CN107851558A - 以uv辅助方式将材料注入多孔膜 - Google Patents

以uv辅助方式将材料注入多孔膜 Download PDF

Info

Publication number
CN107851558A
CN107851558A CN201680044019.3A CN201680044019A CN107851558A CN 107851558 A CN107851558 A CN 107851558A CN 201680044019 A CN201680044019 A CN 201680044019A CN 107851558 A CN107851558 A CN 107851558A
Authority
CN
China
Prior art keywords
hydrogen
gap
film
siliceous
patterned substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680044019.3A
Other languages
English (en)
Other versions
CN107851558B (zh
Inventor
B·S·安德伍德
A·B·玛里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN107851558A publication Critical patent/CN107851558A/zh
Application granted granted Critical
Publication of CN107851558B publication Critical patent/CN107851558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

描述用于减少图案化基板上的多孔膜经历的收缩的方法。该膜可以是含硅和氢的层,该含硅和氢的层进一步含有碳、氧及氮中的一者或两者。沉积之后,立刻通过同时暴露于相对小的分子前体(例如NH3或C2H2)和UV光源来处理该含硅和氢的层。该处理甚至可以减少该多孔膜随后由于反应前的明显渗透而在该膜底部经历的收缩。该处理可以减少在填充有该多孔膜的沟槽的底部的收缩,从而在处理完成之后提供在该沟槽内保持较大填充因子的效益。

Description

以UV辅助方式将材料注入多孔膜
技术领域
本文公开的实施例涉及处理多孔膜。
背景技术
半导体电路元件的小型化已达到以商业规模制造约14nm的特征尺寸的点。随着尺寸持续变得越来越小,像是使用避免电串扰的电介质材料填充电路元件之间的缝隙之类的工艺步骤出现了新的挑战。随着元件之间的宽度持续缩小,元件之间的缝隙往往变得更高且更窄,使得缝隙的填充很难不发生电介质材料卡住而形成孔隙或弱接缝的情况。传统的化学气相沉积(CVD)技术时常在缝隙被完全填充之前在缝隙的顶部遭遇材料过度生长。此举会在沉积的电介质材料因过度生长而过早切断的缝隙中形成孔隙或接缝;这种问题有时被称为面包条化(breadloafing)。
面包条化问题的一种解决方案一直是使用液体前体作为更容易流入缝隙中的电介质原料。目前在商业用途中这样做的技术被称为旋涂玻璃(SOG)。最近已开发出赋予CVD沉积的电介质材料可流动特性的技术。这些技术可以沉积可流动前体以用多孔材料填充高、窄的缝隙,同时降低形成孔隙或弱接缝的发生率。虽然新的可流动CVD技术代表在使用多孔材料(例如低k电介质材料)填充高、窄(即高深宽比)缝隙的显著突破,但仍需要减少多孔材料在后续处理期间所经历的收缩。
发明内容
描述用于减少图案化基板上的多孔膜经历的收缩的方法。该膜可以是含硅和氢的层,该含硅和氢的层进一步含有碳、氧及氮中的至少一者。沉积之后,立刻通过同时暴露于相对小的分子前体(例如NH3或C2H2)和UV光源来处理该含硅和氢的层。该处理甚至可以减少该多孔膜随后由于反应前的明显渗透而在该膜底部经历的收缩。该处理可以减少在填充有该多孔膜的缝隙的底部的收缩,从而在处理完成之后提供在该缝隙内保持较大填充因子的效益。
本文描述的实施例包括在图案化基板上处理缝隙填充电介质的方法。该方法包括在该图案化基板上形成含硅和氢的膜。该含硅和氢的膜填充该图案化基板上的缝隙。该方法进一步包括使该含硅和氢的膜暴露于含氢前体,同时使该含硅和氢的膜暴露于UV光。该含氢前体进一步包括氮、硅及碳中的至少一者。在暴露该含硅和氢的膜的操作之后,该含硅和氢的膜可以不含硅、碳、氮、氢及氧以外的元素。
本文描述的实施例包括在图案化基板中填充缝隙的方法。该方法包括使低k电介质材料流入该图案化基板上的该缝隙中。该方法进一步包括使该低k电介质材料暴露于含氢前体。该方法进一步包括使该图案化基板暴露于UV光。使该图案化基板暴露于UV光及使该低k电介质材料暴露于含氢前体的操作同时发生。
本文描述的实施例包括强化缝隙填充材料的方法。该方法包括将具有缝隙的图案化基板传送到基板处理室的基板处理区域中。该缝隙用多孔电介质进行填充。该方法进一步包括使含氢前体流入该基板处理区域中,同时在该缝隙上照射UV光。该方法进一步包括加热该图案化基板,其中加热该图案化基板使该缝隙的底部附近的多孔电介质收缩小于35%。依据实施例,加热该图案化基板可以将该基板的温度提高至高于150℃、高于200℃、高于250℃、或高于300℃。
附加的实施例与特征在一定程度上在以下的描述中进行阐述,而且对本领域技术人员而言将在检视说明书后变得显而易见,或者可通过实施实施例而学习到。实施例的特征与优点可以通过说明书中描述的手段、组合及方法来实现和获得。
附图说明
可以通过参照其余部分的说明书和附图来进一步理解实施例的本质与优点。
图1为示出依据实施例在图案化基板上形成多孔膜的方法中的选择步骤的流程图。
图2为示出依据实施例在图案化基板上形成多孔膜的方法中的选择步骤的流程图。
图3图示依据实施例的基板处理系统。
图4A图示依据实施例的基板处理室。
图4B图示依据实施例的气体分配喷头。
在附图中,类似的组件和/或特征可以具有相同的组件标号。另外,相同类型的各种组件可以通过在组件标号之后接续破折号和第二标号来区别,该第二标号可区别类似的组件。假使说明书中只使用第一组件标号,则不管第二组件标号为何,该描述适用于具有相同第一组件标号的任一个类似组件。
具体实施方式
描述用于减少图案化基板上的多孔膜经历的收缩的方法。该膜可以是含硅和氢的层,该含硅和氢的层进一步含有碳、氧及氮中的一者或两者。沉积之后,立刻通过同时暴露于相对小的分子前体(例如NH3或C2H2)和UV光源来处理该含硅和氢的层。该处理甚至可以减少该多孔膜随后由于反应前的明显渗透而在该膜底部经历的收缩。该处理可以减少在填充有该多孔膜的缝隙的底部的收缩,从而在处理完成之后提供在该缝隙内保持较大填充因子的效益。
多孔材料可被使用来例如生产低k电介质膜,但在其他情况下也可以是有用的。多孔膜可以通过各种方法形成,包括不可流动或可流动的沉积方法。可流动的沉积方法可以通过使多孔膜能够渗入图案化基板中的缝隙而是有用的。多孔膜会是容易收缩的,特别是当图案化基板的温度在后沉积处理期间被升高时。如本文所述同时暴露于紫外光处理已被发现有益于多孔膜的结构。在UV辅助的化学反应中,氢可以被来自含氢前体的氮、硅、和/或碳取代。需要UV光来促进反应,但先要保持渗透深入多孔膜中所需的低反应可能性。使用本文呈现的技术生产的多孔膜可以在后沉积处理期间和所生产的半导体器件的寿命期间表现出少得多的收缩。收缩减少可以通过(1)减少导电元件之间的串扰及(2)提供更高的物理稳定性而有益于半导体器件的操作,从而提高产率。来自同时暴露的前体的材料被送入比先前实现的深得多的多孔膜中,此举有利地减少甚至是在狭小空间的底部的收缩。虽然一些多孔缝隙填充膜已显示50%的收缩,但依据实施例,本文描述的方法可以在沉积后收缩少于35%、少于30%、或少于25%。
