CN117438391B - 一种高热导率3C-SiC多晶基板及其制备方法 - Google Patents

一种高热导率3C-SiC多晶基板及其制备方法 Download PDF

Info

Publication number
CN117438391B
CN117438391B CN202311734685.8A CN202311734685A CN117438391B CN 117438391 B CN117438391 B CN 117438391B CN 202311734685 A CN202311734685 A CN 202311734685A CN 117438391 B CN117438391 B CN 117438391B
Authority
CN
China
Prior art keywords
sic
substrate
single crystal
thermal conductivity
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311734685.8A
Other languages
English (en)
Other versions
CN117438391A (zh
Inventor
黄秀松
郭超
母凤文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jc Innovative Semiconductor Substrate Technology Co ltd
Beijing Qinghe Jingyuan Semiconductor Technology Co ltd
Original Assignee
Jc Innovative Semiconductor Substrate Technology Co ltd
Beijing Qinghe Jingyuan Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jc Innovative Semiconductor Substrate Technology Co ltd, Beijing Qinghe Jingyuan Semiconductor Technology Co ltd filed Critical Jc Innovative Semiconductor Substrate Technology Co ltd
Priority to CN202311734685.8A priority Critical patent/CN117438391B/zh
Publication of CN117438391A publication Critical patent/CN117438391A/zh
Application granted granted Critical
Publication of CN117438391B publication Critical patent/CN117438391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates

Abstract

本发明提供了一种高热导率3C‑SiC多晶基板及其制备方法,涉及半导体材料制备技术领域,所述高热导率3C‑SiC多晶基板的热导率为400‑450,晶型为100%的3C‑SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向,通过化学气相沉积方法,在一定温度和压力下,在Si单晶基底上,且Si单晶基底的表面为完全正轴的Si(111)面,生长晶粒尺寸较大和取向一致的3C‑SiC多晶层,消除了晶界对沿厚度方向导热过程中晶格振动的散射作用,增加了沿厚度方向的热导率,使得基于3C‑SiC多晶基板的复合3C‑SiC基板具有优异的散热性能。

Description

一种高热导率3C-SiC多晶基板及其制备方法
技术领域
本发明涉及半导体材料制备技术领域,具体涉及一种高热导率3C-SiC多晶基板及其制备方法。
背景技术
碳化硅材料具有耐高温、耐高压、耐辐射、耐化学腐蚀、硬度大、热导率大等优点。由3C-SiC材料构成的基板可用来制作半导体工艺中的加热板、聚焦环、保护环等零件。
由于3C-SiC基板相较于4H-SiC晶圆具有更低的生产成本,最近,较厚的3C-SiC基板被用来作为支撑层,与较薄的4H-SiC晶圆复合,形成比完全含4H-SiC的晶圆更低成本的复合碳化硅晶圆。该复合碳化硅晶圆在经历外延、刻蚀、离子注入、封装等步骤后被制作成MOSFET等器件。相较于其他用途的碳化硅基板,该类型的3C-SiC基板希望具有更高的热导率,以提高复合碳化硅基板的散热性能。
化学气相沉积(CVD)方法是制造3C-SiC基板的常用方法。其主要过程为含Si和C的气态物质在基材表面经历化学反应形成固态的3C-SiC,并生长在基材表面。随着时间延长,在基材上形成一定厚度的3C-SiC基板,通过研磨或化学反应等方法剥离基材,形成单一材质的3C-SiC基板。
通过CVD方法形成的3C-SiC一般呈现无特定取向的多晶结构。其原因在于用来生长3C-SiC多晶的基底为石墨板,石墨板的表面呈现各个晶体方向,导致在石墨板上生长的3C-SiC多晶呈现各种晶粒取向。由于固体导热依赖于晶格振动传递,晶界对于晶格振动具有散射作用,导致晶界降低材料的导热系数。现有技术已经公开了晶界显著降低3C-SiC多晶的热导率,并进一步公开了在石墨上沉积3C-SiC多晶,获得了306的热导率。但是,相较于3C-SiC单晶约500/>的热导率,3C-SiC多晶基板的热导率仍有显著的提升空间。
综上所述,需要开发一种新的3C-SiC多晶基板及其制备方法,以提高3C-SiC多晶基板的热导率。
发明内容
鉴于现有技术中存在的问题,本发明提供了一种高热导率3C-SiC多晶基板及其制备方法,所述高热导率3C-SiC多晶基板的热导率为400-450,晶型为100%的3C-SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向,通过化学气相沉积方法,在一定温度和压力下,在Si单晶基底上,且Si单晶基底的表面为完全正轴的Si(111)面,生长晶粒尺寸较大和取向一致的3C-SiC多晶层,消除了晶界对沿厚度方向导热过程中晶格振动的散射作用,增加了沿厚度方向的热导率,使得基于3C-SiC多晶基板的复合3C-SiC基板具有优异的散热性能。
为达此目的,本发明采用以下技术方案:
本发明的目的之一在于提供一种高热导率3C-SiC多晶基板,所述高热导率3C-SiC多晶基板的热导率为400-450,晶型为100%的3C-SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向。
本发明所述高热导率3C-SiC多晶基板呈现晶粒尺寸较大和取向一致的3C-SiC柱状晶多晶厚膜,消除了晶界对沿厚度方向导热过程中晶格振动的散射作用,增加了沿厚度方向的热导率,提高了基于3C-SiC多晶基板的复合3C-SiC基板的散热性能。
需要说明的是,本发明中,所述高热导率3C-SiC多晶基板的热导率为400-450,例如400/>、410/>、420/>、430/>、440/>或450/>等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,所述高热导率3C-SiC多晶基板的厚度≥0.5mm,柱状晶的平均晶粒直径为0.5-3mm,例如0.5mm、1mm、1.5mm、2mm、2.5mm或3mm等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
需要说明的是,本发明中,高热导率3C-SiC多晶基板的晶粒为沿厚度方向的柱状晶,而柱状晶的近圆形端面平行于Si单晶基底的表面,且柱状晶的平均晶粒直径为0.5-3mm。
本发明的目的之二在于提供一种目的之一所述的高热导率3C-SiC多晶基板的制备方法,所述制备方法包括如下步骤:
(1)采用化学气相沉积在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面为完全正轴的Si(111)面,得到Si/3C-SiC复合体;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面进行切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体去除Si单晶基底,依次进行研磨与抛光,得到高热导率3C-SiC多晶基板。
本发明提出通过化学气相沉积方法,在一定温度和压力下,在Si单晶基底上,且Si单晶基底的表面为完全正轴的Si(111)面,生长晶粒取向一致的3C-SiC多晶层,使得3C-SiC多晶层沿厚度方向热导率在400-450之间,使得基于3C-SiC多晶基板的复合3C-SiC基板具有优异的散热性能。
需要说明的是,本发明中,Si单晶基底的表面为完全正轴的Si(111)面,法向为完全正轴的(111)方向。假如使用表面法向为(110)、(100)或其他方向的Si单晶基底,则在生长时会呈现(111)和其他取向混合的晶粒,导致柱状晶生长特征减弱,3C-SiC多晶层的热导率降低。假如使用偏转(111)方向一定角度的Si单晶基底,则在生长时会呈现(111)和其他取向混合的晶粒,导致柱状晶生长特征减弱,3C-SiC多晶层的热导率降低。
作为本发明优选的技术方案,步骤(1)中,所述Si单晶基底的表面粗糙度<0.5nm。
需要说明的是,本发明中,需要控制Si单晶基底的表面粗糙度小于0.5nm,过大的表面粗糙度会导致SiC在生长时形成更多晶界,晶粒尺寸变小,晶界缺陷的增多导致3C-SiC多晶热导率降低。
作为本发明优选的技术方案,步骤(1)中,所述化学气相沉积的生长温度为1200-1300℃,例如1200℃、1210℃、1220℃、1230℃、1240℃、1250℃、1260℃、1270℃、1280℃、1290℃或1300℃等,生长压力为2000-10000Pa,例如2000Pa、3000Pa、4000Pa、5000Pa、6000Pa、7000Pa、8000Pa、9000Pa或10000Pa等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
需要说明的是,本发明中,由于采用的是Si单晶基底,生长温度需低于1300℃,以防止Si单晶基底软化。而控制生长温度为1200-1300℃,通过工艺参数的调控,易择优生长(111)取向的晶粒。若生长温度低于1200℃,生长速度降低,且柱状晶生长转变为树枝状生长;若生长温度高于1300℃,Si单晶基底发生软化。生长压力需要控制在2000-10000Pa,若生长压力低,会导致生长速度降低,若生长压力过高,会导致柱状晶生长转变为树枝状生长。
作为本发明优选的技术方案,步骤(1)中,所述化学气相沉积的气源为三氯甲基硅烷和氢气,控制三氯甲基硅烷和氢气的流量比为1:(10-20),例如1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19或1:20等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
需要说明的是,本发明中,采用的化学气相沉积装置可以是水平进气或竖直进气,优选竖直进气;采用的化学气相沉积装置可以是热壁式或冷壁式,优选热壁式。将Si单晶基底固定于腔体内,可以通过悬挂丝固定,也可以是通过其他连接件连接固定。悬挂丝可以是石墨绳子或钼丝,优选钼丝。
需要说明的是,本发明中,用来经过化学反应生成SiC的原料气体为三氯甲基硅烷(CH3SiCl3)。采用鼓泡方法将在常温下呈现液态的三氯甲基硅烷转变为气态。鼓泡时通入的载气为氢气(H2)。通入腔体的稀释气为氢气。生长开始时,先将腔体加热至生长温度,并维持在一定压力,接着通入原料气体和稀释气进行生长,原料气体为三氯甲基硅烷和氢气,三氯甲基硅烷和氢气的流量比为1:(10-20),若三氯甲基硅烷浓度过高,易导致柱状晶生长转变为树枝状生长,若三氯甲基硅烷浓度过低,易导致生长速度降低。
作为本发明优选的技术方案,步骤(1)中,所述3C-SiC多晶层的生长速度为50-100μm/h,例如50μm/h、55μm/h、60μm/h、65μm/h、70μm/h、75μm/h、80μm/h、85μm/h、90μm/h、95μm/h或100μm/h等,所述3C-SiC多晶层的厚度为1-10mm,例如1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
需要说明的是,本发明中,控制3C-SiC多晶层的生长速度为50-100μm/h,过低的生长速度会降低生产效率,过高的生长速率易导致柱状晶生长转变为树枝状生长。
作为本发明优选的技术方案,步骤(2)中,所述切割为金刚线切割。
作为本发明优选的技术方案,步骤(3)中,所述去除Si单晶基底采用化学腐蚀方法,例如化学原料采用HF酸溶液。
作为本发明优选的技术方案,步骤(3)中,所述研磨使得表面粗糙度<30nm。
需要说明的是,本发明中,所述研磨采用金刚石砂轮双面研磨3C-SiC多晶层表面,使得研磨后的表面粗糙度小于30nm。
作为本发明优选的技术方案,步骤(3)中,所述抛光采用化学机械抛光,使得表面粗糙度<1nm。
需要说明的是,本发明中,所述抛光采用化学机械抛光方法对3C-SiC多晶基板进行单面抛光。抛光面为接近CVD最后生长的表面,相对于接近Si单晶基底的表面,该面附近组织含有较少的位错类缺陷;进一步地,所述抛光包括依次进行的粗抛和精抛,粗抛时,抛光液所用磨料包括金刚石颗粒,抛光后表面粗糙度小于3nm,精抛时,抛光液所用磨料包括二氧化硅颗粒,抛光后表面粗糙度小于1nm。
与现有技术方案相比,本发明至少具有以下有益效果:
本发明提供了一种高热导率3C-SiC多晶基板及其制备方法,所述高热导率3C-SiC多晶基板的热导率为400-450,晶型为100%的3C-SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向,通过化学气相沉积方法,在一定温度和压力下,在Si单晶基底上,且Si单晶基底的表面为完全正轴的Si(111)面,生长晶粒尺寸较大和取向一致的3C-SiC多晶层,消除了晶界对沿厚度方向导热过程中晶格振动的散射作用,增加了沿厚度方向的热导率,使得基于3C-SiC多晶基板的复合3C-SiC基板具有优异的散热性能。
附图说明
图1是本发明所述高热导率3C-SiC多晶基板的制备方法的流程示意图;
图2是本发明步骤(1)中在Si单晶基底上生长的3C-SiC多晶层为择优取向的示意图;
图3是本发明实施例1所得高热导率3C-SiC多晶基板的X射线衍射仪检测谱图;
图4是本发明实施例1所得高热导率3C-SiC多晶基板的截面组织。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
本发明所述高热导率3C-SiC多晶基板的制备方法的流程示意图如图1所示,所述制备方法包括如下步骤:
(1)采用化学气相沉积在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面为完全正轴的Si(111)面,得到Si/3C-SiC复合体;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面进行切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体去除Si单晶基底,依次进行研磨与抛光,得到高热导率3C-SiC多晶基板。
需要说明的是,如图2所示,步骤(1)中,Si单晶基底的表面为完全正轴的Si(111)面,生长的3C-SiC多晶层为择优取向的柱状晶,取向方向为(111)方向;此外,步骤(3)中去除Si单晶基底后,会得到两块圆形的高热导率3C-SiC多晶基板粗品,依次进行研磨与抛光后,同样会得到两块圆形的高热导率3C-SiC多晶基板,但是图1中仅示出了其中一块作为示意说明。
实施例1
本实施例提供了一种高热导率3C-SiC多晶基板的制备方法,所述制备方法包括如下步骤:
(1)采用竖直进气的热壁式化学气相沉积装置在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面粗糙度为0.25nm,所述Si单晶基底的表面为完全正轴的Si(111)面,所述Si单晶基底通过钼丝固定于腔体中;生长开始时,先将腔体加热至生长温度,并维持在一定压力,生长温度为1300℃,生长压力为10000Pa,接着通入原料气体和稀释气进行生长,原料气体为三氯甲基硅烷和氢气,控制三氯甲基硅烷和氢气的流量比为1:10。生长速度为100μm/h,生长时间为10h,共生长了1mm的3C-SiC多晶层,得到Si/3C-SiC复合体;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面采用金刚线切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体采用HF酸溶液腐蚀去除Si单晶基底,两块圆形的高热导率3C-SiC多晶基板粗品,采用金刚石砂轮双面研磨3C-SiC多晶层表面,研磨后表面粗糙度为20nm,采用化学机械抛光方法对3C-SiC多晶层进行单面抛光,抛光面为接近CVD最后生长的表面,抛光包含依次进行的粗抛和精抛,粗抛时,抛光液所用磨料包括金刚石颗粒,抛光后表面粗糙度为2.5nm,精抛时,抛光液所用磨料包括二氧化硅颗粒,抛光后表面粗糙度为0.8nm,分别得到两块高热导率3C-SiC多晶基板。
本实施例制备得到的高热导率3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向具有择优取向,为单一的(111)方向,如图3所示;高热导率3C-SiC多晶基板的截面经KOH腐蚀后,观察到为多晶,晶粒为沿厚度方向的柱状晶,柱状晶的平均晶粒直径为0.5mm,所得高热导率3C-SiC多晶基板的截面组织如图4所示;经激光闪光法测量,沿厚度方向,高热导率3C-SiC多晶基板的热导率为400
实施例2
本实施例提供了一种高热导率3C-SiC多晶基板的制备方法,所述制备方法包括如下步骤:
(1)采用竖直进气的热壁式化学气相沉积装置在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面粗糙度为0.35nm,所述Si单晶基底的表面为完全正轴的Si(111)面,所述Si单晶基底通过钼丝固定于腔体中;生长开始时,先将腔体加热至生长温度,并维持在一定压力,生长温度为1300℃,生长压力为6000Pa,接着通入原料气体和稀释气进行生长,原料气体为三氯甲基硅烷和氢气,控制三氯甲基硅烷和氢气的流量比为1:15。生长速度为80μm/h,生长时间为12.5h,共生长了1mm的3C-SiC多晶层,得到Si/3C-SiC复合体;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面采用金刚线切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体采用HF酸溶液腐蚀去除Si单晶基底,两块圆形的高热导率3C-SiC多晶基板粗品,采用金刚石砂轮双面研磨3C-SiC多晶层表面,研磨后表面粗糙度为20nm,采用化学机械抛光方法对3C-SiC多晶层进行单面抛光,抛光面为接近CVD最后生长的表面,抛光包含依次进行的粗抛和精抛,粗抛时,抛光液所用磨料包括金刚石颗粒,抛光后表面粗糙度为2.5nm,精抛时,抛光液所用磨料包括二氧化硅颗粒,抛光后表面粗糙度为0.8nm,分别得到两块高热导率3C-SiC多晶基板。
本实施例制备得到的高热导率3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向具有择优取向,为单一的(111)方向;高热导率3C-SiC多晶基板的截面经KOH腐蚀后,观察到为多晶,晶粒为沿厚度方向的柱状晶,柱状晶的平均晶粒直径为1.5mm;经激光闪光法测量,沿厚度方向,高热导率3C-SiC多晶基板的热导率为420
实施例3
本实施例提供了一种高热导率3C-SiC多晶基板的制备方法,所述制备方法包括如下步骤:
(1)采用竖直进气的热壁式化学气相沉积装置在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面粗糙度为0.45nm,所述Si单晶基底的表面为完全正轴的Si(111)面,所述Si单晶基底通过钼丝固定于腔体中;生长开始时,先将腔体加热至生长温度,并维持在一定压力,生长温度为1300℃,生长压力为2000Pa,接着通入原料气体和稀释气进行生长,原料气体为三氯甲基硅烷和氢气,控制三氯甲基硅烷和氢气的流量比为1:20。生长速度为50μm/h,生长时间为20h,共生长了1mm的3C-SiC多晶层,得到Si/3C-SiC复合体;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面采用金刚线切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体采用HF酸溶液腐蚀去除Si单晶基底,两块圆形的高热导率3C-SiC多晶基板粗品,采用金刚石砂轮双面研磨3C-SiC多晶层表面,研磨后表面粗糙度为20nm,采用化学机械抛光方法对3C-SiC多晶层进行单面抛光,抛光面为接近CVD最后生长的表面,抛光包含依次进行的粗抛和精抛,粗抛时,抛光液所用磨料包括金刚石颗粒,抛光后表面粗糙度为2.5nm,精抛时,抛光液所用磨料包括二氧化硅颗粒,抛光后表面粗糙度为0.8nm,分别得到两块高热导率3C-SiC多晶基板。
本实施例制备得到的高热导率3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向具有择优取向,为单一的(111)方向;高热导率3C-SiC多晶基板的截面经KOH腐蚀后,观察到为多晶,晶粒为沿厚度方向的柱状晶,柱状晶的平均晶粒直径为3mm;经激光闪光法测量,沿厚度方向,高热导率3C-SiC多晶基板的热导率为450
对比例1
本对比例提供了一种3C-SiC多晶基板的制备方法,相比于实施例1,区别仅在于:步骤(1)中Si单晶基底的表面并不是完全正轴的Si(111)面,而是(111)面偏[001]方向8度。
本对比例制备得到的3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向为80%的(111)方向和20%的(110)方向;3C-SiC多晶基板的截面经KOH腐蚀后,观察到为树枝晶;经激光闪光法测量,沿厚度方向,3C-SiC多晶基板的热导率为350
对比例2
本对比例提供了一种3C-SiC多晶基板的制备方法,相比于实施例1,区别仅在于:步骤(1)中化学气相沉积的生长压力为1000Pa。
本对比例生长速度为20μm/h,生长时间为50h,共生长了1mm的3C-SiC多晶层。制备得到的3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向具有择优取向,为单一的(111)方向;高热导率3C-SiC多晶基板的截面经KOH腐蚀后,观察到为多晶,晶粒为沿厚度方向的柱状晶,柱状晶的平均晶粒直径为2.8mm;经激光闪光法测量,沿厚度方向,高热导率3C-SiC多晶基板的热导率为430。但是,本对比例所述制备方法的生长速度较慢,生长时间较长,会拉低生产效率。
对比例3
本对比例提供了一种3C-SiC多晶基板的制备方法,相比于实施例1,区别仅在于:步骤(1)中化学气相沉积的生长压力为15000Pa。
本对比例制备得到的3C-SiC多晶基板的厚度为0.5mm;经拉曼光谱仪检测,晶型为100%的3C-SiC;经X射线衍射仪检测,晶粒生长方向为65%的(111)方向和35%的(110)方向;3C-SiC多晶基板的截面经KOH腐蚀后,观察到树枝晶;经激光闪光法测量,沿厚度方向,3C-SiC多晶基板的热导率为290
综上所述,本发明提供了一种高热导率3C-SiC多晶基板及其制备方法,所述高热导率3C-SiC多晶基板的热导率为400-450,晶型为100%的3C-SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向,通过化学气相沉积方法,在一定温度和压力下,在Si单晶基底上,且Si单晶基底的表面为完全正轴的Si(111)面,生长晶粒尺寸较大和取向一致的3C-SiC多晶层,消除了晶界对沿厚度方向导热过程中晶格振动的散射作用,增加了沿厚度方向的热导率,使得基于3C-SiC多晶基板的复合3C-SiC基板具有优异的散热性能。
本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (9)

1.一种高热导率3C-SiC多晶基板,其特征在于,所述高热导率3C-SiC多晶基板的热导率为400-450,晶型为100%的3C-SiC,组织为多晶,晶粒为沿厚度方向的柱状晶,晶粒取向为(111)方向;
所述高热导率3C-SiC多晶基板采用如下制备方法得到,包括如下步骤:
(1)采用化学气相沉积在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面为完全正轴的Si(111)面,得到Si/3C-SiC复合体;所述化学气相沉积的生长温度为1200-1300℃,生长压力为2000-10000Pa;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面进行切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体去除Si单晶基底,依次进行研磨与抛光,得到高热导率3C-SiC多晶基板。
2.根据权利要求1所述的高热导率3C-SiC多晶基板,其特征在于,所述高热导率3C-SiC多晶基板的厚度≥0.5mm,柱状晶的平均晶粒直径为0.5-3mm。
3.一种根据权利要求1或2所述的高热导率3C-SiC多晶基板的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)采用化学气相沉积在Si单晶基底上生长3C-SiC多晶层,所述Si单晶基底的表面为完全正轴的Si(111)面,得到Si/3C-SiC复合体;所述化学气相沉积的生长温度为1200-1300℃,生长压力为2000-10000Pa;
(2)对步骤(1)所述Si/3C-SiC复合体的侧面进行切割,并将其切割成圆形,得到3C-SiC/Si/3C-SiC复合体;
(3)将步骤(2)所述3C-SiC/Si/3C-SiC复合体去除Si单晶基底,依次进行研磨与抛光,得到高热导率3C-SiC多晶基板。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述Si单晶基底的表面粗糙度<0.5nm。
5.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述化学气相沉积的气源为三氯甲基硅烷和氢气,控制三氯甲基硅烷和氢气的流量比为1:(10-20)。
6.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述3C-SiC多晶层的生长速度为50-100μm/h,所述3C-SiC多晶层的厚度为1-10mm。
7.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述去除Si单晶基底采用化学腐蚀方法。
8.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述研磨使得表面粗糙度<30nm。
9.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述抛光采用化学机械抛光,使得表面粗糙度<1nm。
CN202311734685.8A 2023-12-18 2023-12-18 一种高热导率3C-SiC多晶基板及其制备方法 Active CN117438391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311734685.8A CN117438391B (zh) 2023-12-18 2023-12-18 一种高热导率3C-SiC多晶基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311734685.8A CN117438391B (zh) 2023-12-18 2023-12-18 一种高热导率3C-SiC多晶基板及其制备方法

Publications (2)

Publication Number Publication Date
CN117438391A CN117438391A (zh) 2024-01-23
CN117438391B true CN117438391B (zh) 2024-03-15

Family

ID=89556870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311734685.8A Active CN117438391B (zh) 2023-12-18 2023-12-18 一种高热导率3C-SiC多晶基板及其制备方法

Country Status (1)

Country Link
CN (1) CN117438391B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253617A (ja) * 2005-02-14 2006-09-21 Toshiba Ceramics Co Ltd SiC半導体およびその製造方法
CN107849730A (zh) * 2015-07-23 2018-03-27 华威大学 在单晶硅上生长外延3C‑SiC
CN109686656A (zh) * 2018-11-13 2019-04-26 中国科学院上海微系统与信息技术研究所 一种硅基异质集成碳化硅薄膜结构的制备方法
CN115440573A (zh) * 2021-06-03 2022-12-06 上海传芯半导体有限公司 单晶SiC/Si晶圆基底、异质结构及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253617A (ja) * 2005-02-14 2006-09-21 Toshiba Ceramics Co Ltd SiC半導体およびその製造方法
CN107849730A (zh) * 2015-07-23 2018-03-27 华威大学 在单晶硅上生长外延3C‑SiC
CN109686656A (zh) * 2018-11-13 2019-04-26 中国科学院上海微系统与信息技术研究所 一种硅基异质集成碳化硅薄膜结构的制备方法
CN115440573A (zh) * 2021-06-03 2022-12-06 上海传芯半导体有限公司 单晶SiC/Si晶圆基底、异质结构及其制备方法

Also Published As

Publication number Publication date
CN117438391A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN103765559B (zh) SiC外延晶片及其制造方法
US7579261B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
TW201723212A (zh) SiC複合基板及其製造方法
TWI424476B (zh) 磊晶塗覆的矽晶圓及製造磊晶塗覆的矽晶圓的方法
EP2072646A1 (en) Process for producing single crystal of silicon carbide
JP2006143581A (ja) 窒化ガリウム単結晶厚膜およびその製造方法
US20060211218A1 (en) Baffle wafers and randomly oriented polycrystalline silicon used therefor
US8551870B2 (en) Method for producing an epitaxially coated semiconductor wafer
JP2009256138A (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
CN102534808B (zh) 高质量碳化硅表面的获得方法
TWI725910B (zh) 晶圓、磊晶晶圓以及其製造方法
EP0899358B1 (en) Silicon carbide fabrication
US7879695B2 (en) Thin silicon wafer and method of manufacturing the same
CN110318030A (zh) 一种自支撑超细纳米晶金刚石厚膜
JP2006328455A (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
CN113089093B (zh) 金刚石半导体结构的形成方法
CN117438391B (zh) 一种高热导率3C-SiC多晶基板及其制备方法
CN105658847B (zh) 外延碳化硅晶片的制造方法
FR3134228A1 (fr) Procede de fabrication de carbure de silicium polycristallin utilisable pour la fabrication de substrats de circuits integres, et carbure de silicium ainsi obtenu
CN113174582A (zh) 微波等离子体化学气相沉积法制备金刚石膜方法
TWI508208B (zh) Semiconductor manufacturing fixture and manufacturing method thereof
JP2018043891A (ja) 窒化ガリウム積層体の製造方法
JPH09266212A (ja) シリコンウエーハおよびその製造方法
CN117418309B (zh) 一种3C-SiC单晶体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant