CN107849730A - 在单晶硅上生长外延3C‑SiC - Google Patents

在单晶硅上生长外延3C‑SiC Download PDF

Info

Publication number
CN107849730A
CN107849730A CN201680042627.0A CN201680042627A CN107849730A CN 107849730 A CN107849730 A CN 107849730A CN 201680042627 A CN201680042627 A CN 201680042627A CN 107849730 A CN107849730 A CN 107849730A
Authority
CN
China
Prior art keywords
source precursor
silicon
substrate
sic
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680042627.0A
Other languages
English (en)
Inventor
M·米罗诺夫
G·科尔斯顿
S·黑德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Warwick
Original Assignee
University of Warwick
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1513014.9A external-priority patent/GB2540608A/en
Priority claimed from GBGB1517167.1A external-priority patent/GB201517167D0/en
Application filed by University of Warwick filed Critical University of Warwick
Publication of CN107849730A publication Critical patent/CN107849730A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • H01L21/205

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

公开了一种用于在单晶硅上生长外延3C‑SiC的方法。该方法包括在冷壁化学气相沉积反应器(7)中提供单晶硅基板(2),将基板加热到大于或等于700℃且小于或等于1200℃的温度,当基板处于所述温度时,将气体混合物(41)引入反应器中,所述气体混合物包括硅源前体(16)、碳源前体(18)和载气(24),以在单晶硅上沉积3C‑SiC的外延层(图1;4)。

Description

在单晶硅上生长外延3C-SiC
技术领域
本发明涉及一种用于在单晶硅上,尤其但并不仅仅在同轴001取向的单晶硅上生长外延3C-碳化硅的方法和系统。
背景技术
碳化硅是宽带隙化合物半导体材料,其由于具有高的热导率、击穿场强和饱和速度,而非常适合在高功率和高频电子设备中使用。
根据硅和碳的双层堆叠的顺序,存在几种不同结晶形式(或“多型”)的碳化硅。在这些多型中,3C-碳化硅(3C-SiC)、4H-碳化硅(4H-SiC)和6H-碳化硅(6H-SiC)最常用于电子设备以及微机电系统(MEMS)和传感器中,以及用作生长诸如氮化镓(GaN)的其他材料的低成本平台。
4H-SiC和6H-SiC基板是商业可得的,并且在这些类型的基板上可生长高质量的4H-SiC和6H-SiC的同质外延层。然而,4H-SiC和6H-SiC基板的生产比硅基板要贵得多,并且小得多。
虽然3C-SiC基板不可得,但可在硅上生长异质外延3C-SiC。这允许使用更大更便宜的硅片。然而,目前,使用热壁化学气相沉积(CVD)反应器来在硅上生长3C-SiC外延层。据称,高温冷壁CVD反应器已用于在硅上生长3C-SiC外延层,但是不清楚在不损坏反应器或位于反应器内部的组分的情况下,在这样的反应器中如何实现超过1,300℃的温度。
此外,大部分(即便不是全部)对3C-SiC/Si异质外延的研究往往是在小基板,例如50mm直径的晶片或10mm冲模上进行的。这会对给定的异质外延工艺是否已成功且是否适于生产造成误导性印象,因为横跨小基板容易实现均匀的温度。因此,小的异质结构可能无法反映关于晶片之间缺乏均匀性、空隙和晶片弯曲度(wafer bow)的问题。
例如,R.Anzalone等人:“Heteroepitaxy of 3C-SiC on different on-axisoriented silicon substrates”,Journal of Applied Physics,第105卷,第084910页(2009)描述了在1350℃的生长温度下,使用三氯硅烷(SiHCl3)作为硅供应、乙烯(C2H4)作为碳供应以及氢气(H2)作为载气,在热壁低压化学气相(LPCVD)反应器中,在2英寸的硅片上生长外延膜。热壁CVD反应器往往具有低的吞吐量并需要定期昂贵的维护。
Wei-Yu Chen等人:“Crystal Quality of 3C-SiC Influenced by theDiffusion Step in the Modified Four-Step Method”,Journal of TheElectrochemical Society,第157卷,第H377-H380页(2010)描述了在1420℃的生长温度下,使用硅烷(SiH4)作为硅供应、丙烷(C3H8)作为碳供应以及氢气(H2)作为载气,在水平冷壁型LPCVD系统中,在1cm×cm基板上生长外延膜。虽然使用冷壁反应器,但也使用复杂的3步或4步沉积工艺,采用接近硅熔点的温度。然而,不清楚该工艺是否可重复,是否可在不损坏腔和腔内部的组分的情况下实现,以及是够可用于生产大量的大直径晶片。
Y.Gao等人:“Low-temperature chemical-vapor deposition of 3C-SiC filmson Si(100)using SiH4-C2H4-HCl-H2”,Journal of Crystal Growth,第191卷,第439至445页(1998)描述了使用HCl在硅上沉积3C-SiC膜以抑制纯硅成核。然而,该文章省略了几处细节,例如晶片碎料和尺寸,并且没有提及沉积之后基板是否遭受翘曲或弯曲。此外,SiC膜看起来非常粗糙。从文章所示的显微图可见,SiC膜的RMS表面粗糙度值似乎为几百纳米。另外,虽然使用较高浓度的HCl似乎改进了晶体质量,但其降低了生长速率,并且如果省略HCl,则SiC膜是多晶的。
发明内容
本发明旨在提供一种用于在单晶硅,例如单晶硅晶片或绝缘体上硅(silicon-on-insulator)晶片的硅单晶层等上生长外延3C-SiC的方法和系统。
根据本发明的第一方面,提供了在单晶硅上生长外延3C-SiC的方法。该方法包括在冷壁化学气相沉积反应器中提供单晶基板(例如单晶硅晶片或绝缘体上硅片)。该方法包括将基板加热到大于或等于700℃且小于或等于1200℃的温度,并在基板在该温度下时将气体混合物引入反应器中,以在单晶硅上沉积3C-SiC的外延层。气体混合物包括硅源前体、碳源前体和载气。
因此,可以更便宜地生产3C-SiC外延层,不仅是因为可以使用本身较便宜的硅,而且也因为可以使用大得多的晶片(例如,具有至少100mm的直径),这可以使3C-SiC外延层生产更便宜。此外,一种具有石英腔和红外灯热源的通常用于硅加工(但其经过适当改进)的商业上可用的冷壁减压或大气压化学气相沉积反应器可用于在单晶硅上生长外延3C-SiC。
3C-SiC生长速率可为至少1μm/h。生长速率可为至少10μm/h。生长速率可高达20μm/h或更大。然而,可使用更低的生长速率,例如以生长薄层3C-SiC(例如<100nm)。
该方法可包括在晶片上生长3C-SiC。晶片可具有至少100mm、至少200mm或至少450mm或更大的直径。晶片优选地为单晶晶片。然而,晶片可为绝缘体上硅(SOI)晶片或蓝宝石上硅(SoS)晶片或其他相似类型的基板。
碳源前体可为有机硅化合物。碳源前体可为含甲基的硅烷。优选地,碳源前体为三甲基硅烷(C3H10Si)。
优选硅源前体和碳源前体是不同的,即,不使用同时用作硅和碳源的单一前体。
碳源前体可具有至少1sccm或至少10sccm的流速。
硅源前体可为硅烷或含氯硅烷。优选地,硅源前体为二氯硅烷(SiH2Cl2)。硅源前体可为三氯硅烷。硅源前体可包括第一和第二前体组分。例如,硅源前体可包括诸如硅烷或乙硅烷和氯化氢(HCl)的气体混合物。
硅源前体可具有至少1sccm或至少10sccm的流速。
载气优选为氢气(H2)。
载气可具有至少1sccm或至少10sccm的流速。
碳源前体和硅源前体的流速的比率可小于3且大于0.33。碳源前体和硅源前体的流速的比率可小于2且大于0.5。碳源前体的硅源前体的流速可以相同或基本上相同(例如碳源前体和硅源前体的流速的比率小于1.2且大于0.8)。
气体混合物优选由硅源前体、碳源前体和载气,或者硅源前体、碳源前体、载气和掺杂剂源前体组成。
气体混合物优选排除(即,不包括或不由其组成)氯化氢(HCl)气体。
温度可大于或等于900℃,大于或等于900℃,或大于或等于1000℃。温度优选大于或等于1100℃。
沉积过程中反应器中的压力可大于或等于66.7Pa(0.5托)且小于或等于26.7kPa(200托)或小于或等于80kPa(600托),即,亚大气压(sub-atmospheric)化学气相沉积。沉积过程中反应器中的压力大于或等于13.3kPa(100托)且小于或等于13.3kPa(760托)。
单晶硅具有(001)表面取向。单晶硅可具有(110)取向。单晶硅可具有(111)取向。具有(111)取向(即,在(111)Si上生长)的3C-SiC的外延层可用作用于氮化镓(GaN)过度生长的基板。
优选地,单晶硅的表面是平坦的,即,未图案化的。单晶硅可以同轴的。单晶硅可以是偏轴的。
利用低温来外延可以有助于促进选择性外延。例如,如果硅表面被介电材料(例如氧化硅或氮化硅)或其他掩膜材料的区域覆盖以形成掩膜,那么3C-SiC可选择性地在硅上生长而不在掩膜上生长。
根据本发明的第二方面,提供了异质结构,其包括具有上表面(例如单晶基板)的单晶硅和沉积在该上表面的外延3C-SiC层的区域。外延3S-SiC层可具有至少1nm或10nm的厚度或具有至少500nm的厚度。
对于具有至少100mm直径的异质结构来说,基本上没有晶片弯曲。外延3C-SiC的表面可具有由AFM测量的小于或等于20nm且优选地小于或等于10nm的RMS表面粗糙度。
根据本发明的第三方面,提供了半导体设备(例如MOSFET或IGBT),其包括第二方面的异质结构。
根据本发明的第四方面,提供了MEMS设备,其包括第二方面的异质结构。
根据本发明的第五方面,提供了用于在单晶硅上生长外延3C-SiC的化学气相沉积系统。该系统包括冷壁反应器外壳、用于基板的支撑件、硅源前体的供应、碳源前体的供应、载气的供应、一组质量流量控制器(每个质量流量控制器与各自的供应可选择的流体连通)、用于接收来自质量流量控制器的气体并将气体混合物进料至反应器的分流管、用于加热基板的加热器、用于测量基板温度的温度传感器、用于测量反应器中压力的压力传感器、与反应器可选择的流体连通的真空泵、控制系统,所述控制系统配置当在反应器中提供基板时,在大于或等于700℃且小于或等于1,200℃的温度下使3C-SiC层外延地在基板的单晶硅表面上沉积。
化学气相沉积系统优选地能够处理以直径为至少100mm的晶片形式的基板。该系统能够处理直径大于或等于200mm或大于或等于450mm的晶片。
附图说明
现在将参照附图,通过实施例描述本发明的某些实施方式,其中:
图1示出在同轴、001取向的单晶基板上的3C-SiC层;
图2为用于在具有单晶硅表面的基板上生长外延3C-SiC的装置的示意图;
图3为在单晶硅上生长外延3C-SiC的方法的工艺流程图;
图4示出3C-SiC外延生长方法的温度曲线;
图5示出改进的3C-SiC外延生长方法的温度曲线;
图6示出具有不同碳硅比的4个3C-SiC/Si异质结构的对称x射线衍射ω-2θ图;且
图7为在Si上(001)的晶体3C-SiC层在220平面上的横截面的暗场透射电子显微镜(TEM)显微照片,显示在3C-SiC/Si界面处存在堆叠缺陷且缺乏空隙。
具体实施方式
3C-SiC/Si异质结构1
参照图1,显示了通过根据本发明的外延生长方法生产的3C-碳化硅/硅(3C-SiC/Si)异质结构1。
3C-SiC/Si异质结构1包括具有上表面3的单晶硅基板2以及直接置于硅基板2的上表面3上的3C-SiC单晶层4(本文中也成为“外延层(epitaxial layer)”或“外延层(epitaxial layer)”,或简化为“层”)。然而,无需使用单晶硅基板2。可以使用在其上表面具有单晶硅的区域或层的基板(未显示),例如绝缘体上硅。
硅基板2采取直径d为100nm的同轴(001)取向硅片的形式。然而,直径d可高达450mm或更大。硅基板2的表面3未被图案化。换句话说,表面3不必专门配置以促进外延。
3C-SiC层4具有厚度tepi,其可为大于或等于1nm、大于或等于10nm、大于或等于100nm或者大于或等于500nm。3C-SiC层4可具有厚度tepi,其数量级为1μm、10甚至100μm。
化学气相沉积系统6
参照图2,显示了根据本发明用于在硅上外延生长晶体3C-SiC层的化学气相沉积系统6。CVD系统6采取减压化学气相沉积(RP-CVD)系统的形式。具体地,系统6采取ASMEpsilon 2000RP-CVD系统的形式。为了清楚起见,图2中省略了各种阀(如排气阀)和管道(如旁路管道)。
化学气相沉积系统6包括冷壁水平式反应器7,其具有水冷石英反应器壁(未显示)的和一组采取红外灯形式的外部加热器9。可以使用其他形式的加热器9,例如感应线圈。
反应器7容纳用于一个或多个硅片2的基板支撑件10,所述一个或多个硅片2可通过装载锁11装载到反应器中。使用呈高温计形式的温度传感器12测量晶片2的温度T。使用温度控制器13控制加热器9并从而控制温度T。
化学气相沉积系统6包括气体供应系统14,其包括硅源前体16的供应15、碳源前体18的供应17、n型掺杂剂前体20的可选供应19、n型掺杂剂前体22的可选供应21、氢气(H2)形式的载气24的供应23以及氮气(N2)形式的净化气体26的供应25,一组单个阀27、28、29、30、31、32和一组单个质量流量控制器33、34、35、36、37、38,其用于以各自指定的流速(以标准升/分钟或标准立方米/分钟测量)将气体供应到与反应器7的气体入口40连接的分流管39中。
如在下文中更详细解释,气体供应系统14用于将包括硅源前体16、碳源前体18、任选地掺杂剂前体20、22和载气24的气体混合物41供应至用于3C-SiC外延的反应器7。
化学气相沉积系统6包括与出口43流体连通的泵送系统42,其可用于提取反应产物混合物44。泵送系统42包括一个或真空泵45,其通过以下平行布置连接至出口43:高电导线46和可用于将反应器7快速泵送下降至基础压力的相应阀47,以及低电导线48和可在生产过程中使用的相应流动可控阀49。使用例如以皮氏计(Piranigauge)的形式的压力传感器50测量反应器7中的压力P。使用压力控制器51控制泵45、可控阀49并从而控制压力P。
化学气相沉积系统6包括可采取计算机系统的形式的主控制器53,其可用于控制温度控制器13、质量流量控制器33、34、35、36、37、38以及压力控制器51,例如通过调节设定点。
硅源前体16采取具有化学式SiH2Cl2的二氯甲烷(其可称为“DCS”)的形式,而硅源前体18采取具有化学式C3H10Si的三甲基硅烷(其可称为“TMS”)的形式。n型掺杂剂前体20可采取胂(AsH3)或膦(PH3)的形式。p型掺杂剂前体22可采取二硼烷(B2H6)的形式。
晶体3C-SiC在Si上的低温(≤1,200℃)外延生长
使用二氯硅烷16和三甲基硅烷18,化学气相沉积系统6可用于在等于或低于1,200℃的沉积温度TEPI下,在空白(即,未图案化的)硅基板2(例如在同轴(001)取向的硅片)上生长晶体3C-SiC外延层,并且可实现超过10μm/h的生长速率。若需要时,可使用更低的生长速率。
图3为同轴(001)取向的硅片2上生长外延3C-SiC的方法的工艺流程图。
参照图2、3和4,清洁同轴(001)取向的硅片2,并利用氢氟(HF)酸浸去除其本身表面氧化物(未显示)(步骤S1)。在大气压下通过装载锁11,在待机温度TSB下将晶片2装载到反应器7中(步骤S2)。待机温度TSB为900℃。然而,待机温度TSB可采用介于室温与1,200℃之间的值。
在100托的压力下以10slm的流速在将载气24(该情况下为氢气)引入反应器7中(步骤S3)。打开并控制加热器9以使晶片2的温度达到并保持在设定点温度,在该情况下其为1,190℃(步骤S4)。
当温度保持在1,190℃并且压力保持在13.3kPa(100Torr)时,将二氯硅烷16、三甲基硅烷18和氢气24的混合物41分别以10sccm、10sccm和10,000sccm的流速引入反应器7中(步骤S5)。因此,二氯硅烷16和三甲基硅烷18的分压分别为13.3Pa、13.3Pa。对于该气体混合物41和气体流速,以及在该温度和压力下,生长速率为约20μm/h。
气体混合物41继续流动直到生长3C-SiC的所需厚度(步骤S6)。一旦达到所需厚度,就停止二氯硅烷16和三甲基硅烷18的流动(步骤S7),但载气24继续流动(步骤S8)。关闭加热器9(步骤S19)并使3C-SiC/Si晶片1(图1)冷却。这可耗费约5至10分钟。一旦晶片1(图1)已经冷却,就停止载气20流动并吹净反应器7(步骤S10)。然后将3C-SiC/Si晶片1(图1)从反应器7中移出(步骤S11)。
3C-SiC/Si晶片1可被加工以形成电子设备,例如SiC MOSFET和/或SiC IGBT(未显示),使用3C-SiC以形成漂移层、掺杂井区以及源区和漏区。
3C-SiC/Si晶片1可被加工以形成MEMS设备。
参照图5,可通过在外延之前原位形成薄晶种层(未显示)来改进该方法。晶种层(未显示)包括厚度高达10nm的硅-碳层(Si1-xCx,其中x为约0.01)。
在大气压下通过装载锁11在待机温度TSB下将晶片2装载到反应器7中之后,将晶片2冷却到600℃。利用相同前体、相同流速和相同压力进行短的沉积循环(例如,持续几分钟)。然而,由于较低的温度,该方法未产生外延。
不希望受理论的束缚,认为晶种层(未显示)有助于在外延过程中防止在硅表面形成空隙。
特性
在3C-SiC/Si异质结构1中没有观察到晶片弯曲,该3C-SiC/Si异质结构1包括在1,190℃下使用上文所述的方法利用二氯硅烷和三甲基硅烷在100mm直径(100)取向的同轴单晶硅晶片上生长的3C-SiC外延层。此外,当使用原子力显微镜测量时,3C-SiC/Si异质结构1具有(10±1)nm的RMS表面粗糙度。
图6示出分别具有4:1、3:1、6:4和3:4的碳硅比的第一、第二、第三和第四3C-SiC/Si异质结构的对称x射线衍射ω-2θ图。
来自Si(001)基板和3C-SiC外延层的峰分别在34.5°和45°清晰可见。该图显示3C-SiC外延层为晶体。
图7显示在1,190℃的温度下使用上文所述的方法生长的3C-SiC/Si(001)异质结构1的横截面TEM图像。该TEM图像证实了低温生长的3C-SiC外延层的结晶度和质量。
通过使用不同前体作为硅源和碳源,可以调整碳硅比并抑制硅从基板向外的扩散以及防止空隙的形成。
修改
应理解的是,可以对上文描述的实施方式作出许多修改。
硅基板可采取绝缘体上硅(SOI)基板的形式,其包括硅处理层、隐埋氧化物层和顶部硅层。硅基板不必具有(001)晶体取向,而是可具有其他晶体取向,例如(111)或(110)。
CVD系统不必为RPCVD系统,而是可为大气压化学气相沉积(APCVD)系统。反应器不必为水平式反应器,而是可采取其他形式,例如辐射筒型或垂直式反应器。
一种通常用于工业规模的硅加工(其可处理具有至少100mm的直径的晶片)并具有合适前体的冷壁减压或大气压化学气相沉积反应器可用于在单晶硅上生长外延3C-SiC。
可使用其他硅源前体。例如,可使用硅烷,比如硅烷(SiH4)或含氯硅烷,比如三氯硅烷(SiHCl3)。
可使用其他碳源前体。例如,可使用含甲基的硅烷,比如甲基硅烷(CH6Si)或五亚甲基甲基硅烷(C6H14Si)。
可使用其他载气,例如氩气或氦气。

Claims (25)

1.一种在单晶硅上生长外延3C-SiC的方法,所述方法包括:
在冷壁化学气相沉积反应器(7)中提供单晶硅基板(2);
将所述基板加热到大于或等于700℃且小于或等于1200℃的温度;
当所述基板处于所述温度时,将气体混合物(33)引入所述反应器中,所述气体混合物包括硅源前体(16)、碳源前体(18)和载气(20),以在所述单晶硅上沉积3C-SiC的外延层(4)。
2.根据权利要求1所述的方法,其中所述碳源前体(18)包括有机硅化合物。
3.根据权利要求1或2所述的方法,其中所述碳源前体(18)包括含甲基的硅烷。
4.根据权利要求3所述的方法,其中所述碳源前体(18)包括三甲基硅烷。
5.根据前述权利要求中任一项所述的方法,其中所述碳源前体(18)的流速为至少1sccm。
6.根据前述权利要求中任一项所述的方法,其中所述碳源前体(18)的流速为至少10sccm。
7.根据前述权利要求中任一项所述的方法,其中所述硅源前体(16)包括硅烷或含氯硅烷。
8.根据权利要求7所述的方法,其中所述硅源前体(16)包括二氯硅烷。
9.根据前述权利要求中任一项所述的方法,其中所述硅源前体(16)包括两种或更多不同的前体组分。
10.根据前述权利要求中任一项所述的方法,其中所述硅源前体(16)的流速为至少1sccm。
11.根据前述权利要求中任一项所述的方法,其中所述硅源前体(16)的流速为至少10sccm。
12.根据前述权利要求中任一项所述的方法,其中所述碳源前体(18)和所述硅源前体(16)的流速的比率小于1.2且大于0.8。
13.根据前述权利要求中任一项所述的方法,其中所述碳源前体(18)和所述硅源前体(16)的流速相同。
14.根据前述权利要求中任一项所述的方法,其中该温度T大于或等于1100℃。
15.根据权利要求1至14中任一项所述的方法,其中沉积过程中所述反应器(7)中的压力大于或等于66.7Pa(0.5托)且小于或等于26.7kPa(200托)。
16.根据权利要求1至14中任一项所述的方法,其中沉积过程中所述反应器(7)中的压力大于或等于13.3kPa(100托)。
17.根据前述权利要求中任一项所述的方法,其中所述单晶硅具有(001)表面取向。
18.根据前述权利要求中任一项所述的方法,其中所述单晶硅基板(2)具有平坦表面(3)。
19.根据前述权利要求中任一项所述的方法,其中所述单晶硅基板(2)包括单晶硅晶片。
20.根据前述权利要求中任一项所述的方法,其中所述气体混合物不包括氯化氢(HCl)气体。
21.一种异质结构,其包括:
具有单晶硅表面的基板;和
置于所述单晶硅表面上的具有至少500nm厚度的外延3C-SiC层。
22.一种半导体设备,其包括:
根据权利要求21所述的异质结构。
23.一种化学气相沉积系统,所述化学气相沉积系统用于在具有单晶硅表面的基板上生长外延3C-SiC的,所述化学气相沉积系统包括:
冷壁反应器(7),其容纳用于支撑所述基板的支撑件(10);
硅源前体(16)的供应(15);
碳源前体(18)的供应(17);
载气(24)的供应(23);
一组质量流量控制器(33、34、37),每个质量流量控制器与各自的供应可选择的流体连通;
分流管(39),其用于接收来自所述质量流量控制器的气体并将气体混合物(41)进料至所述反应器;
加热器(9),其用于加热所述基板;
温度传感器(12),其用于测量所述基板的温度;
压力传感器(50),其用于测量所述反应器中的压力;
真空泵(45),其与所述反应器可选择的流体连通;
控制系统(13、33、34、37、51、53),其配置为当在所述反应器中提供所述基板时,所述控制系统(13、33、34、37、51、53)在所述基板为大于或等于700℃且小于或等于1,200℃的温度时使3C-SiC层外延地在所述基板的所述单晶硅表面上沉积。
24.根据权利要求23所述的化学气相沉积系统,其能够处理直径为至少100mm的晶片的形式的基板。
25.根据权利要求24所述的化学气相沉积系统,其中所述直径为至少200mm或至少450mm。
CN201680042627.0A 2015-07-23 2016-07-22 在单晶硅上生长外延3C‑SiC Pending CN107849730A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1513014.9A GB2540608A (en) 2015-07-23 2015-07-23 Growing epitaxial 3C-SiC on single-crystal silicon
GB1513014.9 2015-07-23
GB1517167.1 2015-09-29
GBGB1517167.1A GB201517167D0 (en) 2015-09-29 2015-09-29 Growing epitaxial 3C-SiC on single -crystal silicon
PCT/GB2016/052244 WO2017013445A1 (en) 2015-07-23 2016-07-22 Growing expitaxial 3c-sic on single-crystal silicon

Publications (1)

Publication Number Publication Date
CN107849730A true CN107849730A (zh) 2018-03-27

Family

ID=56738128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680042627.0A Pending CN107849730A (zh) 2015-07-23 2016-07-22 在单晶硅上生长外延3C‑SiC

Country Status (9)

Country Link
US (1) US10907273B2 (zh)
EP (1) EP3325695A1 (zh)
JP (1) JP2018522412A (zh)
KR (1) KR20180042228A (zh)
CN (1) CN107849730A (zh)
AU (1) AU2016296147A1 (zh)
RU (1) RU2764040C2 (zh)
TW (1) TW201716647A (zh)
WO (1) WO2017013445A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246890A (zh) * 2019-06-14 2019-09-17 大连芯冠科技有限公司 Hemt器件的外延结构
CN110499530A (zh) * 2019-08-28 2019-11-26 大同新成新材料股份有限公司 一种电子碳化硅芯片的生产设备及其方法
CN111477542A (zh) * 2020-05-25 2020-07-31 芜湖启迪半导体有限公司 一种含超级结的3C-SiC外延结构及其制备方法
CN112447498A (zh) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 降低双极型器件正向导通SFs拓展的SiC外延层生长方法、结构及生长方法供气管路
CN113622030A (zh) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 碳化硅单晶体的制备方法
CN114068308A (zh) * 2022-01-17 2022-02-18 季华实验室 一种用于硅基mosfet器件的衬底及其制备方法
CN117248275A (zh) * 2023-11-20 2023-12-19 希科半导体科技(苏州)有限公司 碳化硅化学气相沉积外延方法和碳化硅外延片
CN117438391A (zh) * 2023-12-18 2024-01-23 北京青禾晶元半导体科技有限责任公司 一种高热导率3C-SiC多晶基板及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217630B2 (en) * 2016-11-24 2019-02-26 Tokyo Electron Limited Method of forming silicon-containing film
FR3068506B1 (fr) 2017-06-30 2020-02-21 Soitec Procede pour preparer un support pour une structure semi-conductrice
JP7259906B2 (ja) 2021-09-21 2023-04-18 信越半導体株式会社 ヘテロエピタキシャルウェーハの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160361A1 (en) * 2000-05-31 2001-12-05 Hoya Corporation Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
WO2009021199A1 (en) * 2007-08-08 2009-02-12 Sic Systems, Inc. Production of bulk silicon carbide with hot-filament chemical vapor deposition
CN104152986A (zh) * 2014-08-26 2014-11-19 武汉理工大学 快速制备3C-SiC外延膜方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419409B2 (ja) 2002-12-25 2010-02-24 住友電気工業株式会社 Cvdエピタキシャル成長方法
WO2005087983A2 (en) * 2004-03-05 2005-09-22 University Of North Carolina At Charlotte Alternative methods for fabrication of substrates and heterostructures made of silicon compounds and alloys
WO2008011022A1 (en) 2006-07-19 2008-01-24 Dow Corning Corporation Method of manufacturing substrates having improved carrier lifetimes
RU2499324C2 (ru) 2011-10-07 2013-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет" ГЕТЕРОСТРУКТУРЫ SiC/Si И Diamond/SiC/Si, А ТАКЖЕ СПОСОБЫ ИХ СИНТЕЗА
US9546420B1 (en) * 2012-10-08 2017-01-17 Sandia Corporation Methods of depositing an alpha-silicon-carbide-containing film at low temperature
TWI500806B (zh) * 2014-03-10 2015-09-21 Nat Univ Tsing Hua 碳化矽薄膜的製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160361A1 (en) * 2000-05-31 2001-12-05 Hoya Corporation Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
WO2009021199A1 (en) * 2007-08-08 2009-02-12 Sic Systems, Inc. Production of bulk silicon carbide with hot-filament chemical vapor deposition
CN104152986A (zh) * 2014-08-26 2014-11-19 武汉理工大学 快速制备3C-SiC外延膜方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246890A (zh) * 2019-06-14 2019-09-17 大连芯冠科技有限公司 Hemt器件的外延结构
CN110499530A (zh) * 2019-08-28 2019-11-26 大同新成新材料股份有限公司 一种电子碳化硅芯片的生产设备及其方法
CN110499530B (zh) * 2019-08-28 2023-09-12 大同新成新材料股份有限公司 一种电子碳化硅芯片的生产设备及其方法
CN112447498A (zh) * 2019-08-29 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 降低双极型器件正向导通SFs拓展的SiC外延层生长方法、结构及生长方法供气管路
CN111477542A (zh) * 2020-05-25 2020-07-31 芜湖启迪半导体有限公司 一种含超级结的3C-SiC外延结构及其制备方法
CN113622030A (zh) * 2021-08-18 2021-11-09 福建北电新材料科技有限公司 碳化硅单晶体的制备方法
CN114068308A (zh) * 2022-01-17 2022-02-18 季华实验室 一种用于硅基mosfet器件的衬底及其制备方法
CN117248275A (zh) * 2023-11-20 2023-12-19 希科半导体科技(苏州)有限公司 碳化硅化学气相沉积外延方法和碳化硅外延片
CN117438391A (zh) * 2023-12-18 2024-01-23 北京青禾晶元半导体科技有限责任公司 一种高热导率3C-SiC多晶基板及其制备方法
CN117438391B (zh) * 2023-12-18 2024-03-15 北京青禾晶元半导体科技有限责任公司 一种高热导率3C-SiC多晶基板及其制备方法

Also Published As

Publication number Publication date
EP3325695A1 (en) 2018-05-30
AU2016296147A1 (en) 2018-01-18
RU2018105878A (ru) 2019-08-26
TW201716647A (zh) 2017-05-16
RU2764040C2 (ru) 2022-01-13
WO2017013445A1 (en) 2017-01-26
US10907273B2 (en) 2021-02-02
RU2018105878A3 (zh) 2019-10-23
US20180209063A1 (en) 2018-07-26
KR20180042228A (ko) 2018-04-25
JP2018522412A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
CN107849730A (zh) 在单晶硅上生长外延3C‑SiC
KR102552383B1 (ko) 2차원 물질의 제조 방법
CN103228827B (zh) 外延碳化硅单晶基板的制造方法
US9218962B2 (en) Low temperature epitaxy of a semiconductor alloy including silicon and germanium employing a high order silane precursor
US7329593B2 (en) Germanium deposition
CN103715069B (zh) 一种减少碳化硅外延薄膜中缺陷的方法
US7601215B1 (en) Method for rapid, controllable growth and thickness, of epitaxial silicon films
Wang et al. Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates
JP5910430B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
CN104412362A (zh) 碳化硅外延晶片及其制备方法
CN101440521A (zh) 半导体晶体生长方法、半导体晶体基板及其制造方法
JPWO2007049402A1 (ja) 大気圧水素プラズマを用いた膜製造方法、精製膜製造方法及び装置
WO2023079880A1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP2003212694A (ja) 電子素子基板上へのSiC又はGaN単結晶の成長方法
US8530339B2 (en) Method for direct deposition of a germanium layer
GB2540608A (en) Growing epitaxial 3C-SiC on single-crystal silicon
CN117867654A (zh) 一种碳化硅同质外延材料的制备方法及其生长室
Zhang et al. High Growth Rate (up to 20 µm/h) SiC Epitaxy in a Horizontal Hot-wall Reactor
WO2018078385A1 (en) Coated wafer
Yan et al. Multi-wafer 3C-SiC thin films grown on Si (100) in a vertical HWLPCVD reactor
US20070254450A1 (en) Process for forming a silicon-based single-crystal portion
Kim et al. Influence of carbonization conditions in hydrogen poor ambient conditions on the growth of 3C-SiC thin films by chemical vapor deposition with a single-source precursor of hexamethyldisilane
JP2704224B2 (ja) 半導体素子及びその製法
JPS6325914A (ja) 半導体装置の製造方法
KR20210058577A (ko) 그래핀과 하이브리드화에 의한 다이아몬드의 밴드갭 제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180327

WD01 Invention patent application deemed withdrawn after publication