CN107923042A - 金属镀层及其制备方法 - Google Patents

金属镀层及其制备方法 Download PDF

Info

Publication number
CN107923042A
CN107923042A CN201680051671.8A CN201680051671A CN107923042A CN 107923042 A CN107923042 A CN 107923042A CN 201680051671 A CN201680051671 A CN 201680051671A CN 107923042 A CN107923042 A CN 107923042A
Authority
CN
China
Prior art keywords
nano diamond
metal
detonation
plating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680051671.8A
Other languages
English (en)
Chinese (zh)
Inventor
V.米伊梅基
N.罗斯特德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbodeon Ltd Oy
Original Assignee
Carbodeon Ltd Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/791,902 external-priority patent/US9702045B2/en
Priority claimed from FI20155534A external-priority patent/FI128327B/en
Application filed by Carbodeon Ltd Oy filed Critical Carbodeon Ltd Oy
Publication of CN107923042A publication Critical patent/CN107923042A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)
CN201680051671.8A 2015-07-06 2016-07-05 金属镀层及其制备方法 Pending CN107923042A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14/791,902 US9702045B2 (en) 2015-07-06 2015-07-06 Metallic coating and a method for producing the same
FI20155534 2015-07-06
FI20155534A FI128327B (en) 2015-07-06 2015-07-06 METAL COATING AND PROCEDURES FOR ITS PREPARATION
US14/791902 2015-07-06
PCT/FI2016/050501 WO2017005985A1 (en) 2015-07-06 2016-07-05 Metallic coating and a method for producing the same

Publications (1)

Publication Number Publication Date
CN107923042A true CN107923042A (zh) 2018-04-17

Family

ID=56413701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680051671.8A Pending CN107923042A (zh) 2015-07-06 2016-07-05 金属镀层及其制备方法

Country Status (5)

Country Link
EP (1) EP3320126A1 (ja)
JP (2) JP2018526531A (ja)
KR (1) KR20180025959A (ja)
CN (1) CN107923042A (ja)
WO (1) WO2017005985A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536936A (zh) * 2018-12-29 2019-03-29 河南联合精密材料股份有限公司 一种金刚石复合磁性磨料及其制备方法、金刚石复合磁性磨料用化学镀液
CN109652845A (zh) * 2019-01-18 2019-04-19 东华大学 一种石墨烯增强铬基复合镀层的制备方法
CN110344039A (zh) * 2019-07-30 2019-10-18 暨南大学 一种在塑料表面制备银/纳米金刚石复合导电涂层的方法
CN110636693A (zh) * 2018-06-21 2019-12-31 四川聚创石墨烯科技有限公司 一种利用复杂脉冲电镀石墨烯-金属复合材料镀层的方法和一种pcb及电机
CN111621820A (zh) * 2020-05-26 2020-09-04 珠海冠宇电池股份有限公司 一种高耐磨防静电卷针及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061246A1 (ja) * 2015-10-08 2017-04-13 株式会社ダイセル メッキ液からのナノダイヤモンド回収方法
JP6973242B2 (ja) * 2018-03-30 2021-11-24 豊田合成株式会社 電気めっき浴、めっき製品の製造方法、及びめっき製品
KR102165361B1 (ko) * 2019-01-08 2020-10-14 주식회사 아이엠기술 강건성이 요구되는 플라스틱 외형의 금속코팅방법
CN113795376A (zh) 2019-04-02 2021-12-14 住友电气工业株式会社 复合部件和散热部件
JPWO2020246501A1 (ja) * 2019-06-05 2020-12-10
JP7350307B2 (ja) * 2019-10-30 2023-09-26 国立大学法人 名古屋工業大学 Ag-グラフェン複合めっき膜金属製端子とその製造方法
JP7423051B2 (ja) * 2020-02-12 2024-01-29 学校法人金沢工業大学 砥粒の製造方法
KR102688362B1 (ko) * 2023-10-27 2024-07-24 조성강 강도 및 도금 효율성이 개선된 복합 크롬 다이아몬드 도금을 위한 전해질 용액

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574587A4 (ja) * 1991-12-25 1994-03-30 Nauchno-Proizvodstvennoe Obiedinenie" Altai"
US6156390A (en) * 1998-04-01 2000-12-05 Wear-Cote International, Inc. Process for co-deposition with electroless nickel
EP1288162A2 (en) * 2001-08-30 2003-03-05 Fujimura, Tadamasa Stable aqueous suspension liquid of finely divided diamond particles metallic film containing diamond particles and method of producing the same
US20080127475A1 (en) * 2006-05-01 2008-06-05 Smith International, Inc. Composite coating with nanoparticles for improved wear and lubricity in down hole tools
EP2216642A1 (en) * 2009-02-06 2010-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Surface plasmon resonance sensor
CN102910626A (zh) * 2012-11-07 2013-02-06 成都天成鑫钻纳米科技股份有限公司 一种爆轰制备纳米金刚石黑粉的工艺
WO2015092142A1 (en) * 2013-12-19 2015-06-25 Carbodeon Ltd Oy Zeta positive amino-functionalized nanodiamond powder, zeta positive amino-functionalized nanodiamond dispersion, and methods producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795166B1 (ko) 2006-04-27 2008-01-16 백승룡 나노다이아몬드 분말액을 이용한 복합무전해도금방법
US20110165433A1 (en) * 2010-01-06 2011-07-07 General Electric Company Erosion and corrosion resistant coating system for compressor
JP5435477B2 (ja) 2010-01-22 2014-03-05 アイテック株式会社 ダイヤモンド微粒子を分散させた複合めっき液及びその製造方法
JP2013108598A (ja) * 2011-11-24 2013-06-06 Nihon Mekki Industry Co Ltd 摺動部品及びその製造方法
FI126428B (fi) * 2013-05-31 2016-11-30 Carbodeon Ltd Oy Zeta-positiivinen hydrogenoitu nanotimanttijauhe, zeta-positiivinen hydrogenoitu nanotimanttidispersio, ja menetelmät niiden valmistamiseksi

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574587A4 (ja) * 1991-12-25 1994-03-30 Nauchno-Proizvodstvennoe Obiedinenie" Altai"
US6156390A (en) * 1998-04-01 2000-12-05 Wear-Cote International, Inc. Process for co-deposition with electroless nickel
EP1288162A2 (en) * 2001-08-30 2003-03-05 Fujimura, Tadamasa Stable aqueous suspension liquid of finely divided diamond particles metallic film containing diamond particles and method of producing the same
US20080127475A1 (en) * 2006-05-01 2008-06-05 Smith International, Inc. Composite coating with nanoparticles for improved wear and lubricity in down hole tools
EP2216642A1 (en) * 2009-02-06 2010-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Surface plasmon resonance sensor
CN102910626A (zh) * 2012-11-07 2013-02-06 成都天成鑫钻纳米科技股份有限公司 一种爆轰制备纳米金刚石黑粉的工艺
WO2015092142A1 (en) * 2013-12-19 2015-06-25 Carbodeon Ltd Oy Zeta positive amino-functionalized nanodiamond powder, zeta positive amino-functionalized nanodiamond dispersion, and methods producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪旭光: "《爆破设计与施工》", 30 November 2012, 冶金工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636693A (zh) * 2018-06-21 2019-12-31 四川聚创石墨烯科技有限公司 一种利用复杂脉冲电镀石墨烯-金属复合材料镀层的方法和一种pcb及电机
CN109536936A (zh) * 2018-12-29 2019-03-29 河南联合精密材料股份有限公司 一种金刚石复合磁性磨料及其制备方法、金刚石复合磁性磨料用化学镀液
CN109536936B (zh) * 2018-12-29 2021-01-22 河南联合精密材料股份有限公司 一种金刚石复合磁性磨料及其制备方法、金刚石复合磁性磨料用化学镀液
CN109652845A (zh) * 2019-01-18 2019-04-19 东华大学 一种石墨烯增强铬基复合镀层的制备方法
CN110344039A (zh) * 2019-07-30 2019-10-18 暨南大学 一种在塑料表面制备银/纳米金刚石复合导电涂层的方法
CN111621820A (zh) * 2020-05-26 2020-09-04 珠海冠宇电池股份有限公司 一种高耐磨防静电卷针及其制备方法

Also Published As

Publication number Publication date
KR20180025959A (ko) 2018-03-09
JP2018526531A (ja) 2018-09-13
WO2017005985A1 (en) 2017-01-12
EP3320126A1 (en) 2018-05-16
JP2021179015A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
CN107923042A (zh) 金属镀层及其制备方法
US9702045B2 (en) Metallic coating and a method for producing the same
Karthikeyan et al. Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni–P coating
Thiemig et al. Characterization of electrodeposited Ni–TiO2 nanocomposite coatings
Sabzi et al. The effect of pulse-reverse electroplating bath temperature on the wear/corrosion response of Ni-Co/tungsten carbide nanocomposite coating during layer deposition
Ashtiani et al. The study of electroless Ni–P alloys with different complexing agents on Ck45 steel substrate
Sadeghzadeh-Attar et al. Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings
Rabizadeh et al. Corrosion resistance enhancement of Ni–P electroless coatings by incorporation of nano-SiO2 particles
Li et al. Microstructural, surface and electrochemical properties of a novel Ni–B/Ni–W–BN duplex composite coating by co-electrodeposition
Luo et al. Synthesis of a duplex Ni-P-YSZ/Ni-P nanocomposite coating and investigation of its performance
Meshram et al. Enhancement in the corrosion resistance behaviour of amorphous NiP coatings by incorporation of graphene
Afroukhteh et al. Corrosion behavior of Ni–P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant
Abdoli et al. Preparation and characterization of Ni–P/nanodiamond coatings: Effects of surfactants
Aruna et al. Synthesis and characterization of Ni–Al 2 O 3 composite coatings containing different forms of alumina
Xu et al. Tribology and corrosion properties investigation of a pulse electrodeposition duplex hard-particle-reinforced NiMo nanocomposite coating
CN107075683A (zh) 于基材上产生金属‑陶瓷覆层的镀覆或涂覆方法
Shahri et al. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings
Ranganatha et al. Process and properties of electroless Ni–Cu–P–ZrO2 nanocomposite coatings
Rostami et al. Tribological and corrosion behavior of electrochemically deposited Co/TiO2 micro/nano-composite coatings
Nayana et al. Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni–Co3O4 composite coatings
Park et al. Improvement in the corrosion resistance of electrodeposited Ni-W alloy by MWCNT co-deposition and prevention of metal-carbon interfacial corrosion by carbide formation
Duru et al. Fabrication and characterization of graphene oxide reinforced NiB composite coating by pulsed electrodeposition technique
Ababsa et al. Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatings
Adams et al. Ecofriendly new nanocomposites coating formulation of zinc reinforced with calcium oxide nanoparticles synthesis from oyster shell
Marchewka et al. Characterization of electrochemical deposition of copper and copper (I) oxide on the carbon nanotubes coated stainless steel substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180417

RJ01 Rejection of invention patent application after publication