CN1078262C - 低镍含量高拉伸延伸率的奥氏体铁素体不锈钢 - Google Patents

低镍含量高拉伸延伸率的奥氏体铁素体不锈钢 Download PDF

Info

Publication number
CN1078262C
CN1078262C CN98115200A CN98115200A CN1078262C CN 1078262 C CN1078262 C CN 1078262C CN 98115200 A CN98115200 A CN 98115200A CN 98115200 A CN98115200 A CN 98115200A CN 1078262 C CN1078262 C CN 1078262C
Authority
CN
China
Prior art keywords
steel
content
austenite
equivalent
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98115200A
Other languages
English (en)
Other versions
CN1209465A (zh
Inventor
J-M·郝瑟
H·萨所拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine Savoie SA
Original Assignee
Ugine Savoie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Savoie SA filed Critical Ugine Savoie SA
Publication of CN1209465A publication Critical patent/CN1209465A/zh
Application granted granted Critical
Publication of CN1078262C publication Critical patent/CN1078262C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5183Welding strip ends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Abstract

镍含量低而拉伸延伸率高的奥氏体铁素体不锈钢,它具体如说明书中所述。
该钢为含30%-70%奥氏体的两相组织,Cr当量/Ni当量为2.3-2.75,其中:
Cr当量=Cr%+Mo%+1.5Si%
Ni当量=Ni%+0.33Cu%+0.5Mn%+30C%+30N%。

Description

低镍含量高拉伸延伸率的奥氏体铁素体不锈钢
按不锈钢热处理后的金相组织将其分为几个大族。
马氏体铁素体、奥氏体及奥氏体铁素体不锈钢是已知的。
后一族包括富Cr和Ni的钢,即它们含有分别大于20%和4%的Cr、Ni含量。这些钢在950℃和1150℃间的温度下热处理后的组织由铁素体和奥氏体构成,而且此二相中的一相与另一相比例一般大于30%。
这些钢有很多实用的优点,尤其是,在退火状态下,比如在1050℃退火后,它们的机械性能,尤其是屈服应力,比退火态的铁素体和奥氏体不锈钢的高得多。另一方面,这些钢的塑性与铁素体钢的塑性为同一数量级,但比奥氏体钢的低。
奥氏体铁素体钢的优点之一涉及到焊接性能。在焊接作业之后,这些不锈钢的组织,在熔融区和热影响区,保持很高的铁素体和奥氏体构成的多相,这与奥氏体钢不同,其中的焊接区主要保留奥氏体。这就导致了焊件的高的机械性能,而当焊接组件在运行中必须承受机械应力时,这种性能是合乎需要的。
最后,某些含有细分散的奥氏体的奥氏体铁素体钢在热的慢锻时可能具有被称为超塑性的高的塑性。
这些奥氏体铁素体钢也有缺点,如,由于它们的成份中Ni含量高,由于难于制造,尤其是由于与它们的高的Cr含量的相关的在制造上的困难,如形成脆的σ相,或分离成富铁的铁素体和富Cr的铁素体而使钢在热轧后的冷却过程中变脆,所以其成本很高。
按室温下的拉伸延伸率测出的,它们的塑性不大于30%,这使该钢在用拉拔、锻造或其它工艺进行的加工变得困难。
在高于300℃,而该温度又被保持数小时以上使用这种钢时也会出现脆断。
本发明旨在开发这样一种奥氏体铁素体钢:其成份中的Ni含量低,并且它具有该奥氏体铁素体钢族的一些有益性能,而这些性能与改进总的性能是相关的。
本发明的主题是一种具有低Ni含量和高的拉伸延伸率的奥氏体铁素体不锈钢,它以以下的组成(%重量)为特征:
C<0.04%
0.4%<Si<1.2%
2%<Mn<4%
0.1%<Ni<1%
18%<Cr<22%
0.05%<Cu<4%
S<0.03%
P<0.1%
0.1%<N<0.3%
Mo<3%
该钢为两相组织,其中奥氏体占30%-70%,为此Cr当量/Ni当量在2.3-2.75之间,其中:
Cr当量=Cr%+Mo%+1.5Si%
Ni当量=Ni%+0.33Cu%+0.5Mn%+30C%+30N%,
所述钢的奥氏体稳定性受IM指数控制,IM指数是在该钢的重量组成的基础上确定的:
IM=551+805(C+N)%-8.52Si%-8.57Mn%-12.51Cr%-36Ni%-34.5Cu%-14Mo%,
IM必须在40和115之间。
本发明的其它特征是:
-该成份满足Cr当量/Ni当量在2.4和2.65的关系;
-S含量小于或等于0.0015%;
-该钢在其成份中还含0.010%-0.030%(重量)的Al;
-该钢在其成份中还含0.0005%-0.0020%(重量)的Ca;
-该钢在其成份中还含0.0005%-0.0030%(重量)的B;
-C含量小于或等于0.03%;
-N含量在0.12%-0.2%之间;
-Cr含量在19-21%之间;
-Si含量在0.5-1%之间;
-Cu含量小于3%;
-P含量小于或等于0.04%。
下面结合附图的描述将使本发明被清楚地理解,这里的描述和附图是通过非限制性的实施例给出的。
在附图中有一曲线,它展示延伸性能与IM指数的依存关系。
本发明涉及合金化元素含量低的奥氏体铁素体钢,尤其是Ni含量小于1%,Cr含量小于22%的这类钢。出于经济和生态学的原因,必须使Ni含量降低,而降低Cr含量则一方面可能使钢易于熔炼,另一方面,避免所述钢在制造和使用时脆裂。
本发明得自一个研究项目,在该项目结束时发现:使用特定的成份范围可使讨论中的钢族的拉伸延伸率得以与高屈服应力一起有特别的改进。
该钢可以模制或锻件、热轧或冷轧板、棒、管或丝的形式生产。可生产各种铸件,其成份列于表1。
该钢的成分(%重量)
D C B A A(低S) E F C(低S) G C(低S,B)
C 0.028 0.025 0.031 0.033 0.03 0.03 0.032 0.033 0.036 0.033
Si 0.538 0.525 0.485 1.055 1.06 1.10 0.575 0.494 0.947 0.538
Mn 3.718 3.747 3.786 4.073 3.89 3.99 3.847 3.825 5.018 3.758
Ni 0.087 0.809 0.811 0.817 0.824 0.821 0.527 0.839 0.832 0.840
Cr 18.9 19.89 20.71 21.2 21.19 20.2 19.01 19.86 18.96 19.86
Mo 0.035 0.036 0.036 0.037 0.211 0.212 0.211 0.206 0.210 0.209
Cu 0.044 0.392 0.391 0.395 0.4 0.402 1.023 0.384 3.048 0.333
O 35-37ppm 17-19ppm 33-37ppm 37-38ppm 32-32ppm 26-28ppm
S 34 ppm 35 ppm 35 ppm 37 ppm 6 ppm 4 ppm 10 ppm 12ppm 9 ppm 10 ppm
B 14 ppm
P 0.017 0.018 0.017 0.018 0.017 0.017 0.018 0.016 0.019 0.016
Al - - - - 0.010 0.010 0.007 0.007 0.011 0.007
N 0.132 0.15 0.136 0.17 0.167 0.166 0.155 0.143 0.104 0.136
V 0.091 0.094 0.097 0.103 - 0.072 0.078 0.081 0.088 0.086
下面的表2列出了该钢在IM指数和Cr/Ni当量比方面的特征。
D C B A A(低S) E F C(低S) G C(低S,B)
IM 144 81 78 35 38 51 68 78 12 85
Cr当量/Ni当量 2.92 2.57 2.74 2.51 2.61 2.50 2.39 2.55 2.41 2.64
在短生产流程中,为得到比如厚2.2mm的热轧带钢,在从1240℃的热转变后,该钢经温度为1200℃的锻造工序。在1050℃处理此带钢,然后将它水淬。
在所谓的长流程中,在该短流程之后,可将此热轧带钢冷轧,再在1040℃处理1分钟,然后再水淬。
所有的这样产生的钢均由铁素体和奥氏体构成,但钢D除外,它还含在奥氏体冷却过程中形成的马氏体。这些钢的组织总也不含碳化物和氮化物。可以看到,用长流程生产的三种钢B、C、F时,一方面它们的断裂时的延伸率大于或等于40%,另一方面,它们的屈服应力大于450MPa而抗拉强度大于700MPa。此外钢C的屈服应力很高,而延伸率特别高。
如于此单一附图所示,按奥氏体稳定指数,如:
IM=551-805(C+N)%-8.52 Si%-8.57Mn%-12.51  Cr%-36.02Ni%-34.52Cu%-13.96Mo%。
观察到:当上述的与本发明的钢的成份相关的IM指数在40-115之间时(该值是限定延伸率大于35%的本发明钢的),这些奥氏体铁素体钢断裂时的延伸率达到最大值。按本发明所得到的钢的特征列于表3中,它展示了四种钢在热轧时,和按短流程及长流程生产时,于各种转变期中的奥氏体含量。
表3:奥氏体含量(%)钢        D      C      B      A热轧时    37     42     33    35短流程    41     49     39    40长流程    42     52     41    43
这些奥氏体含量处于奥氏体铁素体钢所希望的30%-70%的范围内。这些钢各自的Cr当量/Ni当量比符合本发明的推荐值。
下面的表4给出了符合本发明的钢B和C及E和F以及用于对比的超出本发明范围的钢A和D的机械性能,其中B和C经受过两种制备流程,E和F经历过长制备流程。
表4:机械性能钢        屈服应力        屈服应力   延伸率A%    IM    拉伸后的
      (RP0.2%)(MPa) Rm(MPa)                       马氏体%D                                                 144短流程            406     804        32            -       -长流程            433     855        24            -       31C                                                  81短流程            476     757        46            -       -长流程            501     817        43            -       27B                                                  78短流程            450     668        34            -       -长流程            471     714        40            -       5E                                                  51短流程            -       -          -             -       -长流程            484     737        36            -       -F                                                  68短流程            -       -          -             -       -长流程            492     819        44            -       -A                                                  35短流程            496     718        36            -       -长流程            520     773        33            -       0
可观察到:IM指数分别为78.81和68,即在40-115之间的钢B、C、F的延伸率比超出本发明的钢A和D高得多。
下面表5列出了由于1040℃拉伸对钢的影响而形成应变硬化马氏体的程度。钢                                A       B      C     D奥氏体%                          43      41     52    42延伸率                            25      33     37    22拉伸后的奥氏体%                  43      36     25    9出现的马氏体(%)                  0       5      27    31在拉伸时转变为马氏体的奥氏体的量   0    0.12    0.52    0.74
在钢B和C的情况下,有12%和52%的原始奥氏体在拉伸过程转变成马氏体,这使它们有良好的塑性;相反,钢A中的奥氏体在拉伸时未转变成马氏体,而钢D的奥氏体转变程度高,即74%,这使其塑性不足。
表6和7展示了各种钢的热拉伸性能。
测量退过火的锻钢的机械性能。它是经从1200℃的锻造锻成的。然后使该钢在1100℃的温度下退火30分钟。所用的拉伸试样是有直径8mm,长5mm的圆形截面测量部分的试样。将该试样在1200℃或1280℃预热5分钟,再以2℃/秒的速度冷却至进行拉伸的测试温度;拉伸以73m n/秒的速度进行。
表6:保持1200℃的起始温度的热拉伸时的直径收缩率(%)
       钢C    E    F    C    G    C
                        低S       (低S;B)测试温度900℃      34     42   50   46   22   49950℃      33     43   45   46   13   471000℃     36     44   42   49   24   531050℃     48     -    40   49   24   531100℃     52     -    43   54   35   591150℃     65     -    51   58   42   621200℃     69     -    61   68   42   65
表7:起始温度保持1280℃的热拉伸试验的直径收缩率(%)
     钢A   E     F     C(低S)   C(低S;B)试验温度900℃    33    33          37       39950℃    34    31          37       381000℃   35    35          38       381050℃   42    38          43       441100℃   47    43          50       541150℃    50    48    55    531200℃    62    54    63    641250℃    67    67    77    701280℃    81    77    85    76
热塑性通常很低,但在这些钢的成份中含小于15×10-4%S的情况下看到了改善。1000℃时大于45%的截面中的直径收缩率被视为热轧该钢的必要条件。其成分中含有硼的钢C(低S)和钢C(低S,B),若在1200℃时重加热,则达到这种特征。
在S含量很低时,按本发明得到了高的热塑性特征。含35×10-4%S的钢C没有足够的热塑性。
C含量不应超过0.04%,否则在热处理之后因冷却在铁素体/奥氏体边界处析出铬的碳化物,因而恶化耐腐蚀能力。C含量小于0.03%则使之可以避免以最低冷却速度冷却时出现的这种析出物。
为避免钢坯在重加热时过份氧化,硅含量必须大于0.4%。为避免引起变脆的金属间化合物或σ相折出,则将其限于1.2%。Si含量最好在0.5%-1%之间。
为避免生产上的困难,Mn含量不可超过4%。但,为使该钢为奥氏体,同时可在钢的凝固过程中收入大于0.1%的N,而又不超过氮的溶解度,2%的Mn含量是必要的。
出于经济上的理由,而且为了消除在氯化物介质中的应力腐蚀,打算把Ni含量限于1%。
此外,国际上的指导方向的目标是减少从金属中释放Ni,尤其是在水领域中和与皮肤接触的场合中减少Ni的释放。
为了改善耐腐蚀性能可任选地加Mo;它的效果在3%以上很难提高,此外Mo趋向于通过形成σ相而增加脆性,因此加Mo必须受到限制。
为提高奥氏体含量,加Cu是特别有效的。超过4%,则出现热轧缺陷,这是因为富铜相凝固偏析的缘故。通过400℃-600℃的热处理,加Cu还使铁素体变硬,而且在使用时有杀菌和杀真菌的效果。
为使这种钢能焊接而不产生热裂,必须将S含量限于0.030%。S含量小于0.0015%则明显改善热塑性及热轧质量。通过控制Ca、Al的使用达到这样的低S含量,从而得到合乎要求的Ca、Al和S范围。
5-30×10-4%的硼含量也改善热塑性。
为避免焊接时热裂,P含量小于0.1%,更好是小于0.04%。
由于N在炼钢时的溶解性,自然要将N含量限于0.3%。
对于小于3%的Mn含量而言,N含量最好小于0.2%。为得到大于30%的奥氏体,0.1%的N的最小值是必要的。
为避免在热转变时σ相析出和铁素体-铁素体分离而引起的脆化,Cr含量要足够低。与常规用于热塑成形的奥氏体钢相反,符合本发明的低Cr含量还可使该钢在700-1000℃间的中等温度下超塑性成形,而不产生σ相脆化。
为了获得高的机械性能,即,对所生产的钢和焊接的钢而言,屈服应力大于400MPa,奥氏体含量必须为30-70%,该焊接件由于奥氏体含量大于20%,一定是硬而韧的。为达到这一点,Cr当量/Ni当量比将在2.3-2.75,最好在2.4-2.65之间。若IM指数在40-115之间则可得到大于35%的拉伸延伸率,因而在这些条件下,符合本发明的钢将有良好的拉拔特性。
符合本发明的钢主要打算用于经压延,然后通过焊接结合在一起的工件,如盛放喷气发动机燃料的罐或尤其是可用于内燃机车辆气袋装置的烟火反应剂的罐,为了使之成形而要求钢有高延展性的应用场合,以及在所讨论的应用中同时要求基体金属和焊接处有高的屈服强度的应用场合。
尤其是还打算用轧制的,然后焊接的板制造管子,这些管子主要可用于构成固定在内燃机车辆上的或与其结合的机械构件。这些管可用被称为液压成形的高压成形方法成形。

Claims (12)

1.镍含量低而拉伸延伸率高的奥氏体铁素体不锈钢,其特征为它具有以下成份(重量%):
C<0.04%
0.4%<Si<1.2%
2%<Mn<4%
0.1%<Ni<1%
18%<Cr<22%
0.05%<Cu<4%
S<0.03%
P<0.1%
0.1%<N<0.3%
Mo<3%
余量Fe
该钢为具有30%-70%奥氏体的两相组织,Cr当量/Ni当量为2.3-2.75,其中:
Cr当量=Cr%+Mo%+1.5 Si%
Ni当量=Ni%+0.33Cu%+0.5Mn%+30C%+30N%
所述钢的奥氏体稳定性受IM指数的控制,IM指数必须为40-115,该IM指数基于该钢的重量组成由下式限定:
IM=551-805(C+N)%-8.52Si%-8.57Mn%-12.51Cr%-36Ni%-34.5Cu%-14Mo%。
2.权利要求1的钢,其特征在于其成份满足Cr当量/Ni当量为2.4-2.65的关系。
3.权利要求1的钢,其特征在于,其S含量小于或等于0.0015%。
4.权利要求1的钢,其特征在于,在该钢的重量组成中,它还含0.010%-0.030%的Al。
5.权利要求1的钢,其特征在于在该钢的重量组成中,它还含0.0005%-0.0020%的Ca。
6.权利要求1的钢,其特征为,在该钢的重量组成中,它还含0.0005%-0.0030%的B。
7.权利要求1的钢,其特征为,其C含量小于或等于0.03%。
8.权利要求1的钢,其特征为,其N含量为0.12%-0.2%。
9.权利要求1的钢,其特征为,其Cr含量为19%-21%。
10.权利要求1的钢,其特征为,其Si含量为0.5%-1%。
11.权利要求1的钢,其特征为,其Cu含量小于3%。
12.权利要求1的钢,其特征为,其P含量小于0.04%。
CN98115200A 1997-06-30 1998-06-29 低镍含量高拉伸延伸率的奥氏体铁素体不锈钢 Expired - Fee Related CN1078262C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9708180 1997-06-30
FR9708180A FR2765243B1 (fr) 1997-06-30 1997-06-30 Acier inoxydable austenoferritique a tres bas nickel et presentant un fort allongement en traction

Publications (2)

Publication Number Publication Date
CN1209465A CN1209465A (zh) 1999-03-03
CN1078262C true CN1078262C (zh) 2002-01-23

Family

ID=9508609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98115200A Expired - Fee Related CN1078262C (zh) 1997-06-30 1998-06-29 低镍含量高拉伸延伸率的奥氏体铁素体不锈钢

Country Status (17)

Country Link
US (1) US6096441A (zh)
EP (1) EP0889145B1 (zh)
JP (1) JPH1171643A (zh)
KR (1) KR19990007429A (zh)
CN (1) CN1078262C (zh)
AT (1) ATE234945T1 (zh)
AU (1) AU738930B2 (zh)
BR (1) BR9802386A (zh)
CA (1) CA2239478C (zh)
DE (1) DE69812234T2 (zh)
DK (1) DK0889145T3 (zh)
ES (1) ES2193488T3 (zh)
FR (1) FR2765243B1 (zh)
ID (1) ID20517A (zh)
PT (1) PT889145E (zh)
TW (1) TW474997B (zh)
ZA (1) ZA985176B (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734372B2 (ja) * 1998-10-12 2006-01-11 三宝伸銅工業株式会社 無鉛快削性銅合金
SE517449C2 (sv) * 2000-09-27 2002-06-04 Avesta Polarit Ab Publ Ferrit-austenitiskt rostfritt stål
AU2002305452A1 (en) * 2001-05-08 2002-11-18 Emory University Regulating immine responses using dendritic cells
US6551420B1 (en) 2001-10-16 2003-04-22 Ati Properties, Inc. Duplex stainless steel
PL197902B1 (pl) * 2001-10-30 2008-05-30 Ati Properties Stal nierdzewna wytwarzana w procesie dupleks oraz zastosowanie stali nierdzewnej wytwarzanej w procesie dupleks
CA2475112A1 (en) 2002-02-06 2003-08-14 Vicor Technologies, Inc. Anti-infarction molecules
DE10215598A1 (de) * 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
WO2004048936A2 (en) * 2002-11-26 2004-06-10 University Of Utah Research Foundation Microporous materials, methods, and articles for localizing and quantifying analytes
US7597936B2 (en) * 2002-11-26 2009-10-06 University Of Utah Research Foundation Method of producing a pigmented composite microporous material
ATE442861T1 (de) 2003-03-07 2009-10-15 Univ Texas Gegen antikörper gerichtete photodynamische therapie
JP2007518422A (ja) 2004-01-21 2007-07-12 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション 変異体ナトリウムチャンネルNaν1.7およびそれに関連する方法
WO2005073422A1 (ja) * 2004-01-29 2005-08-11 Jfe Steel Corporation オーステナイト・フェライト系ステンレス鋼
JP5109233B2 (ja) * 2004-03-16 2012-12-26 Jfeスチール株式会社 溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼
SE528375C2 (sv) * 2004-09-07 2006-10-31 Outokumpu Stainless Ab En sugvalsmantel av stål samt en metod för tillverkning av en sugvalsmantel
US8470965B2 (en) * 2006-03-01 2013-06-25 University Of Utah Research Foundation Methods and compositions related to cyclic peptide synthesis
CA2644952A1 (en) * 2006-03-01 2007-09-13 The University Of Utah Research Foundation Methods and compositions related to cyclic peptide synthesis
US7492312B2 (en) * 2006-11-14 2009-02-17 Fam Adly T Multiplicative mismatched filters for optimum range sidelobe suppression in barker code reception
WO2009023306A2 (en) 2007-05-09 2009-02-19 Burnham Institute For Medical Research Targeting host proteinases as a therapeutic strategy against viral and bacterial pathogens
CA2688009C (en) 2007-05-23 2019-04-02 David E. Briles Detoxified pneumococcal neuraminidase and uses thereof
ES2817436T3 (es) * 2007-08-02 2021-04-07 Nippon Steel & Sumikin Sst Acero inoxidable ferrítico-austenítico de excelente resistencia a la corrosión y trabajabilidad
JP5395805B2 (ja) 2007-11-29 2014-01-22 エイティーアイ・プロパティーズ・インコーポレーテッド オーステナイト系のリーンステンレス鋼
EP2268664B1 (en) 2007-12-03 2017-05-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Doc1 compositions and methods for treating cancer
ES2394980T3 (es) 2007-12-20 2013-02-07 Ati Properties, Inc. Acero inoxidable austenítico bajo en níquel conteniendo elementos estabilizantes
US8877121B2 (en) 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
JP5337473B2 (ja) 2008-02-05 2013-11-06 新日鐵住金ステンレス株式会社 耐リジング性と加工性に優れたフェライト・オーステナイト系ステンレス鋼板およびその製造方法
CA2736799A1 (en) 2008-08-25 2010-03-11 Burnham Institute For Medical Research Conserved hemagglutinin epitope, antibodies to the epitope, and methods of use
WO2010065617A1 (en) 2008-12-02 2010-06-10 University Of Utah Research Foundation Pde1 as a target therapeutic in heart disease
WO2011020107A2 (en) 2009-08-14 2011-02-17 Georgetown University Compositions and methods for detection and treatment of breast cancer
WO2011043980A1 (en) 2009-10-07 2011-04-14 Sanford Burnham Medical Research Institute Methods and compositions related to clot-binding lipid compounds
US8912136B2 (en) 2009-12-18 2014-12-16 Sanford-Burnham Medical Research Institute Methods and compositions related to clot-binding compounds
BR112012017483A2 (pt) 2010-01-14 2019-09-24 Haplomics Inc previsão e redução de aloimunogenicidade de terapêuticos de proteína
US20110207789A1 (en) 2010-02-19 2011-08-25 Ye Fang Methods related to casein kinase ii (ck2) inhibitors and the use of purinosome-disrupting ck2 inhibitors for anti-cancer therapy agents
KR20120132691A (ko) 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 높은 성형성을 구비하는 페라이트-오스테나이트계 스테인리스 강의 제조 및 사용 방법
FI122657B (fi) 2010-04-29 2012-05-15 Outokumpu Oy Menetelmä korkean muokattavuuden omaavan ferriittis-austeniittisen ruostumattoman teräksen valmistamiseksi ja hyödyntämiseksi
US20110293629A1 (en) 2010-05-14 2011-12-01 Bastid Jeremy Methods of Treating and/or Preventing Cell Proliferation Disorders with IL-17 Antagonists
US9051619B2 (en) 2011-03-25 2015-06-09 Florida Agricultural and Mechanical University (FAMU) Methods and compositions for prostate cancer metastasis
KR20130034349A (ko) 2011-09-28 2013-04-05 주식회사 포스코 내식성 및 열간가공성이 우수한 저합금 듀플렉스 스테인리스강
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
EP2662461A1 (de) 2012-05-07 2013-11-13 Schmidt + Clemens GmbH & Co. KG Eisen-Chrom-Mangan-Nickel-Legierung
US20140094383A1 (en) 2012-10-02 2014-04-03 Ohio State Innovation Foundation Tethered Lipoplex nanoparticle Biochips And Methods Of Use
US9783576B2 (en) 2013-06-11 2017-10-10 Sanford-Burnham Medical Research Institute Compositions and methods for targeted endometriosis treatment
KR101587700B1 (ko) 2013-12-24 2016-01-21 주식회사 포스코 린 듀플렉스 스테인리스강
DE102015112215A1 (de) * 2015-07-27 2017-02-02 Salzgitter Flachstahl Gmbh Hochlegierter Stahl insbesondere zur Herstellung von mit Innenhochdruck umgeformten Rohren und Verfahren zur Herstellung derartiger Rohre aus diesem Stahl
KR101795884B1 (ko) * 2015-12-21 2017-11-09 주식회사 포스코 유도가열이 가능하고 내식성이 우수한 스테인리스 강판 및 그 제조방법
KR20170075034A (ko) * 2015-12-21 2017-07-03 주식회사 포스코 린 듀플렉스 스테인리스강 및 이의 제조 방법
KR101746404B1 (ko) 2015-12-23 2017-06-14 주식회사 포스코 내식성 및 가공성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
ES2828351T3 (es) * 2016-06-10 2021-05-26 Jfe Steel Corp Chapa de acero inoxidable para separadores de celda de combustible y método de producción para la misma
KR101820526B1 (ko) * 2016-08-10 2018-01-22 주식회사 포스코 굽힘 가공성이 우수한 린 듀플렉스 스테인리스강
WO2018067825A1 (en) 2016-10-05 2018-04-12 University Of Central Florida Research Foundation, Inc. Methods and compositions related to nk cell and anti-pdl1 cancer therapies
US11684660B2 (en) 2017-03-28 2023-06-27 Ohio State Innovation Foundation Human PD1 peptide vaccines and uses thereof
US20210260187A1 (en) 2018-06-29 2021-08-26 North Carolina State University In situ sprayed bioresponsive immunotherapeutic gel for post-surgical treatment
CA3142777A1 (en) 2019-06-21 2020-12-24 Vaccinex, Inc. Combination therapy with semaphorin-4d blockade (sema4d) and dc1 therapy
JP2023525083A (ja) 2020-05-08 2023-06-14 ノボキュア ゲーエムベーハー 多能性幹細胞に交流電場を印加する組成物及び方法
CN113210420B (zh) * 2021-04-21 2022-12-06 鞍钢联众(广州)不锈钢有限公司 一种双相不锈钢钢卷及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2119612A5 (zh) * 1970-12-23 1972-08-04 Armco Steel Corp
EP0327053A1 (en) * 1988-02-04 1989-08-09 ARMCO Inc. Duplex stainless steel with high manganese
JPH02111846A (ja) * 1988-10-19 1990-04-24 Kawasaki Steel Corp プレス成形性に優れたマルテンサイト系ステンレス鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624670A (en) * 1952-08-15 1953-01-06 Union Carbide & Carbon Corp Chromium steels
FR2045584A1 (zh) * 1969-06-03 1971-03-05 Ugine Kuhlmann
US3926685A (en) * 1969-06-03 1975-12-16 Andre Gueussier Semi-ferritic stainless manganese steel
BE757711A (fr) * 1969-11-03 1971-04-01 Suedwestfalen Ag Stahlwerke Procede de fabrication de feuillards lamines a froid a partir d'un acier ferritique inoxydable allie contenant entre 15 et 20 0/0 de chrome etentre 0,5 et 1,5 de molybdene et presentant, pour l'emboutissage, des proprietes analogues a celles des aciers austenitiques
US4054448A (en) * 1974-09-23 1977-10-18 Allegheny Ludlum Industries, Inc. Duplex ferritic-martensitic stainless steel
US4047941A (en) * 1974-09-23 1977-09-13 Allegheny Ludlum Industries, Inc. Duplex ferrit IC-martensitic stainless steel
US4218268A (en) * 1977-06-30 1980-08-19 Kubota Ltd. High corrosion resistant and high strength medium Cr and low Ni stainless cast steel
US4331474A (en) * 1980-09-24 1982-05-25 Armco Inc. Ferritic stainless steel having toughness and weldability
WO1996011483A1 (en) * 1994-10-11 1996-04-18 Crs Holdings, Inc. Corrosion-resistant magnetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2119612A5 (zh) * 1970-12-23 1972-08-04 Armco Steel Corp
EP0327053A1 (en) * 1988-02-04 1989-08-09 ARMCO Inc. Duplex stainless steel with high manganese
JPH02111846A (ja) * 1988-10-19 1990-04-24 Kawasaki Steel Corp プレス成形性に優れたマルテンサイト系ステンレス鋼

Also Published As

Publication number Publication date
FR2765243A1 (fr) 1998-12-31
FR2765243B1 (fr) 1999-07-30
US6096441A (en) 2000-08-01
CN1209465A (zh) 1999-03-03
ES2193488T3 (es) 2003-11-01
ID20517A (id) 1999-01-07
AU738930B2 (en) 2001-09-27
EP0889145B1 (fr) 2003-03-19
ATE234945T1 (de) 2003-04-15
KR19990007429A (ko) 1999-01-25
DE69812234T2 (de) 2004-02-05
EP0889145A1 (fr) 1999-01-07
DK0889145T3 (da) 2003-07-21
CA2239478A1 (fr) 1998-12-30
JPH1171643A (ja) 1999-03-16
BR9802386A (pt) 1999-07-06
DE69812234D1 (de) 2003-04-24
ZA985176B (en) 1999-01-08
CA2239478C (fr) 2009-04-07
AU6984598A (en) 1999-01-07
TW474997B (en) 2002-02-01
PT889145E (pt) 2003-06-30

Similar Documents

Publication Publication Date Title
CN1078262C (zh) 低镍含量高拉伸延伸率的奥氏体铁素体不锈钢
CN1225566C (zh) 用作排放汽车废气的管道构件的铁素体不锈钢
CN1170947C (zh) 一种耐延迟断裂和耐松弛性能优异的高强度螺栓的制备方法
JP5332646B2 (ja) 冷間鍛造性に優れた浸炭用鋼の製造方法
JP5927868B2 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
JP2007302974A (ja) 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
EP2357262A1 (en) Crankshaft and production method therefor
JP5783014B2 (ja) 軸受用棒鋼
JP5332517B2 (ja) 浸炭用鋼の製造方法
CN1164785C (zh) 二次加工性能出色的汽车构件用不锈钢管
JP2011084813A (ja) 切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法
JP6109730B2 (ja) 浸炭後の曲げ疲労特性に優れた鋼材およびその製造方法並びに浸炭部品
JP5786968B2 (ja) 鍛造品の製造方法
JP3721723B2 (ja) 被削性、冷間鍛造性および焼入れ性に優れた機械構造用鋼材
JPH10265841A (ja) 高強度冷間鍛造部品の製造方法
Offor et al. Effects of Various Quenching Media on the Mechanical Properties of Intercritically Annealed 0.15 wt% C–0.43 wt% Mn Steel
JP4006857B2 (ja) 冷間鍛造−高周波焼入れ用鋼及び機械構造用部品並びにその製造方法
JP4420481B2 (ja) 冷温間鍛造加工性及び切削加工性に優れたオーステナイト系ステンレス鋼
JPH09202921A (ja) 冷間鍛造用ワイヤーの製造方法
JP2007255471A (ja) セルフピアスリベットの製造方法
JP4920144B2 (ja) 等速ジョイントアウター用鋼材
JP2013112890A (ja) プレス加工用焼鈍鋼板および製造法並びに耐摩耗性に優れる機械部品
JP2004018993A (ja) 高温環境下での強度変化の小さい低合金非調質耐熱鋼およびその製造方法
JP4103191B2 (ja) 耐食性に優れた高周波焼入れ用高硬度鋼
JP5008804B2 (ja) 等速ジョイントアウター用鋼材

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Applicant after: Ugine Savoie

Applicant before: Usinor S. A.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: USINOR TO: USINOR CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee