CN107923027B - 滑动部件及其制造方法 - Google Patents

滑动部件及其制造方法 Download PDF

Info

Publication number
CN107923027B
CN107923027B CN201680046114.7A CN201680046114A CN107923027B CN 107923027 B CN107923027 B CN 107923027B CN 201680046114 A CN201680046114 A CN 201680046114A CN 107923027 B CN107923027 B CN 107923027B
Authority
CN
China
Prior art keywords
sintered body
carbon
hardness
layer
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680046114.7A
Other languages
English (en)
Other versions
CN107923027A (zh
Inventor
伊藤容敬
浅田一
赤井洋
服部圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Publication of CN107923027A publication Critical patent/CN107923027A/zh
Application granted granted Critical
Publication of CN107923027B publication Critical patent/CN107923027B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups

Abstract

滑动部件1由钢铁系的烧结体构成,该钢铁系的烧结体包含铬、钼和碳,铬的含量为5质量%以下。滑动部件1具有化合物层11和扩散层12,该化合物层11具有滑动面1a并以钢铁的氮化物为主体,该扩散层12与化合物层11邻接并由扩散有氮和碳的钢铁组织构成。扩散层12中的碳和氮的浓度随着距离滑动面1a的深度变深而缓慢地降低。

Description

滑动部件及其制造方法
技术领域
本发明涉及由钢铁系的烧结体构成的滑动部件及其制造方法。
背景技术
例如专利文献1中示出了图6所示那样的斜盘式空气压缩机。该斜盘式空气压缩机具备带斜盘的旋转轴102,该带斜盘的旋转轴102具有相对于轴芯倾斜特定角度的斜盘103。在斜盘103的周边部的圆周等距位置的多处(例如5处)安装有相互平行地配置的活塞104。旋转轴102插入大致圆筒状的机筒105、106的轴孔105a、106a内。各活塞104以在轴向滑动自如的方式收纳于机筒105、106的轴套105b、106b内。
在各活塞104的筒体部的中央形成有容纳斜盘103的周边部的缺口部。此外,在各缺口部配设有从轴向夹持斜盘103的一对滑靴107。该滑靴107用于减少与斜盘103之间的摩擦,具备与活塞104的缺口部的壁面接触的球状面、和与斜盘103的正反面进行表面接触的平坦面。
在上述构成中,若使旋转轴102旋转,则活塞104从旋转的斜盘103受到挤压力而向轴向的某一方向移动。由此,各活塞104以相位差各自在轴向进行往复运动,因而压缩空气被连续排出。
现有技术文献
专利文献
专利文献1:日本特开2005-226654号公报
发明内容
发明所要解决的课题
如上所述,若驱动斜盘式空气压缩机,则斜盘103的端面与滑靴107的平坦面相互挤压并以高速滑动,因此有可能发生异常磨损(特别是粘着磨损)。因此,斜盘103和滑靴107需要由耐磨损性优异的材料形成。
另一方面,为了提高摩擦磨损特性、降低制造成本等,上述斜盘103、滑靴107有时由烧结金属(烧结体)形成。这样,在由烧结体形成以超高PV值(高速且高表面压力)滑动的部件的情况下,需要提高对于粘着磨损的耐磨损性。因此,提高烧结体的密度、强度(烧结颈强度)和表面硬度很重要。
但是,若为了提高烧结体的表面硬度而使用高硬度的粉末(例如不锈钢钢粉),则粉末难以变形,因此无法充分提高粉体压坯的密度、进而无法充分提高烧结体的密度,有可能导致强度不足。另一方面,若为了提高烧结体的密度和强度而使用低硬度的粉末(例如低铬钢粉),则烧结体的表面硬度有可能不足。图7是示出作为烧结体的原料粉末的主要成分的钢粉中的铬的含量与烧结体的密度(g/cm3)和硬度(Hv0.1)的关系的曲线图。由该曲线图可知,铬的含量越高(即,钢粉越硬)则烧结体越硬,但烧结体的密度降低。这样,使烧结体的密度、强度和表面硬度全部提高并不容易。
例如,在使用比较柔软的低铬钢粉形成高密度的烧结体后,若对烧结体实施表面硬化处理,则得到高密度、高强度且高硬度的烧结体。作为对于烧结体的表面硬化处理的具体方法,例如考虑了渗碳淬火处理。但是,在对烧结体实施了渗碳淬火处理的情况下,其表面硬度停留在700HV左右,在以超高PV值滑动的情况下有时要求进一步的高硬度和高强度。
作为对于烧结体的表面硬化处理的其它方法,可以举出氮化处理(例如气体软氮化处理)。通过对烧结体实施氮化处理,在烧结体的表层形成高硬度的化合物层,并且在化合物层的下方形成由扩散有氮的钢铁组织构成的扩散层。该情况下,作为原料的钢粉所含的铬的量越多,则氮在钢铁(包括合金钢)组织中的渗透扩散越得到促进,烧结体的表层的硬度越高。但是,若为了提高烧结体的密度而使用低铬钢粉,则由于铬量少而使氮在钢铁组织中的渗透扩散不足,无法充分提高烧结体的表层的硬度。因此,在气体软氮化处理中,使用了低铬钢粉的高密度的烧结体的表面硬度仅能提高至700HV~800HV的程度。
作为烧结体的表面硬化处理的其它方法,可以举出渗碳氮化处理。渗碳氮化处理是在进行渗碳处理的气氛中添加氮(例如氨气),使碳和氮同时渗透扩散到烧结体的表层的热处理法。但是,渗碳氮化处理在主要使碳渗透扩散到烧结体的表层的条件(气氛气体、温度等)下进行,因此氮的渗透扩散量不过为极微量,表层不形成化合物层。因此,即便在对烧结体实施了渗碳氮化处理的情况下,在超高PV值时也不能说具有充分的硬度和强度。
根据以上情况,本发明所要解决的课题在于提高由钢铁系的烧结体构成的滑动部件的耐磨损性,防止超高PV值时的异常磨损。
用于解决课题的手段
为了解决上述课题,本发明提供一种滑动部件的制造方法,其依次进行下述工序:使用包含铬的含量为5质量%以下的铬-钼系合金钢粉和碳粉末的原料粉末,成型出粉体压坯的工序;对上述粉体压坯进行烧结而得到烧结体的工序;对上述烧结体实施渗碳处理而使碳渗透扩散到上述烧结体的表层后,实施淬火的工序;和对上述烧结体实施氮化处理而使氮渗透扩散到上述烧结体的表层的工序。
这样,在本发明中,通过抑制原料粉末所含的铬-钼系合金钢粉中的铬的含量,降低钢粉的硬度,能够提高粉体压坯的密度、进而能够提高烧结体的密度。具体而言,使铬-钼系合金钢粉中的铬含量(≈烧结体中的铬的含量)为5质量%以下。这样在使用硬度低的钢粉的情况下,烧结体的表面硬度降低,因此需要对烧结体实施表面硬化处理。以往,作为对于烧结体的表面硬化处理,通常仅实施渗碳淬火处理或氮化处理中的某一种,或者实施同时进行渗碳处理和氮化处理的渗碳氮化处理,但在本发明中,在对烧结体实施渗碳淬火处理后,在其它工序中实施氮化处理。即,通过对烧结体实施渗碳淬火处理而使碳充分地渗透扩散到烧结体的表层来提高强度和硬度,之后通过对烧结体实施氮化处理而在烧结体的表层形成化合物层和扩散层。由此,在烧结体的表面(滑动面)形成超高硬度的化合物层,并且在化合物层的下方形成高强度的扩散层,该高强度的扩散层是预先通过渗碳处理充分渗透扩散有碳、并通过氮化处理渗透扩散有氮而成的。由此,能够充分提高烧结体的密度、强度和硬度。
上述的氮化处理优选为盐浴软氮化处理。
对于烧结体的滑动面,要求高尺寸精度,因而有时实施磨削加工。例如,若在氮化处理后实施磨削加工,则高硬度的化合物层有可能被除去。因此,在上述制造方法中,优选在对上述烧结体实施磨削加工而形成滑动面后,对上述烧结体实施上述氮化处理。
在上述制造方法中,碳和氮从烧结体的表面扩散渗透,因此烧结体的表层(特别是扩散层)中的碳和氮的浓度随着距离表面的深度变深而缓慢地降低。即,利用上述方法制造的滑动部件在深度方向具有负的浓度梯度。因此,本发明涉及一种滑动部件,该滑动部件由钢铁系的烧结体构成,该钢铁系的烧结体包含铬、钼和碳,铬的含量为5质量%以下,该滑动部件的特征在于,上述烧结体具备化合物层和扩散层,该化合物层具有滑动面并以钢铁的氮化物为主体,该扩散层与上述化合物层邻接并由扩散有氮和碳的钢铁组织构成,上述烧结体的上述扩散层中的碳和氮的浓度随着距离上述滑动面的深度变深而缓慢地降低。
对于上述滑动部件来说,扩散层中的碳浓度足够高,具体而言,例如化合物层与扩散层的边界处的碳的浓度为0.6质量%以上。
上述烧结体的相对密度(相对于真密度的密度比)为90%以上、优选为92%以上、更优选为93%以上。这样,通过提高烧结体的密度,强度和耐磨损性提高。另外,在对烧结体实施盐浴软氮化的情况下,若烧结体的密度低(即气孔率高),则处理液容易渗入烧结体的内部气孔中,因此在处理后需要将处理液从内部气孔中排出。但是,将渗入烧结体的内部的处理液完全排出是困难的。因此,若这样提高烧结体的密度,则处理液基本上不会渗入烧结体的内部气孔中,因此能够避免烧结体的内部残留处理液的情况。
另外,在对烧结体仅实施了渗碳处理或氮化处理中的某一种的情况下,烧结体的硬度随着从表面变深而缓慢地降低(参见图4的点划线和虚线)。详细而言,表面的硬度最高,随着从表面变深,碳或氮的浓度降低,与之相伴硬度急剧降低,若进一步变深则硬度的变化率(梯度)变得平缓。与此相对,如本发明这样,若在对烧结体实施了渗碳处理后实施氮化处理,则在烧结体的扩散层设置有硬度居高不下的大致平坦的区域F(梯度比其深度方向两侧的区域平缓的区域)(参见图4的实线)。
以上,本发明涉及一种滑动部件,该滑动部件由钢铁系的烧结体构成,该钢铁系的烧结体包含铬、钼和碳,铬的含量为5质量%以下,该滑动部件的特征在于,上述烧结体具备化合物层和扩散层,该化合物层具有滑动面并以钢铁的氮化物为主体,该扩散层与上述化合物层邻接并由扩散有氮和碳的钢铁组织构成,上述烧结体的硬度随着距离上述滑动面的深度变深而缓慢地降低,表示上述烧结体的硬度相对于距离上述滑动面的深度的曲线在上述扩散层的深度方向区域具有梯度比其深度方向两侧的区域平缓的区域。
发明效果
如上所述,根据本发明,能够提高由钢铁系的烧结体构成的滑动部件的密度、强度和硬度,提高耐磨损性,因此能够防止超高PV值时的异常磨损。
附图说明
图1是本发明的一个实施方式的滑动部件的表层的截面图。
图2是示出上述滑动部件的表层的氮的浓度分布的曲线图。
图3是示出上述滑动部件的表层的碳的浓度分布的曲线图。
图4是示出上述滑动部件的表层的硬度分布的曲线图。
图5是对作为上述滑动部件的前体的烧结体实施了渗碳处理的情况的表层的截面图。
图6是斜盘式空气压缩机的截面图。
图7是示出钢粉中的铬含量与烧结体的密度和硬度的关系的曲线图。
具体实施方式
下面,基于附图对本发明的实施方式进行说明。
图1中示出本发明的一个实施方式的滑动部件1的放大截面图。该滑动部件1例如作为图6所示的斜盘式空气压缩机的斜盘103使用。在滑动部件1的两端面和背面的周边部设置有与滑靴107滑动的滑动面1a。
滑动部件1由烧结体构成,具体而言,由以铁为主要成分的铁系烧结体构成。上述烧结体中的铁的混配比例为80重量%以上、优选为90重量%以上、进一步优选为95重量%以上。
上述烧结体以包含铬、钼和碳的钢铁组织为主体。烧结体中的各成分的比例例如含有:碳0.01质量%~1质量%、铬0.5质量%~5质量%、钼0.1质量%~3质量%(优选为0.1质量%~1质量%)、剩余部分为铁。特别是,上述烧结体中的铬的含量优选为4质量%以下,进一步优选为3质量%以下。需要说明的是,除了上述各成分以外,也可以混配硅、锰、铝、磷、铜、硅等中的一种或两种以上。特别是,铝、硅在后述氮化处理中可起到促进氮在钢铁组织中扩散的功能。
对于上述烧结体来说,相对于真密度的相对密度为90%以上、优选为92%以上、更优选为93%以上。即,上述烧结体的气孔率为10%以下、优选为8%以下、更优选为7%以下。烧结体的平均气孔径例如为20μm以下。在本实施方式的组成中,烧结体的密度为7.0g/cm3以上、优选为7.2g/cm3以上、更优选为7.3g/cm3以上。另外,由于制造设备的输出功率、耐负荷等的限制,烧结体的相对密度例如为98%以下(或者密度为7.8g/cm3以下)。
如图1所示,在滑动部件1上从表面起依次形成化合物层11、扩散层12和母材层13。
化合物层11为由钢铁的氮化物构成的层。具体而言,化合物层11主要由Fe2N、Fe3N构成。化合物层11中包含铬、钼和碳。在化合物层11形成滑动面1a。化合物层11的硬度高、表面光滑,因而通过在化合物层11形成滑动面1a,可得到与对象材料的滑动性优异的滑动面1a。化合物层11的厚度例如为5μm以上、优选为10μm以上。另一方面,化合物层11脆,若过厚则有可能破裂,因而例如为40μm以下(优选为20μm以下)。
扩散层12由扩散有氮和碳的钢铁组织构成。扩散层12与化合物层1的内侧邻接地设置。扩散层12的氮是通过后述的氮化处理从表面(包括气孔)渗透扩散的氮,越深则氮浓度越低(参见图2)。另外,扩散层12的碳是原料粉末所含的碳、以及通过后述的渗碳处理从表面(包括气孔)渗透扩散的碳,越深则碳浓度越低(参见图3)。扩散层12与化合物层11的边界处的碳浓度为0.6质量%以上、优选为0.7质量%以上、更优选为0.8质量%以上。另外,扩散层12与化合物层11的边界处的碳浓度为1.2质量%以下、优选为1.0质量%以下。在本实施方式中,扩散层12与化合物层11的边界处的碳浓度为0.8质量%。扩散层12的厚度比化合物层11厚,例如为20μm以上、或者为40μm以上、或者为50μm以上。另外,扩散层12的厚度为300μm以下、或者为200μm以下。需要说明的是,滑动部件1的内部的碳浓度例如可以使用如下得到的碳浓度的平均值,利用电子显微镜对滑动部件1的截面上的多个点的图像进行拍摄,分析各拍摄图像,由此得到碳浓度的平均值。
母材层13由扩散有碳的钢铁组织构成,具体而言,为以贝氏体组织为主体的组织。母材层13的碳是烧结体的原料粉末所含的碳、以及通过后述的渗碳处理从表面(包括气孔)渗透扩散的碳。详细而言,母材层13具有:越深则碳浓度越低的梯度区域13a;和在深度方向上碳浓度大致恒定的恒定区域13b(参见图3)。母材层13中的碳浓度例如为0.5质量%以下、优选为0.4质量%以下、更优选为0.35质量%以下。另外,母材层13中的碳浓度例如为0.1质量%以上、优选为0.2质量%以上。母材层13包含微量的氮。母材层13所含的氮的浓度在深度方向上大致恒定,不具有浓度梯度(参见图2)。
图4中示出滑动部件1的深度方向上的硬度分布。如该图所示,滑动部件1的硬度随着变深而降低。在本实施方式中,化合物层11的硬度(滑动面1a的硬度)为850HV~1000HV,扩散层12的硬度(与化合物层11的边界处的硬度)为700HV~800HV,母材层13的硬度(与扩散层12的边界处的硬度)为400HV~600HV。
另外,如图4中点划线所示,在对烧结体仅实施了渗碳淬火处理的情况下,随着距离表面的深度变深,硬度降低。另一方面,如图4中虚线所示,在对烧结体仅实施了氮化处理(盐浴软氮化处理)的情况下,通过形成化合物层,表面的硬度变得非常高,随着距离表面的深度变深,硬度降低。无论哪种情况下,均是表面的硬度最高,随着从表面变深,碳或氮的浓度降低,与之相伴硬度急剧降低,若进一步变深则硬度的变化率(梯度)变得平缓。
与此相对,本实施方式的滑动部件1是在对烧结体实施了渗碳淬火处理后实施了氮化处理的滑动部件,在图4中用实线示出其硬度曲线。对于该硬度曲线来说,与仅实施了渗碳淬火处理或氮化处理中的某一种的情况(参见该图的点划线和虚线)同样,随着距离表面的深度变深,硬度缓慢地降低,但在扩散层12中设置有硬度居高不下的大致平坦区域F。详细而言,在滑动部件1的深度方向上的硬度曲线中,大致平坦区域F的梯度大体为0,与此相对,与大致平坦区域F的深度方向两侧邻接的区域的梯度比大致平坦区域F的梯度急剧(即,梯度的绝对值大)。这样,与仅实施了渗碳淬火处理或氮化处理中的某一种的情况相比,本实施方式的滑动部件1不仅表面(滑动面)的硬度提高,而且扩散层的硬度也提高。另外,在扩散层中充分地扩散有碳和氮,因此与仅实施了渗碳淬火处理或氮化处理中的某一种的情况相比强度更高。
化合物层11的硬度非常高,因此通过在化合物层11形成滑动部件1的滑动面1a,能够提高滑动面1a的耐磨损性。但是,若施加到滑动面1a的表面压力变得极高,即便形成化合物层11而提高滑动面的硬度,支承化合物层11的扩散层12也无法支承高表面压力而有可能被压碎。因此,除了形成化合物层11之外,还如上所述在化合物层11的下方设置高硬度且高强度的扩散层12,从而能够得到滑动性优异且能耐受高表面压力的滑动面1a。
如上所述,根据本发明,能够提高构成滑动部件1的烧结体的密度,在高硬度的化合物层11设置滑动面1a,并且提高支承化合物层11的扩散层12的硬度和强度,其结果,滑动部件1的耐磨损性提高。由此,即使在滑动部件1的使用条件显示出超高PV值(例如,2000MPa·m/分钟以上10000MPa·m/分钟以下)的情况下,也能防止异常磨损。
接着,对具有上述构成的滑动部件1的制造方法进行说明。滑动部件1经(1)压粉工序、(2)烧结工序、(3)渗碳淬火工序、(4)磨削工序、和(5)氮化工序来进行制造。下面详细说明各工序。
(1)压粉工序
将各种粉末混合而制成原料粉末,将该原料粉末填充到成型模具中进行压缩成型,由此形成粉体压坯。在本实施方式中,将铬-钼系合金钢粉(例如,铁-铬-钼的完全合金钢粉(预合金粉末))和碳粉末(例如石墨粉末)混合,制成原料粉末。可以根据需要在原料粉末中添加各种成型润滑剂(例如,用于提高脱模性的润滑剂)。原料粉末中的各成分的混配比例如为:碳为0.01质量%~1质量%,铬为0.5质量%~5质量%,钼为0.1质量%~3质量,剩余部分为Fe。本实施方式的铬-钼系合金钢粉是铬的混配量为5质量%以下、优选为4质量%以下、更优选为3质量%以下的低铬钢粉。由此,占原料粉末的大部分的钢粉的硬度得到抑制,因此容易通过压缩成型使粉末变形,粉体压坯的密度提高。
若低铬钢粉的粒径过小,则混合粉末的流动性不足,无法均匀地将混合粉末填充到型腔内,有可能无法充分提高粉体压坯的密度。另外,若低铬钢粉的粒径过大,则颗粒间的间隙变得过大,仍旧可能无法充分提高粉体压坯的密度。因此,低铬钢粉的平均粒径例如为40μm以上150μm以下、优选为63μm以上106μm以下。
需要说明的是,通过之后的烧结工序,粉体压坯中的石墨粉末固溶于钢铁组织中,而且成型润滑剂消失,因此,在烧结体中具有石墨粉末、成型润滑剂的部分成为空孔。因此,为了尽可能提高烧结体的密度,石墨粉末、成型润滑剂的混配比尽可能小为宜。具体而言,期望原料粉末中的石墨粉末的混配比为0.5质量%以下、优选为0.4质量%以下、更优选为0.35质量%以下,在本实施方式中为0.2质量%~0.3质量%。另外,期望原料粉末中的成型润滑剂的混配比为0.6质量%以下,在本实施方式中为0.25质量%~0.55质量%。
(2)烧结工序
通过在惰性气体气氛中对粉体压坯进行烧结,形成烧结体。烧结温度例如为1100℃以上、优选为1200℃以上。由此,铬-钼系合金钢粉彼此发生烧结结合,形成钢铁组织,并且粉体压坯中的石墨粉末扩散到钢铁组织中,强度提高。
(3)渗碳淬火工序
在对烧结体实施渗碳处理后,进行冷却(淬火),之后实施回火处理。渗碳处理例如通过气体渗碳进行。具体而言,在包含碳的气氛中,将烧结体加热至例如800℃~1000℃的程度并保持特定时间(例如100分钟~200分钟),由此使碳渗透扩散到烧结体的表层。由此,如图5所示,在烧结体1’的表层形成碳浓度高于内部的碳扩散层20。上述渗碳处理中的碳势例如为0.7质量%~1.2质量%、优选为0.8质量%~1.0质量%。碳扩散层20的表面的碳浓度为0.6质量%以上、优选为0.7质量%以上、更优选为0.8质量%以上,碳浓度随着距离表面的深度变深而降低。在碳扩散层20的下方(内部侧),气氛中的碳基本上不渗透扩散,形成与渗碳前的烧结体基本上为相同组成的母材层13的恒定区域13b。通过将如此加热后的烧结体1’冷却,实施淬火处理。由此,在烧结体1’的表层(特别是表面附近的高碳区域)形成以马氏体为主体的钢铁组织。之后实施回火处理来赋予烧结体1’韧性。
(4)磨削工序
经渗碳淬火处理的烧结体因热而产生应变,因此尺寸精度低。对该烧结体实施磨削加工,由此形成尺寸精度高的滑动面。
(5)氮化工序
对经磨削工序的烧结体实施氮化处理。在本实施方式中,对烧结体实施盐浴软氮化处理。具体而言,将烧结体以浸渍于软氮化性盐浴中的状态加热至特定温度(例如500℃~620℃),由此在烧结体的表面形成氮化层。软氮化性盐浴以氰酸钠(NaCNO)、氰酸钾(KCNO)等氰酸盐为主体,盐浴中的氮与铁反应而进行氮化。在本实施方式中,形成于烧结体的表层的碳扩散层20与盐浴中的氮反应,在烧结体的表面形成由钢铁的氮化物构成的超高硬度的化合物层11,并且盐浴中的氮渗透扩散到碳扩散层20中,在化合物层11的下方形成扩散层12(参见图1)。这样,在通过渗碳处理在烧结体1’的表层形成碳浓度高的碳扩散层20后,通过氮化处理使氮渗透扩散到碳扩散层20中,由此能够形成高硬度且高强度的扩散层12。需要说明的是,在扩散层12的下方,基本没有盐浴中的氮的渗透扩散,形成与碳扩散层20为基本上相同组成的母材层13的梯度区域13a。
在本实施方式中,烧结体为高密度(7.0g/cm3以上),因此氮化处理液仅渗入到烧结体的表层,氮化处理液基本上不会渗入至烧结体的内部。由此,在氮化处理后,能够避免无法将处理液从烧结体的内部气孔中排出的不良情况。
如上所述,本实施方式的滑动部件1通过使用低铬钢粉,能够提高密度。另外,通过对烧结体实施氮化处理而设置化合物层11,可得到超高硬度的滑动面1a。此外,通过在渗碳处理后实施氮化处理,可得到高强度的扩散层12。这样,通过提高烧结体的密度、硬度和强度,能够得到具有非常优异的耐磨损性的滑动部件1。
本发明不限于上述实施方式。例如,在上述实施方式中示出了在氮化工序中实施盐浴软氮化处理的情况,但不限定于此,例如也可以实施气体软氮化处理。但是,与通过气体软氮化处理形成的化合物层相比,通过盐浴软氮化处理形成的化合物层11的厚度均匀、表面光滑,因而是优选的。
另外,在上述实施方式中,在烧结工序后进行了渗碳淬火工序,但也可以在同一装置内同时进行这些工序。例如,在包含碳的气体{例如天然气、吸热型气体(RX气体)等}的气氛中对粉体压坯进行烧结,由此在形成烧结体的同时,能够使碳渗透扩散至烧结体的表层。
另外,在烧结工序中,可以预先使粉体压坯与高热传导率的散热板接触,以该状态进行烧结而形成烧结体。该情况下,在烧结后借助散热板使烧结体的热散热,由此烧结体被骤冷。散热板优选由热传导率为100W·m-1·K-1~10000W·m-1·K-1的材料形成。需要说明的是,在冷却烧结体时,可以对烧结体吹送氮气。
另外,在上述实施方式中,示出了将本发明的滑动部件应用于斜盘式空气压缩机的斜盘103的情况,但不限定于此,例如也可以应用于斜盘式空气压缩机的滑靴107(参见图6)、轴承、凸轮等。
符号说明
1 滑动部件
1a 滑动面
11 化合物层
12 扩散层
13 母材层
20 碳扩散层
102 旋转轴
103 斜盘
104 活塞
107 滑靴

Claims (7)

1.一种滑动部件,该滑动部件由钢铁系的粉体压坯烧结而成的烧结体构成,该钢铁系的烧结体包含铬、钼和碳,铬的含量为5质量%以下,
所述烧结体具备化合物层和扩散层,该化合物层具有滑动面并以钢铁的氮化物为主体,该扩散层与所述化合物层邻接并由扩散有氮和碳的钢铁组织构成,
所述烧结体的相对密度为90%以上,
所述烧结体的所述扩散层中的碳和氮的浓度随着距离所述滑动面的深度变深而具有负的浓度梯度,
所述化合物层的硬度为850HV~1000HV,所述扩散层的硬度为700HV~800HV。
2.如权利要求1所述的滑动部件,其中,所述化合物层与所述扩散层的边界处的碳的浓度为0.6质量%以上。
3.一种滑动部件,该滑动部件由钢铁系的粉体压坯烧结而成的烧结体构成,该钢铁系的烧结体包含铬、钼和碳,铬的含量为5质量%以下,
所述烧结体具备化合物层和扩散层,该化合物层具有滑动面并以钢铁的氮化物为主体,该扩散层与所述化合物层邻接并由扩散有氮和碳的钢铁组织构成,
所述烧结体的相对密度为90%以上,
所述烧结体的硬度随着距离所述滑动面的深度变深而缓慢地降低,
表示所述烧结体的硬度相对于距离所述滑动面的深度的曲线在所述扩散层的深度方向区域具有梯度比其深度方向两侧的区域平缓的区域,
所述化合物层的硬度为850HV~1000HV,所述扩散层的硬度为700HV~800HV。
4.一种滑动部件的制造方法,其依次进行下述工序:使用包含铬的含量为5质量%以下的铬-钼系合金钢粉和碳粉末的原料粉末,成型出粉体压坯的工序;对所述粉体压坯进行烧结而得到相对密度为90%以上的烧结体的工序;对所述烧结体实施渗碳处理而使碳渗透扩散到所述烧结体的表层后,实施淬火的工序;和对所述烧结体实施氮化处理而使氮渗透扩散到所述烧结体的表层的工序,
通过所述氮化处理在所述烧结体的表面形成以钢铁的氮化物为主体的化合物层,并且在所述化合物层的下方形成与所述化合物层邻接并由扩散有氮和碳的钢铁组织构成的扩散层,
所述化合物层的硬度为850HV~1000HV,所述扩散层的硬度为700HV~800HV。
5.如权利要求4所述的滑动部件的制造方法,其中,所述氮化处理为盐浴软氮化处理。
6.如权利要求4或5所述的滑动部件的制造方法,其中,对所述烧结体实施磨削加工而形成滑动面后,对所述烧结体实施所述氮化处理。
7.一种滑动部件的制造方法,其依次进行下述工序:使用包含铬的含量为5质量%以下的铬-钼系合金钢粉和碳粉末的原料粉末,成型出粉体压坯的工序;对所述粉体压坯进行烧结而得到相对密度为90%以上的烧结体的同时对所述烧结体实施渗碳处理而使碳渗透扩散到所述烧结体的表层后,对所述烧结体实施淬火的工序;和对所述烧结体实施氮化处理而使氮渗透扩散到所述烧结体的表层的工序,
通过所述氮化处理在所述烧结体的表面形成以钢铁的氮化物为主体的化合物层,并且在所述化合物层的下方形成与所述化合物层邻接并由扩散有氮和碳的钢铁组织构成的扩散层,
所述化合物层的硬度为850HV~1000HV,所述扩散层的硬度为700HV~800HV。
CN201680046114.7A 2015-08-17 2016-07-19 滑动部件及其制造方法 Expired - Fee Related CN107923027B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015-160410 2015-08-17
JP2015160410 2015-08-17
JP2016069125 2016-03-30
JP2016-069125 2016-03-30
PCT/JP2016/071108 WO2017029921A1 (ja) 2015-08-17 2016-07-19 摺動部材及びその製造方法

Publications (2)

Publication Number Publication Date
CN107923027A CN107923027A (zh) 2018-04-17
CN107923027B true CN107923027B (zh) 2020-02-07

Family

ID=58050790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680046114.7A Expired - Fee Related CN107923027B (zh) 2015-08-17 2016-07-19 滑动部件及其制造方法

Country Status (5)

Country Link
US (1) US11007572B2 (zh)
JP (1) JP6866086B2 (zh)
CN (1) CN107923027B (zh)
DE (1) DE112016003760T5 (zh)
WO (1) WO2017029921A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519398B1 (de) * 2016-12-06 2019-05-15 Miba Sinter Austria Gmbh Verfahren zur Herstellung einer Taumelscheibe
JP6819503B2 (ja) * 2017-07-28 2021-01-27 日本製鉄株式会社 鋼部材
JP6969330B2 (ja) * 2017-12-01 2021-11-24 昭和電工マテリアルズ株式会社 鉄系粉末混合物及び鉄系焼結部材の製造方法
JP6969334B2 (ja) * 2017-12-05 2021-11-24 株式会社サタケ 米粒搬送装置及び米粒搬送装置の製造方法
US20210340661A1 (en) * 2018-06-11 2021-11-04 John Eric Chapman Hybrid Washer and Method of Manufacture
JP2020152935A (ja) * 2019-03-18 2020-09-24 Ntn株式会社 チタン合金製滑り軸受
DE102019125839A1 (de) * 2019-09-25 2021-04-08 Danfoss A/S Verfahren zum Herstellen einer wasserhydraulischen Maschine
US20230106078A1 (en) * 2021-10-06 2023-04-06 Aktiebolaget Skf Method of manufacturing a brinelling-resistant hub bearing unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060685A (zh) * 1989-12-22 1992-04-29 大同酸素株式会社 钢渗氮的方法及所用热处理炉
CN1526836A (zh) * 2003-03-04 2004-09-08 ��ʽ����С�������� 滚动部件及其制造方法
CN1558961A (zh) * 2001-12-13 2004-12-29 光洋热系统株式会社 真空碳氮共渗方法
CN102239273A (zh) * 2008-12-02 2011-11-09 住友金属工业株式会社 碳氮共渗部件及碳氮共渗部件的制造方法
CN102352479A (zh) * 2007-11-14 2012-02-15 Ntn株式会社 钢的热处理方法、机械零部件的制造方法及机械零部件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655853A (en) 1982-08-09 1987-04-07 Federal-Mogul Corporation Method for making powder metal forging preforms of high-strength ferrous-base alloys
CA1225536A (en) 1982-08-09 1987-08-18 Borgwarner Transmission Systems Inc. High efficiency reduction carburization
JPH02170914A (ja) * 1988-12-23 1990-07-02 Mazda Motor Corp 耐摩耗性摺動部材の製造方法
JPH0374506A (ja) * 1989-08-11 1991-03-29 Komatsu Ltd カムタペットの製造方法
JPH06307471A (ja) 1993-04-22 1994-11-01 Aisin Chem Co Ltd 鉄製摩擦ロータ
US6089843A (en) * 1997-10-03 2000-07-18 Sumitomo Electric Industries, Ltd. Sliding member and oil pump
JP4269443B2 (ja) * 1998-12-24 2009-05-27 マツダ株式会社 摺動部材の表面処理方法及び該方法を用いた摺動部材の表面平滑化方法
JP3869620B2 (ja) 1999-04-16 2007-01-17 株式会社日立製作所 合金鋼粉成形素材と合金鋼粉加工体及び合金鋼粉成形素材の製造方法
JP2001342554A (ja) 2000-06-02 2001-12-14 Taiho Kogyo Co Ltd 摺動部材の表面形成方法および摺動部材
JP2004269973A (ja) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd 摺動部品の製造方法およびその摺動部品を設けた圧縮機
WO2004081252A1 (ja) 2003-03-10 2004-09-23 Kabushiki Kaisha Riken 窒化バルブリフタおよびその製造方法
JP4293370B2 (ja) * 2005-02-02 2009-07-08 株式会社リケン バルブリフター
JP4209404B2 (ja) 2005-04-20 2009-01-14 三洋機工株式会社 ピストン組立体の組立装置および組立方法
CN102205416B (zh) * 2011-05-19 2013-08-28 东睦新材料集团股份有限公司 一种发动机挺柱的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060685A (zh) * 1989-12-22 1992-04-29 大同酸素株式会社 钢渗氮的方法及所用热处理炉
CN1558961A (zh) * 2001-12-13 2004-12-29 光洋热系统株式会社 真空碳氮共渗方法
CN1526836A (zh) * 2003-03-04 2004-09-08 ��ʽ����С�������� 滚动部件及其制造方法
CN102352479A (zh) * 2007-11-14 2012-02-15 Ntn株式会社 钢的热处理方法、机械零部件的制造方法及机械零部件
CN102239273A (zh) * 2008-12-02 2011-11-09 住友金属工业株式会社 碳氮共渗部件及碳氮共渗部件的制造方法

Also Published As

Publication number Publication date
JP2017186637A (ja) 2017-10-12
CN107923027A (zh) 2018-04-17
US20180236553A1 (en) 2018-08-23
DE112016003760T5 (de) 2018-05-03
JP6866086B2 (ja) 2021-04-28
WO2017029921A1 (ja) 2017-02-23
US11007572B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
CN107923027B (zh) 滑动部件及其制造方法
RU2699882C2 (ru) Предварительно легированный порошок на основе железа, порошковая смесь на основе железа, содержащая предварительно легированный порошок на основе железа, и способ изготовления прессованных и спеченных деталей из порошковой смеси на основе железа
EP2357258A2 (en) Sliding bearing with improved wear resistance and method of manufacturing same
US20230211413A1 (en) Iron-based sintered alloy material and production method therefor
US10150162B2 (en) Iron-based sintered alloy for sliding member and production method therefor
Çavdar et al. Mechanical properties of heat treated iron based compacts
WO2015141807A1 (ja) 軌道輪および該軌道輪を有する転がり軸受
JP5765654B2 (ja) 焼結部品の製造方法
EP2896711B1 (en) Machine component made of ferrous sintered metal
EP3097999A1 (en) Sintered machine part and manufacturing method thereof
Yılmaz et al. The effect of surface hardening treatments on the mechanical properties of iron based P/M specimens
WO2015199599A1 (en) Method for surface hardening a metal component
WO2002034957A1 (fr) Roue dentee sinterisee
JP6321982B2 (ja) 金属材料の表面処理方法
US10792733B2 (en) Method for producing a swashplate
JP2003253406A (ja) 高耐摩耗高強度焼結部品およびその製造方法
Kremel et al. Low-pressure carburizing of sintered alloy steels with varying porosity
Cetinel et al. Wear Behavior of Boronized Fe-Based Mmc Produced by Powder Metallurgy
JP7289728B2 (ja) 窒化材料の製造方法及び窒化材料
US10689744B2 (en) Method and arrangement for processing articles
WO2022044392A1 (ja) 摺動部材及びその製造方法
US20220213584A1 (en) Variable Diffusion Carburizing Method
CN116716573A (zh) 一种高效气体渗氮方法
Dlapka et al. Heat Treatment: Porosity Effects in Low Pressure Carburizing of Sintered Steels
Engström et al. Sintered Steels: Mechanical Properties: Cost Effective Material for Heat Treated Gear Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200207

CF01 Termination of patent right due to non-payment of annual fee