为了更佳地了解和理解实施例,现在参照图1,图1为图示依据实施例在基板上形成多孔膜的方法101中的选择步骤的流程图。在操作110中,多孔的含硅和氢的膜被初始地形成在图案化基板上。然后可以将图案化基板放在基板处理区域中。在操作120中,使C2H2流入基板处理区域。在使图案化基板暴露于C2H2的同时用紫外(UV)光照射图案化基板。在实施例中,使C2H2流入基板处理区域中,然后开始UV光暴露,以在照射之前使C2H2深入该膜。除了UV光的影响,在操作120和130期间基板处理区域可以是无等离子体的。依据实施例,来自C2H2的碳进入多孔的含硅和氢的膜中,并一路处理该膜直到底部(操作140)。
一般来说,可以使进一步包含氮、硅、及碳中的至少一者的含氢前体流入基板处理区域。在实施例中,含氢前体可以包含氢和碳或由氢和碳所组成。依据实施例,含氢前体可以具有两个、三个、或四个碳原子,并且可以含有至少一个多键(双键或三键)。例如,含氢前体可以是C2H2、C2H4、C3H6及C4H8中的一者。依据实施例,含氢前体可以包含氢和氮或由氢和氮所组成。在实施例中,含氢前体可以具有一个或两个氮原子并且可以含有悬空键。例如,含氢前体可以是NH3、N2H2及N2H4中的一者。在实施例中,含氢前体可以包含氢和硅或由氢和硅所组成。依据实施例,含氢前体可以具有两个、三个、四个(而且有时更多个)硅原子,并且可以包含单键或由单键所组成。例如,含氢前体可以是SiH4、Si2H6、Si3H8、Si4H10、Si5H10、Si5H12、Si6H12、及Si6H14中的一者。在实施例中,含氢前体包含氢、硅及碳,而且可以包含C=O配体。依据实施例,含氢前体可以伴随一种或更多种附加气体,例如氢气(H2)、氮气(N2)、氦气、氖气、氩气。依据实施例,在本文公开的所有实施例的紫外线处理期间,基板处理区域可以不含水气,而且可以不含氧气。在实施例中,除了含氢前体,多孔电介质膜周围的环境可以是化学惰性的。
已经基于小的尺寸、而且在一些情况下基于减少的UV光直接吸收来选择本文描述的前体。这两个特性皆有助于前体在反应之前不久更深入渗透到所述材料中,以致密化和强化多孔膜。前体过早吸收UV光会过早提高化学反应性,此举会消耗多孔膜顶部附近的前体。在实施例中,反应机制涉及多孔基板对UV光的吸收,随后多孔基板与含氢前体反应。前体的小尺寸也促进在开放单元的多孔基板内深处迅速扩散。在操作120/130期间,在多孔膜的顶部上基本上没有沉积发生。
在操作110中,多孔膜可以通过各种方法来沉积,例如旋涂玻璃(SOG)、旋涂电介质(SOD)或通过化学气相沉积(CVD)。初始沉积之后多孔膜可以流动,此举可以有助于填充图案化基板上的狭窄缝隙。该多孔膜可被称为可流动的多孔膜,而且在固化之后测量时可以具有低的介电常数(低k)。依据实施例,在完成的器件的沟槽中,低k电介质膜可以具有介于2.2和3.0之间的介电常数。在实施例中,多孔膜包含硅和氢,而且可以是S-C-H膜、Si-N-H膜、Si-O-H膜、Si-C-N-H膜、Si-O-C-H膜、或Si-O-N-H膜。依据实施例,多孔膜可以包含硅、碳及氢或由硅、碳及氢所组成。依据实施例,多孔膜可以包含硅、氮及氢或由硅、氮及氢所组成。依据实施例,多孔膜可以包含硅、氧及氢或由硅、氧及氢所组成。依据实施例,多孔膜可以包含硅、碳、氮及氢或由硅、碳、氮及氢所组成。依据实施例,多孔膜可以包含硅、碳、氧及氢或由硅、碳、氧及氢所组成。依据实施例,多孔膜可以包含硅、氧、氮及氢或由硅、氧、氮及氢所组成。
在操作120/130中,通过使含氢前体流入基板处理区域同时用UV光照射图案化基板以引起与多孔膜的化学反应来处理图案化基板。在实施例中,在操作140期间基板处理区域可以不含等离子体(可以是无等离子体的),以避免使含氢前体活性过高,在含氢前体活性过高的情况下有效处理的深度会减少。依据实施例,在到基板处理区域的途中,含氢前体可以不通过任何等离子体。与未经处理且其他方面相似的膜相比,已发现处理过的膜收缩较少,而且保留较高的物理强度。氮、硅或碳被注入多孔膜中,而且可以形成桥键结位点,此举甚至使在狭窄缝隙内的深的部分中的多孔膜的强度增加。当未进行本文的方法时,怀疑短的硅链会挥发,此举可能会导致较多的收缩。本文描述的方法也可以减少缝隙内的孔隙,进一步有益于完成的器件的性能和可靠性。依据实施例,在多孔膜内所有深度的强度与同时发生的收缩减少可以是大体上均匀的(缝隙外或内)。
使用本文描述的技术填充的缝隙(例如通孔和沟槽)可以具有高度和宽度,该高度和宽度限定高度对宽度(即H/W)的深宽比(AR),该深宽比明显大于1:1(例如大于5:1、大于6:1、大于8:1、大于10:1或大于12:1)。依据实施例,在许多情况下,高AR是由于小于32nm、小于28nm、小于22nm、或小于16nm的小缝隙宽度。在实施例中,高度可以大于100nm、大于150nm、大于250nm、或大于0.5μm。本文中将使用“顶部”和“向上”来描述在基板平面的垂直远程并在垂直方向上进一步远离基板的质量中心的部分/方向。将使用“垂直”来描述在“向上”方向上朝向“顶部”排列的物品。也可以使用其他现在含义清楚的类似用语(例如“高度”和“宽度”)。
在实施例中,在操作120/130期间基板的温度可以低于150℃、低于120℃、低于100℃或低于80℃,因为与含氢前体(例如C2H2)的化学反应并不依赖温度进行。可以使用更高的温度,因为所需的化学反应在高达热激活沉积发生的点(对于C2H2来说~400℃)仍会发生。依据实施例,在操作110与操作120/130开始之间可以将图案化基板的温度保持低于这些温度中的每个温度,以避免在膜可被强化之前损坏膜。可以使用更高的温度,因为所需的化学反应在高达热激活沉积发生的点(对于C2H2来说~400℃)仍会发生。在实施例中,在操作120/130期间和在操作110与120/130之间,图案化基板的温度可以低于500℃、低于400℃或低于300℃。
在操作120/130中多孔膜的UV处理期间,基板处理区域中的压力可以介于1托和1000托之间、或介于3托和200托之间、或介于6托和50托之间。较高的压力可以有助于更均匀地处理较少的多孔膜。本文中给予所有示例的所有膜性质和工艺参数也都适用于所有的其他示例。在实施例中,可以使含氢前体以介于10sccm和4000sccm之间、介于200sccm和3000sccm之间、或介于500sccm和2000sccm之间的流动速率流入基板处理区域。含氢前体可被以气体或液体的形式供应。在公开的实施例中,适用于本文描述的所有方法的UV光的波长可以介于100nm和450nm之间、或者可以介于100nm和400nm之间。UV光可以在基板处理区域内或外产生并通过适当的透射式真空窗口的路径进入基板处理区域。UV光可以由准分子激光产生。
现在将参照图2,图2为图示依据实施例在基板上形成多孔电介质膜的方法201中的选择步骤的流程图。在操作210中,多孔膜被初始地形成在图案化基板上。然后可以将图案化基板放在基板处理区域中。在操作220中,在基板处理区域内使图案化基板暴露于NH3,同时还用紫外(UV)光照射图案化基板。依据实施例,暴露于NH3可以在暴露于UV光之前开始,以确保更深地渗入多孔电介质膜中。如同前述,在操作220期间基板处理区域可以没有等离子体。依据实施例,来自NH3的氮进入多孔膜中并从顶部到底部大体上均匀地处理该膜(操作230)。如同本文呈现的其他示例,已发现UV光和含氢前体(例如NH3)二者的同时存在可产生在后续处理中大体上展现较少收缩的多孔电介质层。
对于本文描述的所有示例来说,依据实施例,从在图案化基板上形成多孔膜的操作到使图案化基板暴露于含氢前体并用UV光照射图案化基板以强化多孔膜的操作,可以不使图案化基板暴露于外部空气(来自半导体处理主机或腔室外部的洁净室的空气)。
依据实施例,本文所述的任何或全部沉积方法在沉积过程中都可以在基板处理区域中具有低的电子温度,以确保在多孔膜内深处的有益化学反应。在基板处理区域中可以使用朗缪尔探针测量电子温度。在实施例中,电子温度可以低于0.5eV、低于0.45eV、低于0.4eV、或低于0.35eV。引入替代的学术用语,在本文描述的沉积工艺期间,本文可以将基板处理区域描述为“无等离子体”。“无等离子体”并不一定意指该区域是没有等离子体的。在等离子体区域内形成的离子化物种和自由电子可以以非常小的浓度行进通过隔板(喷头)中的孔隙(孔)。在腔室等离子体区域中,等离子体的边界是难以限定的,而且可能会经由喷头中的孔侵入基板处理区域。此外,可以在不消除本文所述沉积工艺的希望的特征下在基板处理区域中形成低强度的等离子体。在激发的等离子体流出物的形成过程中,离子密度的强度远比腔室等离子体区域更低的等离子体的所有起因皆未偏离本文所用的“无等离子体”范围。
现在将描述可以形成多孔膜的基板处理室的几个实施例,而且在一些选定的架构中也可以使用这些实施例来对图案化基板进行化学处理。图3图示依据实施例用于沉积和硬化腔室的示例性处理系统1001。FOUPs(前开式晶片传送盒)1002通过机械臂1004将基板供应到低压保持区域1006中。可以使用第二机械臂1010来在保持区域1006和基板处理室1008a-f之间来回传送基板晶片。
基板处理室1008a-f可被配置成在沉积的层上沉积或进行各种处理。在一种架构中,可以使用两对处理室(例如1008c-d和1008e-f)在基板上沉积可流动电介质材料,而且可以使用第三对处理室(例如1008a-b)来利用紫外线或电子束照射硬化该电介质材料。
图4A为依据实施例的基板处理室1101。远程等离子体系统(RPS)1110可以处理气体,然后该气体经由气体入口组件1111前进。可以在气体入口组件1111内看到两个不同的气体供应通道。第一通道1112携带通过远程等离子体系统(RPS)1110的气体,而第二通道1113绕过RPS 1110。在实施例中,第一通道1112可用于工艺气体,并且第二通道1113可用于处理气体。图示盖体(或导电顶部)1121和穿孔的隔板1153之间具有绝缘环1124,绝缘环1124允许AC电位被相对于穿孔的隔板1153施加于盖体1121。工艺气体经由第一通道1112进入腔室等离子体区域1120,而且工艺气体可以单独在腔室等离子体区域1120中被等离子体激发或在腔室等离子体区域1120与RPS 1110的组合中被等离子体激发。本文中可以将腔室等离子体区域1120和/或RPS 1110的组合称为远程等离子体系统。穿孔的隔板(也称为喷头)1153将腔室等离子体区域1120与喷头1153下方的基板处理区域1170分离。喷头1153允许等离子体存在于腔室等离子体区域1120中,以避免在基板处理区域1170中直接激发气体,同时仍允许激发的物种(等离子体流出物)从腔室等离子体区域1120进入基板处理区域1170。
喷头1153被定位在腔室等离子体区域1120与基板处理区域1170之间,并允许腔室等离子体区域1120内产生的等离子体流出物(前体或其他气体的激发衍生物)通过多个通孔1156,通孔1156穿过板的厚度。喷头1153还具有一个或更多个中空容积1151,中空容积1151可以用蒸气或气体(例如含硅和碳的前体)形式的前体(例如TSA)填充,并经由小孔1155通入基板处理区域1170,但不是直接通入腔室等离子体区域1120。
在图示的实施例中,喷头1153可以(经由通孔1156)分配工艺气体,该工艺气体含有工艺气体通过腔室等离子体区域1120中的等离子体激发时产生的等离子体流出物。可以使含氮前体(例如NH3)流过RPS 1110,以在产生的等离子体流出物遇到TSA时形成Si-N-H膜。可以选择前体,以通过化学气相沉积形成本文中处理的各种膜。可以在不使用化学气相沉积之下使用其他技术来形成多孔膜(例如SOD或SOG)。工艺气体还可以包括载气,例如氦气、氩气、氮气(N2)等。第二通道1113也可以递送工艺气体和/或载气、和/或用以从生长的或所沉积的膜中移除不想要的成分的膜处理或硬化气体。等离子体流出物可以包括工艺气体的离子化或中性的衍生物,而且在本文中也可以被称为自由基氧前体,以指称引入的工艺气体的原子组分。
图4B为依据实施例用于处理腔室的喷头1153的仰视图。喷头1153与图4A中图示的喷头一致。将通孔1156描绘为在喷头1153的底部具有较大的内径(ID)并且在顶部具有较小的ID。小孔1155大致上均匀地分布在喷头的表面上,即使在通孔1156之间亦同,此举可有助于提供更均匀的混合。
当经由喷头1153中的通孔1156到达的等离子体流出物与源自中空容积1151经由小孔1155到达的含-硅-和-碳前体结合时,在基板处理区域1170内由基座(未图示)支撑的基板上形成示例性膜。虽然基板处理区域1170可被装备来支持用于其他工艺(例如硬化)的等离子体,但在示例性膜的生长过程中并无等离子体存在。该基座可被配置用于冷却或加热所支撑的基板,以保持相对低温(从室温到约120℃)。
等离子体可以在喷头1153上方的腔室等离子体区域1120中或喷头1153下方的基板处理区域1170中被点燃。腔室等离子体区域1120中存在等离子体,以从含氧气体的进入流产生自由基氧前体。在沉积过程中,在处理室的导电顶部1121与喷头1153之间施加通常在射频(RF)范围中的交流电压,以在腔室等离子体区域1120中点燃等离子体。RF电源产生13.56MHz的高RF频率,但也可以产生单独的或与13.56MHz频率结合的其他频率。示例性的RF频率包括诸如2.4GHz的微波频率。在实施例中,在可流动膜的沉积过程中,远程等离子体功率可以大于或约为1000瓦、大于或约为2000瓦、大于或约为3000瓦、或者大于或约为4000瓦。基板处理系统被系统控制器控制。可以使用由系统控制器执行的计算机程序产品来实施用于在基板上沉积膜叠层的工艺。
本文中使用的“基板”可以是上面有或没有层形成的支撑基板。该支撑基板可以是绝缘体或具有各种掺杂浓度与分布的半导体,而且该支撑基板可以例如是集成电路制造中使用的类型的半导体基板。用语“前体”用以指称任何工艺气体,该工艺气体参与反应,以从表面移除材料或将材料沉积到表面上。处于“激发态”的气体描述其中至少某些气体分子处于振动激发、离解和/或离子化状态的气体。气体(或前体)可以是两种或更多种气体(或前体)的组合。“自由基前体”用以描述等离子体流出物(处于激发态且激发等离子体的气体),该等离子体流出物参与反应,以从表面移除材料或在表面上沉积材料。“自由基氧前体”为含有氧的自由基前体,而且在实施例中可以不含氮。词组“惰性气体”是指当蚀刻或被并入膜中时不形成化学键的任意气体。示例性的惰性气体包括稀有气体,但也可以包括其他气体,只要当(典型地)微量陷入膜中时无化学键形成即可。
贯穿全文使用用语“缝隙”,但并非暗指蚀刻出的几何形状具有大的水平深宽比。从表面上方观看,缝隙可能呈现圆形、椭圆形、多边形、矩形或各式各样的其他形状。“沟槽”是长的缝隙(例如具有大于5或大于10的长度对宽度比)。沟槽可以呈围绕材料岛的护城河形状,沟槽的深宽比是护城河的长度或周长除以护城河的宽度。用语“通孔”用来指称低深宽比的缝隙(从上方观看),通孔可能会或可能不会被填充金属而形成垂直的电连接。
描述了几个实施例后,本领域技术人员将理解的是,在不偏离实施例的精神下可以使用各种的修改、替代结构、及等效物。此外,并未描述一些众所周知的工艺和组件,以免不必要地模糊了实施例。因此,以上描述不应被视为限制权利要求的范围。
当提供值的范围时,应当理解的是,除非上下文另有明确说明,否则每个介于该范围的上限和下限之间、到下限单位的十分之一的中间值也被具体公开。每个介于陈述范围中的任何陈述值或中间值与该陈述范围中的任何其他陈述值或中间值之间的较小范围也被包括。这些较小范围的上限和下限可以被独立包括或排除在该范围中,而且其中两个限值任一者、皆不或皆被包括在该较小范围中的每个范围也被包括在公开的实施例内,依陈述范围中任何具体排除的限值而定。当陈述范围包括一个或两个限值时,排除任一个或两个那些被包括的限值的范围也被包括在内。
本文中和所附权利要求中使用的单数形式“一(a)”、“一(an)”和“该(the)”也包括复数的指称物,除非上下文另有明确说明。因此,举例来说,提及“一工艺”也包括多个这样的工艺,提及“该前体”包括提及一种或更多种前体及本领域技术人员已知的前体的等效物,以此类推。
同样地,词语“包括(comprise)”、“包含(comprising)”、“包括(include)”、“包含(including)”和“包括(includes)”当被用于本说明书中和以下的权利要求中时意图指明存在所陈述的特征、整数、组件、或步骤,但上述词语并不排除存在或添加一个或更多个其他的特征、整数、组件、步骤、动作、或基团。

Claims (20)

1.一种在图案化基板上处理缝隙填充电介质的方法,所述方法包含以下步骤:
在所述图案化基板上形成含硅和氢的膜,其中所述含硅和氢的膜填充所述图案化基板上的缝隙;以及
使所述含硅和氢的膜暴露于含氢前体,同时使所述含硅和氢的膜暴露于UV光,其中所述含氢前体进一步包含氮、硅及碳中的至少一者。
2.如权利要求1所述的方法,其中所述含氢前体包含碳并且在一分子中的两个碳原子之间具有双共价键或三共价键。
3.如权利要求1所述的方法,其中所述含氢前体在每一分子中包含两个、三个、或四个碳原子。
4.如权利要求1所述的方法,其中所述含氢前体包含C2H2、C2H4、C3H6及C4H8中的至少一者。
5.如权利要求1所述的方法,其中所述含氢前体由氢和碳所组成。
6.如权利要求1所述的方法,其中所述含氢前体包含氮并且具有悬空键。
7.如权利要求1所述的方法,其中所述含氢前体在每一分子中包含一个或两个氮原子。
8.如权利要求1所述的方法,其中所述含氢前体包含NH3、N2H4及N2H2中的至少一者。
9.如权利要求1所述的方法,其中所述含氢前体由氢和氮所组成。
10.如权利要求1所述的方法,其中所述含氢前体包含SiH4、Si2H6、Si3H8、Si4H10、Si5H10、Si5H12、Si6H12、及Si6H14中的至少一者。
11.如权利要求1所述的方法,其中形成所述含硅和氢的膜的步骤包含以下步骤:在所述图案化基板的表面上初始沉积之后使材料流入所述缝隙中。
12.如权利要求1所述的方法,其中在暴露所述含硅和氢的膜的操作之后,所述含硅和氢的膜不含硅、碳、氮、氢及氧以外的元素。
13.如权利要求1所述的方法,其中在暴露所述含硅和氢的膜时所述图案化基板的温度小于150℃。
14.如权利要求1所述的方法,其中所述含硅和氢的膜为多孔膜。
15.一种在图案化基板中填充缝隙的方法,所述方法包含以下步骤:
使低k电介质材料流入所述图案化基板上的所述缝隙中;
使所述低k电介质材料暴露于含氢前体;以及
使所述图案化基板暴露于UV光,其中使所述图案化基板暴露于UV光及使所述低k电介质材料暴露于含氢前体的操作同时发生。
16.如权利要求15所述的方法,其中在暴露所述低k电介质材料的操作之前,所述低k电介质材料由硅、氧、碳及氢所组成。
17.如权利要求15所述的方法,其中在完成的器件的缝隙中,所述低k电介质材料具有介于2.2和3.0之间的介电常数。
18.如权利要求15所述的方法,其中所述含氢前体包含硅、氮及碳中的至少一者以及氢。
19.一种强化缝隙填充材料的方法,所述方法包含以下步骤:
将包含缝隙的图案化基板传送到基板处理室的基板处理区域中,其中所述缝隙用多孔电介质进行填充;
使含氢前体流入所述基板处理区域中,同时在所述缝隙上照射UV光;
加热所述图案化基板,其中加热所述图案化基板使所述缝隙的底部附近的所述多孔电介质收缩小于35%。
20.如权利要求19所述的方法,其中所述缝隙的高度对宽度深宽比大于5:1。
CN201680044019.3A 2015-07-13 2016-06-02 以uv辅助方式将材料注入多孔膜 Active CN107851558B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/797,960 US9947576B2 (en) 2015-07-13 2015-07-13 UV-assisted material injection into porous films
US14/797,960 2015-07-13
PCT/US2016/035580 WO2017011088A1 (en) 2015-07-13 2016-06-02 Uv-assisted material injection into porous films

Publications (2)

Publication Number Publication Date
CN107851558A true CN107851558A (zh) 2018-03-27
CN107851558B CN107851558B (zh) 2022-08-02

Family

ID=57757413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680044019.3A Active CN107851558B (zh) 2015-07-13 2016-06-02 以uv辅助方式将材料注入多孔膜

Country Status (5)

Country Link
US (1) US9947576B2 (zh)
KR (1) KR102546214B1 (zh)
CN (1) CN107851558B (zh)
TW (1) TWI706438B (zh)
WO (1) WO2017011088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176322A (zh) * 2019-07-03 2021-01-05 株式会社国际电气 基板处理装置、半导体装置的制造方法、以及程序

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607832B2 (en) 2018-01-15 2020-03-31 Samsung Electronics Co., Ltd. Method and apparatus for forming a thin layer
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265061B1 (en) * 2003-05-09 2007-09-04 Novellus Systems, Inc. Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties
CN101099232A (zh) * 2004-11-12 2008-01-02 艾克塞利斯技术公司 多孔低k介电膜的紫外辅助孔密封
US20090061237A1 (en) * 2007-08-28 2009-03-05 International Business Machines Corporation LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT
US20150044882A1 (en) * 2012-03-05 2015-02-12 Novellus Systems, Inc. Flowable oxide film with tunable wet etch rate
US20150179501A1 (en) * 2013-12-24 2015-06-25 Ritesh Jhaveri Techniques for trench isolation using flowable dielectric materials

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054206A (en) 1998-06-22 2000-04-25 Novellus Systems, Inc. Chemical vapor deposition of low density silicon dioxide films
US20040058090A1 (en) 2001-09-14 2004-03-25 Carlo Waldfried Low temperature UV pretreating of porous low-k materials
US7098149B2 (en) 2003-03-04 2006-08-29 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
US7018941B2 (en) * 2004-04-21 2006-03-28 Applied Materials, Inc. Post treatment of low k dielectric films
US7482265B2 (en) 2006-01-10 2009-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. UV curing of low-k porous dielectrics
DE102006051496B4 (de) 2006-10-31 2008-09-25 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit einem porösen Materialschichtstapel mit kleinem ε mit reduzierter UV-Empfindlichkeit und Verfahren zu dessen Herstellung
US7867923B2 (en) * 2007-10-22 2011-01-11 Applied Materials, Inc. High quality silicon oxide films by remote plasma CVD from disilane precursors
US20110159202A1 (en) 2009-12-29 2011-06-30 Asm Japan K.K. Method for Sealing Pores at Surface of Dielectric Layer by UV Light-Assisted CVD
US8377823B2 (en) 2010-02-17 2013-02-19 Renesas Electronics Corporation Semiconductor device including porous layer covered by poreseal layer
JP2013521650A (ja) 2010-03-05 2013-06-10 アプライド マテリアルズ インコーポレイテッド ラジカル成分cvdによる共形層
JP2012015411A (ja) 2010-07-02 2012-01-19 Tokyo Electron Ltd 半導体装置の製造方法及び半導体装置
US8765573B2 (en) 2010-09-20 2014-07-01 Applied Materials, Inc. Air gap formation
US20130217241A1 (en) * 2011-09-09 2013-08-22 Applied Materials, Inc. Treatments for decreasing etch rates after flowable deposition of silicon-carbon-and-nitrogen-containing layers
US9023737B2 (en) * 2012-07-11 2015-05-05 Asm Ip Holding B.V. Method for forming conformal, homogeneous dielectric film by cyclic deposition and heat treatment
US9514932B2 (en) 2012-08-08 2016-12-06 Applied Materials, Inc. Flowable carbon for semiconductor processing
US9040430B2 (en) 2013-06-27 2015-05-26 Lam Research Corporation Method of stripping organic mask with reduced damage to low-K film
US9190263B2 (en) * 2013-08-22 2015-11-17 Asm Ip Holding B.V. Method for forming SiOCH film using organoaminosilane annealing
US9136108B2 (en) 2013-09-04 2015-09-15 Asm Ip Holding B.V. Method for restoring porous surface of dielectric layer by UV light-assisted ALD
US9029265B2 (en) 2013-10-15 2015-05-12 United Microelectronics Corp. Method for forming semiconductor structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265061B1 (en) * 2003-05-09 2007-09-04 Novellus Systems, Inc. Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties
CN101099232A (zh) * 2004-11-12 2008-01-02 艾克塞利斯技术公司 多孔低k介电膜的紫外辅助孔密封
US20090061237A1 (en) * 2007-08-28 2009-03-05 International Business Machines Corporation LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT
US20150044882A1 (en) * 2012-03-05 2015-02-12 Novellus Systems, Inc. Flowable oxide film with tunable wet etch rate
US20150179501A1 (en) * 2013-12-24 2015-06-25 Ritesh Jhaveri Techniques for trench isolation using flowable dielectric materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176322A (zh) * 2019-07-03 2021-01-05 株式会社国际电气 基板处理装置、半导体装置的制造方法、以及程序
CN112176322B (zh) * 2019-07-03 2022-07-15 株式会社国际电气 基板处理装置、半导体装置的制造方法、以及程序

Also Published As

Publication number Publication date
TWI706438B (zh) 2020-10-01
WO2017011088A1 (en) 2017-01-19
KR20180021214A (ko) 2018-02-28
TW201712731A (zh) 2017-04-01
US20170018455A1 (en) 2017-01-19
CN107851558B (zh) 2022-08-02
KR102546214B1 (ko) 2023-06-20
US9947576B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
KR102588666B1 (ko) 기판 상의 구조물 형성 방법
TWI670772B (zh) 可流動之低k介電質隙縫塡充處理
US10017856B1 (en) Flowable gapfill using solvents
US10096466B2 (en) Pulsed plasma for film deposition
US9018108B2 (en) Low shrinkage dielectric films
CN110120332A (zh) 对氧化硅膜进行沉积后处理的方法
TWI609455B (zh) 利用成核抑制之鎢特徵部塡充
TW201626503A (zh) 具有成核抑制的特徵部填充
US20130084711A1 (en) Remote plasma burn-in
CN106133884A (zh) 无卤素气相硅蚀刻
TW201124553A (en) Oxygen-doping for non-carbon radical-component CVD films
TW201231711A (en) Amine curing silicon-nitride-hydride films
TWI621731B (zh) 用於應力裝置之低溫可流動固化
TW201233842A (en) Radical steam CVD
JP2013501384A (ja) 非炭素流動性cvdプロセスを使用する酸化ケイ素の形成
JP4743229B2 (ja) 中性粒子を用いた半導体装置の成膜方法
JP2002064095A (ja) ヒドロキシルラジカルを用いる半導体基板の処理方法及び装置
TW201134975A (en) In-situ ozone cure for radical-component CVD
JPH11340211A (ja) 基板処理方法および基板処理装置
CN107851558A (zh) 以uv辅助方式将材料注入多孔膜
TW201602388A (zh) 密封膜之形成方法及密封膜製造裝置
TWI743242B (zh) 高壓退火及降低濕蝕刻速率
JP7114384B2 (ja) 酸化膜除去方法、および、酸化膜除去装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant