CN107861384B - 基于复合学习的mems陀螺仪快速启动方法 - Google Patents

基于复合学习的mems陀螺仪快速启动方法 Download PDF

Info

Publication number
CN107861384B
CN107861384B CN201711073624.6A CN201711073624A CN107861384B CN 107861384 B CN107861384 B CN 107861384B CN 201711073624 A CN201711073624 A CN 201711073624A CN 107861384 B CN107861384 B CN 107861384B
Authority
CN
China
Prior art keywords
mems gyroscope
fuzzy logic
error
model
gyroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711073624.6A
Other languages
English (en)
Other versions
CN107861384A (zh
Inventor
许斌
张睿
张安龙
刘瑞鑫
邵添羿
赵万良
吴枫
成宇翔
谷丛
林建华
刘洋
慕容欣
刘美霞
应俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shanghai Aerospace Control Technology Institute
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Shanghai Aerospace Control Technology Institute
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shanghai Aerospace Control Technology Institute, Shenzhen Institute of Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201711073624.6A priority Critical patent/CN107861384B/zh
Publication of CN107861384A publication Critical patent/CN107861384A/zh
Application granted granted Critical
Publication of CN107861384B publication Critical patent/CN107861384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种基于复合学习的MEMS陀螺仪快速启动方法,用于解决现有MEMS陀螺仪模态控制方法实用性差的技术问题。技术方案是首先根据模糊预测误差和跟踪误差,设计模糊逻辑权值的复合自适应律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计;同时依据滑模超曲面和双指数趋近律设计滑模控制器,实现未知动力学的前馈补偿,使检测质量块振动误差快速收敛。本发明考虑预测误差和跟踪误差,设计模糊逻辑权值的复合学习更新律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计。引入滑模超曲面和双指数趋近律设计的滑模控制器,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求,实用性好。

Description

基于复合学习的MEMS陀螺仪快速启动方法
技术领域
本发明涉及一种MEMS陀螺仪模态控制方法,特别涉及一种基于复合学习的MEMS陀螺仪快速启动方法。
背景技术
MEMS陀螺从上电启动到达到标称精度所需的时间往往长达十几分钟,在此期间陀螺处于大范围温度变化环境,且多种因素综合影响陀螺输出,使其存在较大的启动漂移,这对于一些需要快速启动使用的系统而言是一个致命缺陷。如何设计非线性控制器实现陀螺未知动力学的有效动态估计和陀螺检测质量块振动误差的快速收敛是实现快速启动的两个重要研究内容。
《Terminal sliding mode control of Z-axis MEMS gyroscope with observerbased rotation rate estimation》(M Saif,B Ebrahimi and M Vali,《AmericanControl Conference》,2011年第47卷第10期)一文将Terminal滑模控制引入MEMS陀螺仪驱动控制,通过构造Terminal滑模面,使得滑模面上的MEMS陀螺检测质量块驱动轴振动跟踪误差能够在有限时间内收敛到零。但对需要快速启动的系统而言,Terminal滑模控制收敛速度有限,难以实现MEMS陀螺仪的快速启动。
发明内容
为了克服现有MEMS陀螺仪模态控制方法实用性差的不足,本发明提供一种基于复合学习的MEMS陀螺仪快速启动方法。该方法首先根据模糊预测误差和跟踪误差,设计模糊逻辑权值的复合自适应律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计;同时依据滑模超曲面和双指数趋近律设计滑模控制器,实现未知动力学的前馈补偿,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求。本发明考虑预测误差和跟踪误差,设计模糊逻辑权值的复合学习更新律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计。引入滑模超曲面和双指数趋近律设计的滑模控制器,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求,实用性好。
本发明解决其技术问题所采用的技术方案:一种基于复合学习的MEMS陀螺仪快速启动方法,其特点是包括以下步骤:
(a)考虑正交误差的MEMS陀螺仪的动力学模型为:
其中,m为检测质量块的质量;Ωz为陀螺输入角速度;为静电驱动力; x*分别是MEMS陀螺仪检测质量块沿驱动轴的加速度,速度和位移;y*分别是检测质量块沿检测轴的加速度,速度和位移;dxx,dyy是阻尼系数;kxx,kyy是刚度系数;dxy是阻尼耦合系数,kxy是刚度耦合系数。
为提高机理分析准确度,对MEMS陀螺动力学模型进行无量纲化处理。取无量纲化时间t*=ωot,然后在式(1)两边同时除以参考频率的平方参考长度q0和检测质量块质量m,得到MEMS陀螺的无量纲化模型为
其中,
重新定义相关系统参数为
则MEMS陀螺的无量纲化模型化简为
令A=2S-D,B=Ω2-K,考虑环境因素和未建模因素造成的参数波动,则式(4)表示为
所述的无量纲化模型由状态变量q=[x y]T和控制输入u=[ux uy]T组成。其中,x,y分别为无量纲化后检测质量块沿驱动轴和检测轴的运动位移;ux uy分别表示无量纲化后施加在驱动轴和检测轴的力;A、B、C是模型的参数,且其值与陀螺仪的结构参数和动力学特性有关;P为模型参数不确定带来的未知动力学,且ΔA,ΔB为环境因素和未建模因素造成的未知的参数波动。
(b)构造模糊逻辑系统逼近该模糊逻辑系统由M条IF-THEN语句描述,其中第i条规则有如下形式:
Rule i:IFisA1i andis A2i and xi is A3i and yi is A4i
THENisBi,i=1,2,…,M
采用乘积推理机、单值模糊器和中心平均解模糊器,模糊系统的输出为
其中,Xin是模糊逻辑系统的输入向量,且为模糊逻辑的权值矩阵;θ(Xin)为M维模糊基向量。模糊基向量的第i个元素为
其中,分别是xi,yi到论域A1i,A2i,A3i,A4i的隶属度,隶属函数设计为如下高斯函数:
其中,σi分别是该高斯函数的中心和标准差。
定义最优估计参数w*
其中,ψ是w的集合。
因此,动力学模型的不确定项表示为
其中,ε为模糊系统的逼近误差。
且不确定项的估计误差为
其中,
(c)建立MEMS陀螺的动力学参考模型为
其中,qd为参考振动位移信号,为qd的二阶导数;Ax,Ay分别为检测质量块沿驱动轴和检测轴振动的参考振幅;ωx,ωy分别为检测质量块沿驱动轴和检测轴振动的参考角频率。
构建跟踪误差为
e=q-qd (13)
选取滑模超曲面
其中,是跟踪误差e的一阶导数;α,β满足Hurwitz条件;m1>n1>0,m2>n2>0,且m1,n1,m2,n2都是奇数。
选取双指数趋近律
其中,k1>0,k2>0,0<a<1,b>1。
对滑模超曲面式(14)求导,则
结合双指数趋近律式(15),有
考虑式(5),滑模控制器设计为
其中,Ks满足Hurwitz条件。
将式(5)和式(19)代入式(18),有
将式(20)代入式(16),有
(d)定义并且定义新的信号为
定义建模误差为预测误差。为了使闭环系统保证s和的收敛,考虑预测误差和滑模函数,模糊逻辑权值矩阵的复合学习更新律设计为
其中,λ,为正定矩阵。
(e)根据得到的控制器式(19)和复合学习权重更新律式(23),返回到MEMS陀螺的动力学模型式(5),对陀螺检测质量块的振动位移和速度进行跟踪控制。
本发明的有益效果是:该方法首先根据模糊预测误差和跟踪误差,设计模糊逻辑权值的复合自适应律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计;同时依据滑模超曲面和双指数趋近律设计滑模控制器,实现未知动力学的前馈补偿,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求。本发明考虑预测误差和跟踪误差,设计模糊逻辑权值的复合学习更新律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计。引入滑模超曲面和双指数趋近律设计的滑模控制器,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求,实用性好。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明基于复合学习的MEMS陀螺仪快速启动方法。
具体实施方式
参照图1。本发明基于复合学习的MEMS陀螺仪快速启动方法具体步骤如下:
(a)考虑正交误差的MEMS陀螺仪的动力学模型为:
其中,m为检测质量块的质量;Ωz为陀螺输入角速度;为静电驱动力; x*分别是MEMS陀螺仪检测质量块沿驱动轴的加速度,速度和位移;y*分别是检测质量块沿检测轴的加速度,速度和位移;dxx,dyy是阻尼系数;kxx,kyy是刚度系数;dxy是阻尼耦合系数,kxy是刚度耦合系数。
为提高机理分析准确度,对MEMS陀螺动力学模型进行无量纲化处理。取无量纲化时间t*=ωot,然后在式(1)两边同时除以参考频率的平方参考长度q0和检测质量块质量m,可以得到MEMS陀螺的无量纲化模型为
其中,
重新定义相关系统参数为
则MEMS陀螺的无量纲化模型可化简为
令A=2S-D,B=Ω2-K,考虑环境因素和未建模因素造成的参数波动,则式(4)可表示为
该模型由状态变量q=[x y]T和控制输入u=[ux uy]T组成。其中,x,y分别为无量纲化后检测质量块沿驱动轴和检测轴的运动位移;ux uy分别表示无量纲化后施加在驱动轴和检测轴的力;A、B、C是模型的参数,且其值与陀螺仪的结构参数和动力学特性有关;P为模型参数不确定带来的未知动力学,且ΔA,ΔB为环境因素和未建模因素造成的未知的参数波动。
根据某型号的振动式硅微机械陀螺,选取陀螺各参数为m=0.57×10-7kg,q0=[10-6 10-6]Tm,ω0=1kHz,Ωz=5.0rad/s,kxx=80.98N/m,kyy=71.62N/m,kxy=0.05N/m,dxx=0.429×10-6Ns/m,dyy=0.0429×10-6Ns/m,dxy=0.0429×10-6Ns/m,则可计算得到
(b)利用模糊逻辑动态估计模型参数不确定带来的未知动力学。
构造模糊逻辑系统逼近该模糊逻辑系统由M条IF-THEN语句描述,其中第i条规则有如下形式:
Rule i:IFisA1i andis A2i and xi is A3i and yi is A4i
THENisBi,i=1,2,…,M
采用乘积推理机、单值模糊器和中心平均解模糊器,模糊系统的输出为
其中,Xin是模糊逻辑系统的输入向量,且为模糊逻辑的权值矩阵;θ(Xin)为M=44=256维模糊基向量,模糊基向量的第i个元素为
其中,分别是xi,yi到论域A1i,A2i,A3i,A4i的隶属度,以为例,隶属函数可设计为如下高斯函数:
其中,σi分别是该高斯函数的中心和标准差,xmi,ymi分别在[-2020],[-0.24 0.24],[-10 10],[-0.12 0.12]之间任意取值,σi=1。
定义最优估计参数w*
其中,ψ是w的集合。
因此,动力学模型的不确定项可表示为
其中,ε为模糊系统的逼近误差。
且不确定项的估计误差为
其中,
(c)依据滑模超曲面和双指数趋近律设计滑模控制器,实现未知动力学的前馈补偿。
建立MEMS陀螺的动力学参考模型为
其中,qd为参考振动位移信号,为qd的二阶导数;Ax,Ay分别为检测质量块沿驱动轴和检测轴振动的参考振幅,且Ax=10μm,Ay=0.12μm;ωx,ωy分别为检测质量块沿驱动轴和检测轴振动的参考角频率,且ωx=2000rad/s,ωy=2000rad/s。
构建跟踪误差为
e=q-qd (13)
选取滑模超曲面
其中,是跟踪误差e的一阶导数;α,β满足Hurwitz条件,取值为 m1>n1>0,m2>n2>0,且m1,n1,m2,n2都是奇数,取值为m1=3,n1=1,m2=5,n2=3。
选取双指数趋近律
其中,k1>0,k2>0,0<a<1,b>1,取值为k1=20,k2=20,a=0.5,b=10。
对滑模超曲面式(14)求导,则
结合双指数趋近律式(15),有
考虑式(5),滑模控制器可设计为
其中,Ks满足Hurwitz条件,取值为
将式(5)和式(19)代入式(18),有
将式(20)代入式(16),有
(d)设计模糊逻辑权值矩阵的复合学习更新律。
定义并且定义新的信号为
定义建模误差为预测误差。为了使闭环系统保证s和的收敛,考虑预测误差和滑模函数,模糊逻辑权值矩阵的复合学习更新律可设计为
其中,λ,为正定矩阵,取值为
(e)根据得到的控制器式(19)和复合学习权重更新律式(23),返回到MEMS陀螺的动力学模型式(5),对陀螺检测质量块的振动位移和速度进行跟踪控制。
本发明未详细说明部分属于领域技术人员公知常识。

Claims (1)

1.一种基于复合学习的MEMS陀螺仪快速启动方法,其特征在于包括以下步骤:
(a)考虑正交误差的MEMS陀螺仪的动力学模型为:
其中,m为检测质量块的质量;Ωz为陀螺输入角速度;为静电驱动力; x*分别是MEMS陀螺仪检测质量块沿驱动轴的加速度,速度和位移;y*分别是检测质量块沿检测轴的加速度,速度和位移;dxx,dyy是阻尼系数;kxx,kyy是刚度系数;dxy是阻尼耦合系数,kxy是刚度耦合系数;
为提高机理分析准确度,对MEMS陀螺动力学模型进行无量纲化处理;取无量纲化时间t*=ωot,然后在式(1)两边同时除以参考频率的平方参考长度q0和检测质量块质量m,得到MEMS陀螺的无量纲化模型为
其中,
重新定义相关系统参数为
则MEMS陀螺的无量纲化模型化简为
令A=2S-D,B=Ω2-K,考虑环境因素和未建模因素造成的参数波动,则式(4)表示为
所述的无量纲化模型由状态变量q=[x y]T和控制输入u=[ux uy]T组成;其中,x,y分别为无量纲化后检测质量块沿驱动轴和检测轴的运动位移;ux uy分别表示无量纲化后施加在驱动轴和检测轴的力;A、B、C是模型的参数,且其值与陀螺仪的结构参数和动力学特性有关;P为模型参数不确定带来的未知动力学,且ΔA,ΔB为环境因素和未建模因素造成的未知的参数波动;
(b)构造模糊逻辑系统逼近该模糊逻辑系统由M条IF-THEN语句描述,其中第i条规则有如下形式:
采用乘积推理机、单值模糊器和中心平均解模糊器,模糊系统的输出为
其中,Xin是模糊逻辑系统的输入向量,且 为模糊逻辑的权值矩阵;θ(Xin)为M维模糊基向量;模糊基向量的第i个元素为
其中,分别是xi,yi到论域A1i,A2i,A3i,A4i的隶属度,隶属函数设计为如下高斯函数:
其中,σi分别是该高斯函数的中心和标准差;
定义最优估计参数w*
其中,ψ是w的集合;
因此,动力学模型的不确定项表示为
其中,ε为模糊系统的逼近误差;
且不确定项的估计误差为
其中,
(c)建立MEMS陀螺的动力学参考模型为
其中,qd为参考振动位移信号,为qd的二阶导数;Ax,Ay分别为检测质量块沿驱动轴和检测轴振动的参考振幅;ωx,ωy分别为检测质量块沿驱动轴和检测轴振动的参考角频率;
构建跟踪误差为
e=q-qd (13)
选取滑模超曲面
其中,是跟踪误差e的一阶导数;α,β满足Hurwitz条件;m1>n1>0,m2>n2>0,且m1,n1,m2,n2都是奇数;
选取双指数趋近律
其中,k1>0,k2>0,0<a<1,b>1;
对滑模超曲面式(14)求导,则
结合双指数趋近律式(15),有
考虑式(5),滑模控制器设计为
其中,Ks满足Hurwitz条件;
将式(5)和式(19)代入式(18),有
将式(20)代入式(16),有
(d)定义并且定义新的信号为
定义建模误差为预测误差;为了使闭环系统保证s和的收敛,考虑预测误差和滑模函数,模糊逻辑权值矩阵的复合学习更新律设计为
其中,λ,为正定矩阵;
(e)根据得到的控制器式(19)和复合学习权重更新律式(23),返回到MEMS陀螺的动力学模型式(5),对陀螺检测质量块的振动位移和速度进行跟踪控制。
CN201711073624.6A 2017-11-05 2017-11-05 基于复合学习的mems陀螺仪快速启动方法 Active CN107861384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711073624.6A CN107861384B (zh) 2017-11-05 2017-11-05 基于复合学习的mems陀螺仪快速启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711073624.6A CN107861384B (zh) 2017-11-05 2017-11-05 基于复合学习的mems陀螺仪快速启动方法

Publications (2)

Publication Number Publication Date
CN107861384A CN107861384A (zh) 2018-03-30
CN107861384B true CN107861384B (zh) 2019-08-09

Family

ID=61700789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711073624.6A Active CN107861384B (zh) 2017-11-05 2017-11-05 基于复合学习的mems陀螺仪快速启动方法

Country Status (1)

Country Link
CN (1) CN107861384B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240083B (zh) * 2018-09-28 2021-10-01 河海大学常州校区 微陀螺仪系统的自适应模糊超扭曲滑模控制方法
CN115309058B (zh) * 2022-06-10 2023-06-30 哈尔滨理工大学 一种动力定位船的有限时间复合学习控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381787C (zh) * 2006-03-27 2008-04-16 北京航空航天大学 一种陀螺仪标度因数和输入轴失准角的解耦测试设备
CN100538276C (zh) * 2007-11-16 2009-09-09 北京航空航天大学 一种基于集成神经网络的微小卫星用mems陀螺仪误差补偿方法
US8884710B2 (en) * 2011-10-25 2014-11-11 Invensense, Inc. Gyroscope with phase and duty-cycle locked loop
CN103616818B (zh) * 2013-11-14 2015-12-30 河海大学常州校区 微陀螺仪的自适应模糊神经全局快速终端滑模控制方法
CN103900610B (zh) * 2014-03-28 2016-06-29 哈尔滨工程大学 基于灰色小波神经网络的mems陀螺随机误差预测方法
CN104281056B (zh) * 2014-09-18 2017-07-21 河海大学常州校区 基于神经网络上界学习的微陀螺仪鲁棒自适应控制方法
CN105045097B (zh) * 2015-05-26 2017-10-27 河海大学常州校区 一种基于神经网络的微陀螺仪反演全局滑模模糊控制方法
US10451418B2 (en) * 2015-12-09 2019-10-22 Invensense, Inc. MEMS gyroscope amplitude control via quadrature
CN107289969A (zh) * 2016-04-01 2017-10-24 南京理工大学 一种mems惯性传感器自动批量标定方法及系统

Also Published As

Publication number Publication date
CN107861384A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN107607101B (zh) 基于干扰观测器的mems陀螺滑模控制方法
CN107678282B (zh) 考虑未知动力学和外部干扰的mems陀螺智能控制方法
CN107607103B (zh) 基于干扰观测器的mems陀螺仪复合学习控制方法
CN108897226B (zh) 基于干扰观测器的mems陀螺仪预设性能非奇异滑模控制方法
CN107607102B (zh) 基于干扰观测器的mems陀螺滑模抖振抑制方法
CN104281056B (zh) 基于神经网络上界学习的微陀螺仪鲁棒自适应控制方法
CN107831655B (zh) 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN108227504B (zh) 微陀螺分数阶自适应模糊神经反演终端滑模控制方法
CN103336435B (zh) 微陀螺仪基于角速度估计的自适应模糊滑模控制方法
CN107608217B (zh) 基于复合学习的mems陀螺仪模糊滑模控制方法
CN103279038B (zh) 基于t-s模糊模型的微陀螺仪滑模自适应控制方法
CN103885339B (zh) 微陀螺仪的反演自适应模糊滑模控制方法
CN107870566B (zh) 基于平行估计复合学习的mems陀螺仪快速启动方法
CN107861384B (zh) 基于复合学习的mems陀螺仪快速启动方法
CN110389528B (zh) 基于扰动观测的数据驱动mems陀螺仪驱动控制方法
Zhang et al. Sliding mode control of MEMS gyroscopes using composite learning
CN104155874B (zh) 微陀螺仪的反演自适应模糊动态滑模控制方法
CN105487382B (zh) 基于动态面的微陀螺自适应模糊滑模控制方法
CN102411302A (zh) 基于直接自适应模糊控制的mems微陀螺仪控制方法
CN103197558B (zh) 基于t-s模型的微陀螺仪模糊自适应控制方法
CN109062048B (zh) 基于复合学习的mems陀螺仪预设性能非奇异滑模控制方法
CN107608216B (zh) 基于平行估计模型的mems陀螺仪复合学习控制方法
CN110471293B (zh) 一种估计时变角速度的z轴陀螺仪滑模控制方法
Tuo et al. Event-triggered adaptive prescribed performance control of flexible-joint manipulators with output constraint
Zeng et al. A generalized multivariable adaptive super-twisting control and observation for amphibious robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant