN105968392A (zh) * 2016-05-25 2016-09-28 江苏科技大学 一种高含量聚偏氟乙烯压电β相的制备方法
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409935A (zh) * 2021-12-24 2022-04-29 苏州大学 基于挠曲电效应的压电聚合物膜及其制备方法
CN115101662A (zh) * 2022-08-24 2022-09-23 三三智能科技(日照)有限公司 一种压电薄膜制备工艺

Also Published As

Publication number Publication date
US10730226B2 (en) 2020-08-04
US20180186060A1 (en) 2018-07-05
CN107936276B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN107936276A (zh) 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法
KR100928898B1 (ko) 미세다공성 고분자 분리막의 제조방법 및 상기 방법으로 제조된 미세다공성 고분자 분리막
CN108948390A (zh) 一种pvdf基聚合物薄膜的一步流延制备方法
CN109320743A (zh) 聚偏氟乙烯薄膜的制备方法
CN105968392B (zh) 一种高含量聚偏氟乙烯压电β相的制备方法
CA1333380C (en) Process for making polarized material and polarized products
CN104395382A (zh) 多孔性聚丙烯膜、蓄电装置用隔膜及蓄电装置
CN109517221A (zh) 纤维素-石墨烯纳米片复合气凝胶及其制备方法、以及相变材料、其制备方法及应用
CN104877151B (zh) 一种pvdf薄膜的制备方法及pvdf薄膜
CN113402748A (zh) 一种全有机复合电介质的制备及储能性能优化方法
CN108899415B (zh) 一种柔性铁电复合薄膜的流延-极化制备方法
US20230141847A1 (en) Lead-free three-component piezoelectric polymer composite
CN115583897B (zh) 一种盘状液晶分子功能改性剂及其制备方法、应用
CN203381094U (zh) 锂电池基膜取向监控系统及流延设备
CN101710502B (zh) 一种钇钡铜氧涂层导体前驱膜的制备方法
CN115322424B (zh) 一种有机电极化复合薄膜及其制作方法
KR20100095748A (ko) 전단응력을 이용한 PVDF―TrFE 박막의 결정배향 제어 방법 및 상기 방법을 적용한 커패시터의 제조 방법
CN103407179B (zh) 一种制备高取向度薄膜的装置和方法
CN114989464B (zh) 一种pvdf/pmma复合薄膜及其制备方法
CN102133566A (zh) 无氟化学溶液沉积法制备高温超导带材缓冲及超导层连续涂覆装置
KR20090131313A (ko) RTA를 통한 스핀캐스팅된 PVDF 박막의 β 결정화방법
CN207925566U (zh) 一种锂离子二次电池隔膜的生产系统
CN115926159A (zh) 一种电机用低介电损耗聚酰亚胺及其制备方法和应用
CN113930057A (zh) 聚乳酸电介质薄膜及其应用、制备聚乳酸电介质薄膜的方法及其应用
JP7490910B2 (ja) 圧電性ポリアミドフィルムの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201127

Termination date: 20211214