CN107634193A - 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用 - Google Patents

一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN107634193A
CN107634193A CN201710741113.0A CN201710741113A CN107634193A CN 107634193 A CN107634193 A CN 107634193A CN 201710741113 A CN201710741113 A CN 201710741113A CN 107634193 A CN107634193 A CN 107634193A
Authority
CN
China
Prior art keywords
nitrogen
ferrous sulfide
doped carbon
nano wire
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710741113.0A
Other languages
English (en)
Other versions
CN107634193B (zh
Inventor
麦立强
韦秀娟
谈鑫
安琴友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710741113.0A priority Critical patent/CN107634193B/zh
Publication of CN107634193A publication Critical patent/CN107634193A/zh
Application granted granted Critical
Publication of CN107634193B publication Critical patent/CN107634193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法,该材料可作为长寿命、高倍率锂离子电池负极活性材料,其为一种由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1‑10微米,宽度为100‑500纳米,厚度为8‑15纳米。本发明的有益效果是:本发明仅仅采用了简单的水热和煅烧的方法,制得的材料产率高、分散性好,为探索大规模合成性能优异的高倍率特性纳米材料做出了努力。其工艺简单,符合绿色化学要求,对设备要求低,有极大地应用潜力。本发明缩短了锂离子和电子扩散距离,缓冲循环过程中的体积变化,进而有效地提高了材料电化学性能。

Description

一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法 和应用
技术领域
本发明属于纳米材料与电化学技术领域,具体涉及一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法,该材料可作为长寿命、高倍率锂离子电池负极活性材料。
背景技术
锂离子电池因能量密度高、记忆效应小、自放电率低等优势已被广泛应用于便携式电子设备。然而,为了满足目前大规模能源的存储和运输的需求,锂离子电池的使用寿命仍需进一步提高。电极材料是锂离子电池的重要组成部分,对电池性能起着决定性作用。目前商业化的负极材料主要是石墨,但其理论容量(372mAh g-1)和体积比容量并不高,限制了其在电动汽车等动力设备上的应用。因此,研究基于新型纳米电极材料的大容量、高倍率、长寿命、低成本锂离子电池是当前低碳经济时代研究的前沿和热点之一。在负极材料中,过渡金属硫族化合物因其具有更高能量密度、低成本等优点而被研究者们广泛关注。然而制约其广泛应用的关键问题是:结构的不稳定性所导致的高倍率和长寿命方面的限制。
近些年来很多研究都是从材料结构、组成方面来解决这些问题,例如减小其尺寸到纳米级以缩短离子扩散距离从而提高其电化学性能以及电池寿命。多孔硫化亚铁纳米线与氮掺杂碳复合材料可以大大提高其自身结构稳定性和电化学性能,这种纳米结构可以有效的缩短离子扩散路径,缓冲循环过程中的体积变化,有效改善了电极材料的循环稳定性;同时氮掺杂碳复合可以大大提高电极的导电率,加强结构的稳定性,从而实现了硫化亚铁作为锂离子电池负极材料在高倍率、长寿命电极材料领域的应用。
此外,作为反应原料的铁元素和硫元素的含量丰富,价格低廉,生产成本低,且该材料的制备方法简单易行,操作周期短,使得该方法具有极大的研究价值和应用潜力。
发明内容
本发明要解决的技术问题是针对上述现有技术而提出的一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法,其工艺简单,符合绿色化学要求,其具有优良的电化学性能。
本发明解决上述技术问题所采用的技术方案是:一种多孔硫化亚铁纳米线与氮掺杂碳复合材料,其为一种由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。
所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,包括如下步骤:
1)将七水合硫酸亚铁溶解在去离子水中,搅拌至完全溶解;
2)在步骤1)所得溶液中,加入硫代乙酰胺,搅拌至完全溶解;
3)在步骤2)所得溶液中,加入乙二醇,搅拌均匀;
4)在步骤3)所得溶液中,加入乙二胺,搅拌均匀;
5)将步骤4)所得溶液转入反应容器中水热反应,取出,自然冷却至室温;
6)将步骤5)所得产物离心分离,洗涤,烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体进行煅烧,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
按上述方案,步骤1)所述的七水合硫酸亚铁为1~2mmol;去离子水为20~30ml;步骤2)所述的硫代乙酰胺为2~4mmol;步骤3)所述乙二醇为2~8ml;步骤4)所述乙二胺为5~10ml,搅拌时间为30~50分钟。
按上述方案,步骤5)所述的水热反应温度为160~200℃,反应时间为6~24小时。
按上述方案,步骤7)所述的煅烧温度为300~600℃,煅烧气氛为氢气和氩气混合气体,煅烧时间为2~5小时。
所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料作为长寿命、高倍率锂离子电池负极活性材料的应用。
本发明的有益效果是:本发明仅仅采用了简单的水热和煅烧的方法,制得的材料产率高、分散性好,为探索大规模合成性能优异的高倍率特性纳米材料做出了努力。其工艺简单,符合绿色化学要求,对设备要求低,有极大地应用潜力。本发明缩短了锂离子和电子扩散距离,缓冲循环过程中的体积变化,进而有效地提高了材料电化学性能。该材料作为锂离子电池负极材料时,在200mA/g电流密度下进行测试,首次放电比容量可达1110mAh g-1,循环100次后放电比容量仍高达987mAh g-1,表现出优异的循环性能。在1000mA/g大电流密度下进行恒流放电测试结果表明,其首次放电比容量可达到1114mAh g-1,循环100次后放电比容量仍保持在861mAh g-1,循环500次后,放电比容量可高达1061mAh g-1,具有很好的长寿命性能。该结果表明该多孔硫化亚铁纳米线与氮掺杂碳复合材料具有优异的高容量与高倍率特性,是高能量密度、高功率密度锂离子电池的潜在应用材料。
附图说明
图1是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料的X射线衍射光谱图(XRD);
图2是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料的扫描电镜图(SEM);
图3是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料的透射电镜图(TEM);
图4是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料的透射电镜图(TEM)和能量色散X射线光谱元素分布图(EDX);
图5是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料的原子力显微镜图(AFM);
图6是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料在200mA g-1电流密度下的电池循环性能图;
图7是本发明实施例1的多孔硫化亚铁纳米线与氮掺杂碳复合材料在1A g-1电流密度下的电池循环性能图;
图8是本发明实施例6的硫化亚铁与氮掺杂碳复合微米片材料的透射电镜图(TEM)和能量色散X射线光谱元素分布图(EDX);
图9是本发明实施例6的硫化亚铁与氮掺杂碳复合微米片材料在200mA g-1电流密度下的电池循环性能图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,它包括如下步骤:
1)将1mmol七水合硫酸亚铁溶解在25ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌5分钟;
4)在步骤3)所得溶液中,加入5ml乙二胺,室温下搅拌40分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在180℃水热反应24小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在400℃、氢气和氩气混合气体气氛下煅烧2小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
以本实例产物多孔硫化亚铁纳米线与氮掺杂碳复合材料为例,其结构由X-射线衍射仪确定。如图1所示,X-射线衍射图谱(XRD)表明,多孔纳米线的特征峰可以很好地与FeS晶相的标准卡片(JCPDS:00-017-0200)匹配,证明FeS为主要物相且无其他杂相。如图2所示,场发射扫描电镜(FESEM)测试表明,纳米线长度1-10微米,宽度100-500纳米。如图3所示,透射电镜图(TEM)测试进一步显示了纳米线上空隙的存在,如图4所示,TEM-EDX元素分布图表明该纳米线中铁、硫分布均匀,碳、氮主要在纳米线外层起保护作用;如图5所示,原子力显微镜(AFM)测试表明,纳米线厚度为8-15纳米。如图6所示,该材料作为锂离子电池负极材料时,在200mA/g电流密度下进行测试,首次放电比容量可达1110mAh g-1,循环100次后放电比容量仍高达987mAh g-1,表现出优异的循环性能。如图7所示,在1000mA/g大电流密度下进行恒流放电测试结果表明,其首次放电比容量可达到1114mAh g-1,循环100次后放电比容量仍保持在861mAh g-1,循环500次后,放电比容量可高达1061mAh g-1,具有很好的长寿命性能。该结果表明该多孔硫化亚铁纳米线与氮掺杂碳复合材料具有优异的高容量与高倍率特性,是高能量密度、高功率密度锂离子电池的潜在应用材料。
本发明制备的硫化亚铁纳米线与氮掺杂碳复合材料作为锂离子电池负极活性材料,锂离子电池的制备方法其余步骤与通常的制备方法相同。电极片的制备方法如下,采用以硫化亚铁纳米线与氮掺杂碳复合材料作为活性材料,乙炔黑作为导电剂,羧甲基纤维素作为粘结剂,活性材料、乙炔黑、羧甲基纤维素的质量比为7:2:1,将它们按比例充分混合后,超声一个小时,再将其均匀涂布在铜箔上,在70℃的烘箱干燥6h后,用冲孔机冲成圆片后备用。以1M的LiPF6溶解于乙烯碳酸酯(EC)、碳酸二甲酯(DMC)和碳酸甲酯(EMC)(体积比1:1:1)中作为电解液,锂片作为对电极,Celgard 2325为隔膜,CR 2016型不锈钢为电池外壳组装成扣式锂离子电池。
实施例2:
1)将1mmol七水合硫酸亚铁溶解在25ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌2分钟;
4)在步骤3)所得溶液中,加入5ml乙二胺,室温下搅拌50分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在160℃水热反应24小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在500℃、氢气和氩气混合气体气氛下煅烧2小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
本发明的产物是由硫化亚铁与氮掺杂碳组成的复合纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。以本实例所得的多孔纳米线材料为例,1A/g下进行的恒流充放电测试结果表明,其首次放电比容量可达1100mAh/g,100次循环后为850mAh/g容量保持率达77.3%。
实施例3:
1)将1mmol七水合硫酸亚铁溶解在25ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌5分钟;
4)在步骤3)所得溶液中,加入5ml乙二胺,室温下搅拌45分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在200℃水热反应16小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在400℃、氢气和氩气混合气体气氛下煅烧2小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
本发明的产物是由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。以本实例所得的多孔纳米线材料为例,1A/g下进行的恒流充放电测试结果表明,其首次放电比容量可达1100mAh/g,100次循环后为820mAh/g容量保持率达74.5%。
实施例4:
1)将1.5mmol七水合硫酸亚铁溶解在25ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2.5mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌5分钟;
4)在步骤3)所得溶液中,加入5ml乙二胺,室温下搅拌35分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在180℃水热反应12小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在450℃、氢气和氩气混合气体气氛下煅烧3小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
本发明的产物是由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。以本实例所得的多孔纳米线材料为例,1A/g下进行的恒流充放电测试结果表明,其首次放电比容量可达1080mAh/g,100次循环后为840mAh/g容量保持率达77.8%。
实施例5:
1)将1mmol七水合硫酸亚铁溶解在25ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌2分钟;
4)在步骤3)所得溶液中,加入10ml乙二胺,室温下搅拌50分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在180℃水热反应24小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在500℃、氢气和氩气混合气体气氛下煅烧2小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
本发明的产物是由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。以本实例所得的多孔纳米线材料为例,1A/g下进行的恒流充放电测试结果表明,其首次放电比容量可达1085mAh/g,100次循环后为850mAh/g容量保持率达78.3%。
实施例6:
1)将1mmol七水合硫酸亚铁溶解在15ml去离子水中,室温下磁力搅拌至完全溶解;
2)在步骤1)所得溶液中,加入2mmol硫代乙酰胺,室温下磁力搅拌至完全溶解;
3)在步骤2)所得溶液中,加入5ml乙二醇,室温下搅拌5分钟;
4)在步骤3)所得溶液中,加入15ml乙二胺,室温下搅拌40分钟;
5)将步骤4)所得溶液转入50mL反应釜中,在180℃水热反应24小时,取出反应釜,自然冷却至室温;
6)将步骤5)所得产物离心分离,并用去离子水和无水乙醇分别洗涤3次,在60-80℃烘箱中烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体置于管式炉中在400℃、氢气和氩气混合气体气氛下煅烧2小时,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
所得的产物是由原位生成的硫化亚铁和氮掺杂碳复合而成的微米片,尺寸大小为2-4微米。如图8所示,TEM-EDX元素分布图表明该微米片中铁、硫、碳、氮分布均匀。如图9所示,该材料作为锂离子电池负极材料时,在200mA/g电流密度下进行测试,循环50次后放电比容量为617mAh/g。与其他实施例中的多孔硫化亚铁纳米线与氮掺杂碳复合材料相比,该复合结构材料作为锂离子电池负极材料时,具有较低的离子扩散效率和电化学性能。

Claims (6)

1.一种多孔硫化亚铁纳米线与氮掺杂碳复合材料,其为一种由原位生成的硫化亚铁纳米晶粒和氮掺杂碳复合而成的纳米线,具有多孔结构,长度为1-10微米,宽度为100-500纳米,厚度为8-15纳米。
2.权利要求1所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,包括如下步骤:
1)将七水合硫酸亚铁溶解在去离子水中,搅拌至完全溶解;
2)在步骤1)所得溶液中,加入硫代乙酰胺,搅拌至完全溶解;
3)在步骤2)所得溶液中,加入乙二醇,搅拌均匀;
4)在步骤3)所得溶液中,加入乙二胺,搅拌均匀;
5)将步骤4)所得溶液转入反应容器中水热反应,取出,自然冷却至室温;
6)将步骤5)所得产物离心分离,洗涤,烘干,即得到硫化亚铁纳米线材料前驱体;
7)将步骤6)中所得前驱体进行煅烧,即得到多孔硫化亚铁纳米线与氮掺杂碳复合材料。
3.根据权利要求2所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,其特征在于:步骤1)所述的七水合硫酸亚铁为1~2mmol;去离子水为20~30ml;步骤2)所述的硫代乙酰胺为2~4mmol;步骤3)所述乙二醇为2~8ml;步骤4)所述乙二胺为5~10ml,搅拌时间为30~50分钟。
4.根据权利要求2所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,其特征在于:步骤5)所述的水热反应温度为160~200℃,反应时间为6~24小时。
5.根据权利要求2所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料的制备方法,其特征在于:步骤7)所述的煅烧温度为300~600℃,煅烧气氛为氢气和氩气混合气体,煅烧时间为2~5小时。
6.权利要求1所述的多孔硫化亚铁纳米线与氮掺杂碳复合材料作为长寿命、高倍率锂离子电池负极活性材料的应用。
CN201710741113.0A 2017-08-25 2017-08-25 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用 Active CN107634193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710741113.0A CN107634193B (zh) 2017-08-25 2017-08-25 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710741113.0A CN107634193B (zh) 2017-08-25 2017-08-25 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107634193A true CN107634193A (zh) 2018-01-26
CN107634193B CN107634193B (zh) 2021-04-27

Family

ID=61099941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710741113.0A Active CN107634193B (zh) 2017-08-25 2017-08-25 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107634193B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433243A (zh) * 2018-11-16 2019-03-08 中国科学院青岛生物能源与过程研究所 一种硫化氮掺杂负载铁催化剂及其制备方法和应用
CN111498842A (zh) * 2020-04-20 2020-08-07 辽宁科技大学 一种硫化亚铁沥青基复合球形活性炭的制备方法
CN112978804A (zh) * 2021-02-03 2021-06-18 广西壮族自治区分析测试研究中心 多层盒状硫化亚铁@掺氮碳复合材料的制备方法
CN113066983A (zh) * 2021-03-23 2021-07-02 江苏理工学院 一种空心结构硫化亚铁@碳原位复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551090A (en) * 1979-05-14 1980-01-07 Hitachi Maxell Ltd Manufacture of nonaqueous electrolyte cell
CN103950989A (zh) * 2014-05-07 2014-07-30 安徽师范大学 一种FeS纳米材料及制备方法
CN104716319A (zh) * 2013-12-17 2015-06-17 华中科技大学 碳包覆金属硫化物电极材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551090A (en) * 1979-05-14 1980-01-07 Hitachi Maxell Ltd Manufacture of nonaqueous electrolyte cell
CN104716319A (zh) * 2013-12-17 2015-06-17 华中科技大学 碳包覆金属硫化物电极材料及其制备方法和应用
CN103950989A (zh) * 2014-05-07 2014-07-30 安徽师范大学 一种FeS纳米材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHEN-GUO WU ET AL: ""Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries"", 《JOURNAL OF ALLOYS AND COMPUNDS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433243A (zh) * 2018-11-16 2019-03-08 中国科学院青岛生物能源与过程研究所 一种硫化氮掺杂负载铁催化剂及其制备方法和应用
CN111498842A (zh) * 2020-04-20 2020-08-07 辽宁科技大学 一种硫化亚铁沥青基复合球形活性炭的制备方法
CN112978804A (zh) * 2021-02-03 2021-06-18 广西壮族自治区分析测试研究中心 多层盒状硫化亚铁@掺氮碳复合材料的制备方法
CN113066983A (zh) * 2021-03-23 2021-07-02 江苏理工学院 一种空心结构硫化亚铁@碳原位复合材料及其制备方法和应用
CN113066983B (zh) * 2021-03-23 2022-03-25 江苏理工学院 一种空心结构硫化亚铁@碳原位复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107634193B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Jiang et al. Raising lithium storage performances of NaTi2 (PO4) 3 by nitrogen and sulfur dual-doped carbon layer
CN112090441B (zh) 一种钴基碳纳米材料的制备方法、产品及应用
CN108281628A (zh) 锌钴硫化物/氮掺杂碳复合材料及其制备方法和应用
Wu et al. Synthesis and electrochemical performance of rod-like CuFe2O4 as an anode material for Na-ion battery
CN102208631A (zh) 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
CN110299516A (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN107275639B (zh) 纳米颗粒组装的CoP/C分级纳米线及其制备方法和应用
CN104157858B (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
CN107634193A (zh) 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用
Liu et al. Tuning lithium storage properties of cubic Co3O4 crystallites: The effect of oxygen vacancies
Liu et al. Rheological phase synthesis of nanosized α-LiFeO2 with higher crystallinity degree for cathode material of lithium-ion batteries
CN108428870A (zh) 一种由金属及其金属衍生物复合的二维碳片气凝胶材料的规模化制备方法及其应用
CN105609772A (zh) 微波法制备n,s共掺杂石墨烯锂硫电池正极材料的方法
Wang et al. Facile synthesis of a scale-like NiO/Ni composite anode with boosted electrochemical performance for lithium-ion batteries
CN106299344A (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
Zhang et al. Well-designed hollow and porous Co 3 O 4 microspheres used as an anode for Li-ion battery
CN106058193A (zh) 一种新型钠离子电池负极材料及其制备方法和应用
CN106450228B (zh) 一种锂离子电池用复合纳米材料及其制备方法
CN105977487B (zh) 手风琴状vs2材料及其制备方法和应用
CN114551832A (zh) 一种纳米复合材料的制备方法及其锂离子电极负极材料
CN104934577B (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用
Li et al. Design and synthesis of one-dimensional Co 3 O 4/Co 3 V 2 O 8 hybrid nanowires with improved Li-storage properties
CN113097490A (zh) 十二面体ZIF-67/Co3O4复合材料、制备方法及其应用
CN110148763B (zh) 一种具有中空纳米框架结构的Fe掺杂Mn3O4碳氮材料的制备方法和应用
CN102544483B (zh) 一种锂离子电池正极复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant