CN106528497B - 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 - Google Patents
一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 Download PDFInfo
- Publication number
- CN106528497B CN106528497B CN201610872502.2A CN201610872502A CN106528497B CN 106528497 B CN106528497 B CN 106528497B CN 201610872502 A CN201610872502 A CN 201610872502A CN 106528497 B CN106528497 B CN 106528497B
- Authority
- CN
- China
- Prior art keywords
- ceramics
- laminated film
- organic polymer
- dielectric constant
- polymer laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Optimization (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Inorganic Insulating Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明涉及复合材料介电常数的模拟,特别涉及一种陶瓷‑有机聚合物复合薄膜介电常数的模拟方法。本发明提供的陶瓷‑有机聚合物复合薄膜介电常数的模拟方法,是在Logarithmic模型中引入陶瓷颗粒的形状因子n,得到改进Logarithmic模型,可在陶瓷体积分数0%至70%范围内更准确地模拟陶瓷‑有机聚合物复合薄膜的介电常数。
Description
技术领域
本发明涉及一种复合材料介电常数的模拟方法,特别是对陶瓷-有机聚合物复合薄膜介电常数的模拟方法,可在陶瓷体积分数为0~70%范围内模拟复合薄膜的介电常数。
背景技术
陶瓷-聚合物复合材料是以分散的陶瓷颗粒填充到三维连通的聚合物基体中,形成的0-3型聚合物基复合材料。由于陶瓷颗粒与聚合物之间互不相容和制备工艺的限制,陶瓷颗粒在聚合物基体中是无规则分布,且存在不同程度的集结或团聚,实际上0-3型陶瓷-聚合物复合材料通常都是非均匀体系。因此,精确求解非均匀体系介电常数是一件非常困难的事情。自Maxwell利用电磁场理论建立了简单混合系统的介电模型100多年来,人们基于Maxwell方程或提出新的理论建立了若干计算非均匀体系介电常数的模型,如Maxwell-Garnett、Logarthimic、Clausius-Mossotti、Yamada、EMT、Bruggeman和EquivalentCapacitance等S.K.Patil,M.Y.Koledintseva,R.W.Schwartz,et al.Prediction ofdffective permittivity of diphasic dielectric using an equivalent capacitancemodel.J.Appl.Phys.,2008,104:074108;P.Thomas,K.T.Varughese,K.Dwarakanath,etal.Dielectric Properties of Poly(vinylidene Fluoride)/CaCu3Ti4O12Composites.Composites Science and Technology,2010,70:539-545.],这些模型都是在一定假设条件下推导并进行简化得出的。但是,由于非均匀体系复合材料结构本身的复杂性,绝大多数模型的适用性是非常有限的,只有在较低的陶瓷体积分数(<40%)时与实验数据吻合。存在的问题是当陶瓷体积分数大于40%时现有所有模拟方法预测的复合材料介电常数与实验数据相差很大。这是由于陶瓷颗粒在聚合物基体中是无规则分布的,存在各种大小不同,形状各异的团聚和集结,并且在很多情况下,陶瓷颗粒的大小,形状不均匀,具有一定的粒径分布和不规则的外形。
为了解决此问题,我们在Logarithmic模型中引入陶瓷颗粒的形状因子n,得到改进Logarithmic模型,通过相同工艺条件下的几次实验数据,求出陶瓷颗粒的形状因子n,可用已知参数n的改进Logarithmic模型在陶瓷体积分数0%至70%范围内更准确地预测陶瓷-有机聚合物复合薄膜的介电常数。
发明内容
本发明的目的在于解决当陶瓷体积分数大于40%时模拟预测的复合材料介电常数与实验数据相差很大的技术问题,提出一种可在陶瓷体积分数为0~70%范围内模拟复合薄膜的介电常数的方法。
本发明的技术解决方案是提供一种陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特殊之处在于:包括以下步骤:
步骤一:制备陶瓷-有机聚合物复合薄膜样品;
步骤二:采用薄膜材料介电常数标准测量方法测量陶瓷-有机聚合物复合薄膜样品、陶瓷-有机聚合物复合薄膜样品中所用陶瓷和聚合物材料的介电常数;
步骤三:将陶瓷-有机聚合物复合薄膜样品的介电常数ε,聚合物的介电常数ε1,陶瓷的介电常数ε2,复合薄膜中陶瓷颗粒的体积分数f代入改进Logarithmic模型的表达式中,用最小二乘法求出陶瓷颗粒的形状因子n;
所述改进Logarithmic模型的表达式为lnε=(1-nf)lnε1+nflnε2;
步骤四:确定形状因子n后,得到改进Logarithmic模型的数学表达式,lnε'=(1-nf')lnε1'+nf'lnε2',式中ε'为待测陶瓷-有机聚合物复合薄膜介电常数,ε1'为待测陶瓷-有机聚合物复合薄膜样品中所用聚合物的介电常数,ε2'为待测陶瓷-有机聚合物复合薄膜样品中所用陶瓷的介电常数,f'为待测陶瓷-有机聚合物复合薄膜中陶瓷颗粒的体积分数。
上述步骤二测量至少3个不同陶瓷体积分数陶瓷-有机聚合物复合薄膜样品的介电常数,代入改进Logarithmic模型的表达式用最小二乘法求解n。
上述有机聚合物是指含氟聚合物。
上述陶瓷为铌镁酸铅-钛酸铅(PMN-PT)、CaCu3Ti4O12(CCTO)、钛酸钡(BT)、钛酸锶(ST)、钛酸锶钡(BST)或铌镁酸铅(PMN)等陶瓷粉。
上述步骤一陶瓷-有机聚合物复合薄膜样品的制备采用溶液流延法或熔融共混扎膜法,溶液流延法可以制备出10~50μm的复合薄膜。
上述溶液流延法制备陶瓷-有机聚合物复合薄膜样品的方法中有机聚合物具体为聚偏二氟乙烯即PVDF;陶瓷为铌镁酸铅-钛酸铅、CaCu3Ti4O12、钛酸钡、钛酸锶、钛酸锶钡或铌镁酸铅等陶瓷粉;
采用溶液流延法制备陶瓷-有机聚合物复合薄膜样品的方法包括以下步骤:
步骤a:称取一定量的PVDF溶于N,N-二甲基甲酰胺中,PVDF的重量体积浓度为3~20%;
步骤b:将PVDF溶液转入50mL球磨罐中,按陶瓷颗粒体积分数计加入硅烷化陶瓷粉;
步骤c:在行星球磨机上以600r/min球磨混合10h以上,得到均匀的复合材料浆液;
步骤d:将制备的浆液立即倾倒在干净的玻璃板或聚酯薄膜上,用流延刮刀刮平;
步骤e:将步骤d)的样品置于干燥箱中干燥除去溶剂,控制温度为40~90℃干燥时间2h以上;
步骤f:从玻璃板或聚酯薄膜基板上剥离陶瓷-PVDF复合薄膜。
优选的,上述步骤a中PVDF的重量体积浓度为5~10%。
优选的,上述步骤e中控制温度范围为60~80℃。
本发明的有益效果:
本发明采用引入陶瓷颗粒的形状因子n,得到改进Logarithmic模型,扩展了模拟陶瓷-有机聚合物复合薄膜介电常数的范围,可在陶瓷体积分数0%至70%范围内更准确地模拟陶瓷-有机聚合物复合薄膜的介电常数。
附图说明
图1为实施例1中改进Logarithmic模型与Logarithmic模型模拟结果比较;
图2为实施例2中改进Logarithmic模型与Logarithmic模型模拟结果比较。
具体实施方式
实施例1
有机聚合物为PVDF,介电常数ε1=10.1,陶瓷颗粒为PMN-PT陶瓷粉的介电常数ε2=12600,不同陶瓷颗粒体积分数f的PMN-PT-PVDF复合薄膜介电常数的实测值见表1。将实验数据代入改进Logarithmic模型的表达式中,求出陶瓷颗粒的形状因子n=0.5754。不同陶瓷颗粒体积分数f的PMN-PT-PVDF复合薄膜介电常数的计算值见表1。PMN-PT-PVDF复合薄膜的介电常数模拟结果见图1。由模拟结果可以看出,引入陶瓷颗粒的形状因子n后,改进Logarithmic模型可以在陶瓷体积分数0%至70%范围内更准确地模拟陶瓷-有机聚合物复合薄膜的介电常数。
表1实施例1中不同陶瓷颗粒体积分数的PMN-PT-PVDF复合薄膜的介电常数实测值和计算值
实施例2
有机聚合物为PVDF,介电常数ε1=10.1,陶瓷颗粒为CCTO陶瓷粉的介电常数ε2=10500,不同陶瓷颗粒体积分数f的CCTO-PVDF复合薄膜介电常数的实测值见表2。将实验数据代入改进Logarithmic模型的表达式中,求出陶瓷颗粒的形状因子n=0.5894。不同陶瓷颗粒体积分数f的CCTO-PVDF复合薄膜介电常数的计算值见表2。CCTO-PVDF复合薄膜的介电常数模拟结果见图2。由模拟结果可以看出,引入陶瓷颗粒的形状因子n后,改进Logarithmic模型可以在陶瓷体积分数0%至70%范围内更准确地模拟陶瓷-有机聚合物复合薄膜的介电常数。
表2实施例2中不同陶瓷颗粒体积分数的CCTO-PVDF复合薄膜的介电常数实测值和计算值
Claims (8)
1.一种陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:包括以下步骤:
步骤一:制备陶瓷-有机聚合物复合薄膜样品;
步骤二:采用薄膜材料介电常数标准测量方法测量陶瓷-有机聚合物复合薄膜样品、陶瓷-有机聚合物复合薄膜样品中所用陶瓷和聚合物材料的介电常数;
步骤三:将陶瓷-有机聚合物复合薄膜样品的介电常数ε,聚合物的介电常数ε1,陶瓷的介电常数ε2,复合薄膜中陶瓷颗粒的体积分数f代入改进Logarithmic模型的表达式中,求出陶瓷颗粒的形状因子n;
所述改进Logarithmic模型的表达式为lnε=(1-nf)lnε1+nflnε2;
步骤四:确定形状因子n后,得到改进Logarithmic模型的数学表达式lnε'=(1-nf')lnε1'+nf'lnε2',式中ε'为待测陶瓷-有机聚合物复合薄膜介电常数,ε1'为待测陶瓷-有机聚合物复合薄膜样品中所用聚合物的介电常数,ε2'为待测陶瓷-有机聚合物复合薄膜样品中所用陶瓷的介电常数,f'为待测陶瓷-有机聚合物复合薄膜中陶瓷颗粒的体积分数。
2.根据权利要求1所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:所述步骤二测量至少3个不同陶瓷体积分数陶瓷-有机聚合物复合薄膜样品的介电常数,代入改进Logarithmic模型的表达式用最小二乘法求解n。
3.根据权利要求1所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:所述有机聚合物为含氟聚合物。
4.根据权利要求1所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:所述陶瓷为铌镁酸铅-钛酸铅、CaCu3Ti4O12、钛酸钡、钛酸锶、钛酸锶钡或铌镁酸铅陶瓷粉。
5.根据权利要求1所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:所述步骤一陶瓷-有机聚合物复合薄膜样品的制备采用溶液流延法或熔融共混扎膜法。
6.根据权利要求5所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:所述溶液流延法制备陶瓷-有机聚合物复合薄膜样品的方法中有机聚合物具体为聚偏二氟乙烯即PVDF;陶瓷为铌镁酸铅-钛酸铅、CaCu3Ti4O12、钛酸钡、钛酸锶、钛酸锶钡或铌镁酸铅陶瓷粉;
制备方法包括以下步骤:
步骤a:称取一定量的PVDF溶于N,N-二甲基甲酰胺中,PVDF的重量体积浓度为3~20%;
步骤b:将PVDF溶液转入50mL球磨罐中,按陶瓷颗粒体积分数计加入硅烷化陶瓷粉;
步骤c:在行星球磨机上以600r/min球磨混合10h以上,得到均匀的复合材料浆液;
步骤d:将制备的浆液立即倾倒在干净的玻璃板或聚酯薄膜上,用流延刮刀刮平;
步骤e:将步骤d)的样品置于干燥箱中干燥除去溶剂,控制温度为40~90℃干燥时间2h以上;
步骤f:从玻璃板或聚酯薄膜基板上剥离陶瓷-PVDF复合薄膜。
7.根据权利要求6所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:步骤a中PVDF的重量体积浓度为5~10%。
8.根据权利要求6所述的陶瓷-有机聚合物复合薄膜介电常数模拟方法,其特征在于:步骤e中控制温度范围为60~80℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610872502.2A CN106528497B (zh) | 2016-09-30 | 2016-09-30 | 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610872502.2A CN106528497B (zh) | 2016-09-30 | 2016-09-30 | 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106528497A CN106528497A (zh) | 2017-03-22 |
CN106528497B true CN106528497B (zh) | 2018-10-26 |
Family
ID=58331284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610872502.2A Active CN106528497B (zh) | 2016-09-30 | 2016-09-30 | 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106528497B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107936276B (zh) * | 2017-12-14 | 2020-11-27 | 电子科技大学 | 基于流延及拉伸复合工艺的热释电聚合物薄膜制备方法 |
CN113201195B (zh) * | 2021-06-15 | 2022-08-02 | 西北工业大学 | 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366680A (zh) * | 2000-04-26 | 2002-08-28 | 古河电气工业株式会社 | 介电陶瓷、树脂-陶瓷复合材料、电气部件和天线及其制造方法 |
CN1488937A (zh) * | 2002-08-28 | 2004-04-14 | ���µ�����ҵ��ʽ���� | 强电介质存储器的加速试验方法 |
CN102875828A (zh) * | 2012-10-24 | 2013-01-16 | 哈尔滨理工大学 | 一种陶瓷/聚酰亚胺复合薄膜的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629423B1 (en) * | 2008-09-19 | 2014-01-14 | Nikolai Kislov | Non-planar metal-insulator-metal tunneling device for sensing and/or generation of electromagnetic radiation at terahertz, infrared, and optical frequencies and technology of its preparation |
-
2016
- 2016-09-30 CN CN201610872502.2A patent/CN106528497B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366680A (zh) * | 2000-04-26 | 2002-08-28 | 古河电气工业株式会社 | 介电陶瓷、树脂-陶瓷复合材料、电气部件和天线及其制造方法 |
CN1488937A (zh) * | 2002-08-28 | 2004-04-14 | ���µ�����ҵ��ʽ���� | 强电介质存储器的加速试验方法 |
CN102875828A (zh) * | 2012-10-24 | 2013-01-16 | 哈尔滨理工大学 | 一种陶瓷/聚酰亚胺复合薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106528497A (zh) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bowen et al. | Modelling the ‘universal’dielectric response in heterogeneous materials using microstructural electrical networks | |
CN105086297B (zh) | 一种电储能介质陶瓷/聚合物复合材料及其制备方法 | |
Dang et al. | Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3 | |
CN106528497B (zh) | 一种陶瓷-有机聚合物复合薄膜介电常数模拟方法 | |
Huang et al. | Role of interface in highly filled epoxy/BaTiO 3 nanocomposites. Part II-effect of nanoparticle surface chemistry on processing, thermal expansion, energy storage and breakdown strength of the nanocomposites | |
CN112525956A (zh) | 基于温度-频率等效模型的沥青混合料质量评价方法 | |
Thomas et al. | Mechanically flexible butyl rubber–SrTiO3 composite dielectrics for microwave applications | |
CN112578005A (zh) | 一种量化相对湿度因素的沥青混合料质量评价方法 | |
EP3364200A1 (en) | Dielectric constant measurement method for powder in powder-dispersed composite material | |
Sami et al. | Dielectric response of high density polyethylene/SiO 2 composites | |
Kaur et al. | Conductivity relaxation in Pb0. 9Sm0. 10Zr0. 405Ti0. 495Fe0. 10O3 solid solution | |
Chameswary et al. | Preparation and properties of BaTiO 3 filled butyl rubber composites for flexible electronic circuit applications | |
Francis et al. | 3D printed polymer dielectric substrates with enhanced permittivity by nanoclay inclusion | |
Parsons et al. | Fabrication of low dielectric constant composite filaments for use in fused filament fabrication 3D printing | |
Sugumaran et al. | Investigation of dielectric and thermal properties of nano-filler (ZrO 2) mixed enamel | |
Price et al. | Stress development and film formation in multiphase composite latexes | |
Chameswary et al. | Development of butyl rubber–rutile composites for flexible microwave substrate applications | |
Higueras et al. | Colorimetric evaluation of 3D printing polymers exposed to accelerated aging for Cultural Heritage applications | |
Janardhanan et al. | Microwave dielectric properties of flexible butyl rubber–strontium cerium titanate composites | |
Bareiro Ferreira et al. | Development of the fabrication process and characterization of piezoelectric BaTiO3/epoxy composite used for coated ultrasonic transducer patterns in structural health monitoring | |
Hamzah et al. | Electrical insulation performance of flame retardant fillers filled with polypropylene/ethylene propylene diene monomer composites | |
Zulkifli et al. | Review on advances of functional material for additive manufacturing | |
Agoudjil et al. | A comparative analysis of dielectric, rheological and thermophysical behaviour of ethylene vinyl acetate/BaTiO3 composites | |
Topham et al. | Dielectric studies of polystyrene-based, high-permittivity composite systems | |
KR101035259B1 (ko) | 불소계 고분자 수지 일렉트렛 및 그의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |