CN107759225A - 一种高热导率氮化铝陶瓷的制备方法 - Google Patents

一种高热导率氮化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN107759225A
CN107759225A CN201711235697.0A CN201711235697A CN107759225A CN 107759225 A CN107759225 A CN 107759225A CN 201711235697 A CN201711235697 A CN 201711235697A CN 107759225 A CN107759225 A CN 107759225A
Authority
CN
China
Prior art keywords
aluminium nitride
sintering
preparation
hot pressed
nitride ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711235697.0A
Other languages
English (en)
Other versions
CN107759225B (zh
Inventor
黄向东
刘海华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Sairuite Technology Co ltd
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711235697.0A priority Critical patent/CN107759225B/zh
Publication of CN107759225A publication Critical patent/CN107759225A/zh
Application granted granted Critical
Publication of CN107759225B publication Critical patent/CN107759225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种热压烧结氮化铝陶瓷的制备方法,具体涉及一种能够快速制备高热导率氮化铝陶瓷的方法。制备过程通过将不同形状的氮化铝粉末块体进行拼接成型,热压烧结后无须切割即可分开,随后将陶瓷块体进行退火处理,可获得热导率在100‑160 W/(m·K)的氮化铝陶瓷。通过此种方法制备的氮化铝陶瓷晶粒生长的更加完整,热导率更好,生产成本更低。

Description

一种高热导率氮化铝陶瓷的制备方法
技术领域
本发明为一种高热导率氮化铝陶瓷的制备方法,具体涉及一种通过拼接成型工艺和退火处理热压烧结氮化铝制备氮化铝陶瓷的方法。
背景技术
氮化铝具有高热导率,低介电常数,高电阻率,与硅相匹配的热膨胀系数在电路基板、热封装材料中具有广泛的应用前景。目前现有的技术中已公开了一种块切片法制备氮化铝陶瓷基片的方法(CN 101985396 B),该技术中氮化铝片的制备方法主要有以下几个步:1)氮化铝粉体中加入烧结助剂混合均匀;2)将粉体装入模具进行预压;3)将预压完的粉末坯体装入热压烧结炉进行加压烧结;4)将烧结后取出的氮化铝陶瓷采用多线切割来获得氮化铝基片。
相比于流延成型常压烧结,真空热压烧结氮化铝陶瓷烧结时间短致密快不需要排胶避免烧结后的氮化铝板产生变形和排胶不干净引入杂质降低氮化铝陶瓷的热导率。可在短时间内获得性能良好的氮化铝陶瓷块体,但是由于热压压头和热压模具的限制,成型块体的尺寸和大小受限,热压只能进行单块块体的烧结。氮化铝陶瓷块体硬度大,即使后期采用多线切割来获得氮化铝基片,仍然面临着加工速度慢,生产效率低下。
发明内容
本发明的目的是提供一种无须切割即可将整块大块的氮化铝陶瓷分割成多块,同时获得高致密、热导率在100-160 W/(m·K)的氮化铝陶瓷块体。
通过将等静压成型的粉末块体按要求拼接成型装入热压烧结模具进行热压烧结。烧结结束后得到的氮化铝块体可直接分开得到多块,避免了后期切割,缩短加工时间。烧结前期采用热压烧结来获得致密的氮化铝陶瓷块体,由于烧结时间短,晶粒中存在大量缺陷,热导率偏低。后期采用退火处理延长保温时间使晶粒长大来减少氮化铝陶瓷中的缺陷从而获得高热导率的氮化铝陶瓷。避免了热压烧结只能进行单块料烧结的局限性,在退火处理过程中可实现多块料同时进行烧结。缩短了总体的烧结时间和提高加工速率。进而生产效率得到提高,生产成本降低。
具体包括如下步骤:
1)配料:将氮化铝粉体和氧化钇粉体按质量比95-99:5-1进行混合,其中,氮化铝粉体的粒径为1-3um,氧化钇粉体的粒径为0.5-1um。
2)混料:将配好的料先在容器中拌匀后,往其中加入氧化锆球,采用滚筒式湿法球磨,混料时间为10-12小时。其中料:球:溶剂的质量比为1:1:0.7,其中氧化锆球的直径为两种规格10mm,5mm,氧化锆球的大小质量比例为1:1,采用的溶剂为酒精。
3)造粒:将浆料置于65-75℃的烘箱中烘干,取出结块的料块进行过筛,筛子规格为20目。
4)等静压成型:将过筛后的料进行等静压成型。
5)粉体成型:将等静压成型的粉末块体切割成所需要的形状,在表面涂刷NB脱模剂,按模具大小进行拼接后装入石墨模具。
6)烧结:将石墨模具移入真空热压烧结气氛炉中,进行真空热压烧结,升温速率为10℃/min,当温度为1200-1300℃时开始加压,当温度为1820-1840℃时进行保温保压烧结,保压压力为25MPa,保温保压时间为3-5小时,烧结结束充氮气,气压为15KPa。
7)退火:重复以上步骤1)、2)、3)、4)、5)、6)制备多块陶瓷样品,将多块陶瓷样品同时置于热压烧结炉中,升温速率为10℃/min,常温到1500℃为真空烧结,炉内真空度为-0.1Mpa,1500-1820℃为氮气气氛烧结,炉内气压为0MPa,保温温度为1820-1840℃,保温时间为1-5小时。
8)保温后结束烧结,样品随炉自然冷却,常温下将样品取出。
本发明的有益效果
与现有技术相比本发明成型过程采用将等静压成型的粉末块体进行拼接后再进行热压烧结。热压烧结结束后即可将大块的陶瓷块体分开,无须切割。烧结过程采用前期进行热压烧结,样品致密后即可取出,后期进行退火处理的方式进行烧结。相比于单块料长时间进行热压烧结,总体烧结时间缩短。总体生产效率得到了提高。此方法生产的氮化铝陶瓷可获得高致密度(密度大于3.26 g/cm3)和热导率在100-160 W/(m·K)的氮化铝陶瓷,生产成本更低,更具市场竞争力。
附图说明
图1为实例1块体拼接示意图;
图2为实例2块体拼接示意图;
图3为实例3块体拼接示意图;
图4为实例2的XRD图;
图5为实例2的电镜图。
具体实施方式
实施例1
按质量比97:3称取氮化铝粉体和氧化钇粉体,氮化铝粉体质量为1940g,氧化钇粉体质量60g按球、料、溶剂比为1:1:0.7进行湿法球磨,酒精为1400ml,氧化锆球为2000g,混料12小时,取料烘干,烘干时间为12小时。将烘干后结块的样品捣碎过筛使其能通过20目的筛。称取1650g配好的料,进行等静压成型。将成型后的粉体切割成4个三角形,在三角形的三个侧面上刷上一层氮化硼粉后拼接起来(如图1所示)装于模具内。后将模具移入真空热压烧结气氛炉内,进行抽真空,真空度保持在3KPa左右。升温速率为10°C/min,温度达到1820°C进行保温保压。其中在升温过程中当温度达到了1300°C时开始加压,当加压压力达到25MPa时进行保压,保温保压时间为3小时。保温保压结束后停止加热,炉内充15KPa氮气,样品随炉冷却。取出样品分成4块三角形。重复制备两炉热压烧结的氮化铝陶瓷,将12块热压烧结致密的氮化铝陶瓷放置于热压烧结炉中关闭炉门进行抽真空,真空度保持在-0.1MPa,升温速率为10°C/min。当温度达到1500-1600°C时充氮气,炉膛内部压力为0MPa。当温度达到1820°C进入保温阶段,保温5个小时,结束烧结样品随炉冷却。
实施例2
按质量比98.5:1.5称取氮化铝粉体和氧化钇粉体,氮化铝粉体质量为1970g,氧化钇粉体质量30g按球、料、溶剂比为1:1:0.7进行湿法球磨,酒精为1400ml,氧化锆球为2000g,混料12小时,取料烘干,烘干时间为12小时。将烘干后结块的样品捣碎过筛使其能通过20目的筛。称取1650g配好的料,进行等静压成型。将成型后的粉体切割成4个四边形,在四边形的四个侧面刷上一层氮化硼粉后拼接起来(如图2所示)装于模具内。后将模具移入真空热压烧结气氛炉内,进行抽真空真空度保持在3KPa左右,升温速率为10°C/min,温度达到1830°C进行保温保压。其中在升温过程中当温度达到了1300°C时开始加压,当加压压力达到25MPa时进行保压,保温保压时间为3小时。保温保压结束后停止加热,炉内充15KPa氮气,样品随炉冷却。取出样品分成4块四边形。重复制备两炉热压烧结的氮化铝陶瓷,将12块热压烧结致密的氮化铝陶瓷放置于热压烧结炉中关闭炉门进行抽真空真空度保持在-0.1MPa,升温速率为10°C/min。当温度达到1500-1600°C时充氮气,炉膛内部压力为0MPa。当温度达到1830°C进入保温阶段,保温1.5个小时,结束烧结样品随炉冷却。
实施例3
按质量比95:5称取氮化铝粉体和氧化钇粉体,氮化铝粉体质量为1900g,氧化钇粉体质量100g按球、料、溶剂比为1:1:0.7进行湿法球磨,酒精为1400ml,氧化锆球为2000g,混料12小时,取料烘干,烘干时间为12小时。将烘干后结块的样品捣碎过筛使其能通过20目的筛。称取1650g配好的料,进行等静压成型。将成型后的粉体切割成等边六边形,六边形6个侧面刷氮化硼粉按图3所示拼接起来装于模具内。后将模具移入真空热压烧结气氛炉内,进行抽真空真空度保持在3KPa左右,升温速率为10°C/min,温度达到1840°C进行保温保压。其中在升温过程中当温度达到了1300°C时开始加压,当加压压力达到25MPa时进行保压,保温保压时间为3小时。保温保压结束后停止加热,炉内充15KPa氮气,样品随炉冷却。取出样品分成7块六边形。重复制备两炉热压烧结的氮化铝陶瓷,将21块热压烧结致密的六边形氮化铝陶瓷放置于热压烧结炉中关闭炉门进行抽真空真空度保持在-0.1MPa,升温速率为10°C/min。当温度达到1500-1600°C时充氮气,炉膛内部压力为0MPa。当温度达到1820°C进入保温阶段,保温5个小时,结束烧结样品随炉冷却。
表1为实施例1-3所制备的氮化铝陶瓷性能指标。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种高热导率氮化铝陶瓷的制备方法,其特征在于,热压烧结的粉末块体是由多块粉末块体拼接而成的,热压烧结结束后采用退火处理。
2.根据权利要求1所述的制备方法,其特征在于,用于热压烧结的粉体块体需先经过等静压成型,后将其切割,切割的粉末块体表面涂上脱模剂重新进行拼接。
3.根据权利要求2所述的制备方法,其特征在于,脱模剂为氮化硼粉。
4.根据权利要求1-3任一所述的的制备方法,其特征在于,热压烧结的氮化铝陶瓷采用的原料为质量比为95-99:5-1的氮化铝粉体和氧化钇粉体。
5.根据权利要求4所述的制备方法,其特征在于,氮化铝粉体的粒径为1-3um,氧化钇粉体的粒径为0.5-1um。
6.根据权利要求1所述的制备方法,其特征在于,热压烧结的具体工艺包括:在真空热压烧结气氛炉中进行真空热压烧结,升温速率为10℃/min,当温度为1200-1300℃时开始加压,当温度为1820-1840℃时进行保温保压烧结,保压压力为25MPa,保温保压时间为3-5小时,烧结结束充氮气,气压为15KPa。
7.根据权利要求1所述的制备方法,其特征在于,退火处理的温度为1820 -1840℃,退火处理的气氛为氮气,退火处理的时间为1-5小时。
8.根据权利要求7所述的制备方法,其特征在于,退火处理的升温速率为10℃/min,退火处理过程从常温到1500℃为真空烧结,炉内真空度为-0.1MPa;1500-1820℃为氮气烧结,炉内气压为0MPa。
CN201711235697.0A 2017-11-30 2017-11-30 一种高热导率氮化铝陶瓷的制备方法 Active CN107759225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711235697.0A CN107759225B (zh) 2017-11-30 2017-11-30 一种高热导率氮化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711235697.0A CN107759225B (zh) 2017-11-30 2017-11-30 一种高热导率氮化铝陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN107759225A true CN107759225A (zh) 2018-03-06
CN107759225B CN107759225B (zh) 2020-11-10

Family

ID=61277204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711235697.0A Active CN107759225B (zh) 2017-11-30 2017-11-30 一种高热导率氮化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN107759225B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484333A (zh) * 2019-01-28 2020-08-04 华中科技大学 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
CN112811909A (zh) * 2021-01-06 2021-05-18 北京科技大学 一种热压烧结制备高强度高热导率氮化铝的方法
CN114773069A (zh) * 2022-05-09 2022-07-22 秦皇岛光岩科技有限公司 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156051A (en) * 1975-11-10 1979-05-22 Tokyo Shibaura Electric Co., Ltd. Composite ceramic articles
CN101570437A (zh) * 2009-04-30 2009-11-04 潮州三环(集团)股份有限公司 一种连续式低温烧结高导热率AlN陶瓷的方法及其产品
CN101985396A (zh) * 2010-11-03 2011-03-16 刘述江 采用烧块切片法制备氮化铝陶瓷基片的方法
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN104159871A (zh) * 2011-12-30 2014-11-19 戴蒙得创新股份有限公司 近净成型切削刀具刀片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156051A (en) * 1975-11-10 1979-05-22 Tokyo Shibaura Electric Co., Ltd. Composite ceramic articles
CN101570437A (zh) * 2009-04-30 2009-11-04 潮州三环(集团)股份有限公司 一种连续式低温烧结高导热率AlN陶瓷的方法及其产品
CN101985396A (zh) * 2010-11-03 2011-03-16 刘述江 采用烧块切片法制备氮化铝陶瓷基片的方法
CN104159871A (zh) * 2011-12-30 2014-11-19 戴蒙得创新股份有限公司 近净成型切削刀具刀片
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIUSEPPE PEZZOTTI等: "Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
牛晨旭: "J-R型氮化铝陶瓷静电吸盘的设计与制造", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484333A (zh) * 2019-01-28 2020-08-04 华中科技大学 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
CN112811909A (zh) * 2021-01-06 2021-05-18 北京科技大学 一种热压烧结制备高强度高热导率氮化铝的方法
CN114773069A (zh) * 2022-05-09 2022-07-22 秦皇岛光岩科技有限公司 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法
CN114773069B (zh) * 2022-05-09 2023-07-28 秦皇岛光岩科技有限公司 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法

Also Published As

Publication number Publication date
CN107759225B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN107188567B (zh) 一种高热导率氮化铝陶瓷的制备方法
CN107759225A (zh) 一种高热导率氮化铝陶瓷的制备方法
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
CN102070341A (zh) 一种自增韧氮化硅陶瓷微波固相合成制备方法
CN110395988B (zh) 一种高强度氮化硼陶瓷及其制备方法
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN102170716A (zh) 氮化硅发热体的制作方法
KR101719928B1 (ko) Bi-Te계 세라믹스의 제조방법
CN108610055A (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN110183227A (zh) 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN108529572A (zh) 一种致密六方氮化硼块体的制备方法
CN104744051B (zh) 一种氮化硅坩埚的制作方法
KR101151209B1 (ko) 머시너블 흑색 세라믹 복합체 및 그 제조방법
CN104108938A (zh) 一种制备Sialon陶瓷的方法
CN109796222A (zh) 氮化硅纳米线强化氮化硅泡沫陶瓷的制备方法
CN107986794A (zh) 大尺寸氮化铝陶瓷基板的制备方法
CN101219899A (zh) 一种高导热、高抗折强度氧化铍陶瓷材料的制备方法
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
KR20170055639A (ko) 열전도성이 우수한 질화규소 소결체의 제조방법
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN105753485B (zh) 氮化硼复相陶瓷材料及其无压烧结工艺
CN115321960B (zh) 一种氧化铝陶瓷及其制备方法与应用
CN108658589A (zh) 亚微晶氧化铝陶瓷刀具基体材料的制备方法
CN109851329A (zh) 一种细晶Al2O3/SiC复合陶瓷刀具材料及制备工艺
CN110253735A (zh) 陶瓷坯体、陶瓷制品及其相应的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230410

Address after: No. 66 Gaoxin Avenue, Shangjie Town, Minhou County, Fuzhou City, Fujian Province, 350108. Qinghua Ziguang Pushang Commercial Town, now located on the 2nd floor of Building B6 #, Ziguang Pushang Commercial Plaza, 208SOHO Office-2

Patentee after: FUZHOU SIMAWEI INTELLIGENT TECHNOLOGY Co.,Ltd.

Address before: No.2, Xueyuan Road, University Town, Shangjie Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: FUZHOU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231016

Address after: Building 15, Liandong U Valley, No. 691 Dongtian Village, Yangxia Street, Fuqing City, Fuzhou City, Fujian Province, 350300

Patentee after: Fujian Sairuite Technology Co.,Ltd.

Address before: No. 66 Gaoxin Avenue, Shangjie Town, Minhou County, Fuzhou City, Fujian Province, 350108. Qinghua Ziguang Pushang Commercial Town, now located on the 2nd floor of Building B6 #, Ziguang Pushang Commercial Plaza, 208SOHO Office-2

Patentee before: FUZHOU SIMAWEI INTELLIGENT TECHNOLOGY Co.,Ltd.