CN107601574A - 一种纳米α‑Fe2O3的制备方法 - Google Patents

一种纳米α‑Fe2O3的制备方法 Download PDF

Info

Publication number
CN107601574A
CN107601574A CN201710888205.1A CN201710888205A CN107601574A CN 107601574 A CN107601574 A CN 107601574A CN 201710888205 A CN201710888205 A CN 201710888205A CN 107601574 A CN107601574 A CN 107601574A
Authority
CN
China
Prior art keywords
nanometer
preparation
packed bed
product
high gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710888205.1A
Other languages
English (en)
Inventor
张亮亮
朱楠
陈建峰
初广文
邹海魁
孙宝昌
罗勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710888205.1A priority Critical patent/CN107601574A/zh
Publication of CN107601574A publication Critical patent/CN107601574A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种纳米α‑Fe2O3的制备方法,属于化工、材料交叉领域。本发明以铁盐、碱、水、有机溶剂等为原料,在超重力旋转填充床中进行预混,混合均匀后的前躯体悬浮液置于水热釜中加热,并经过洗涤、离心、干燥等步骤,得到纳米α‑Fe2O3。本发明基于超重力旋转填充床可以强化微观混合的特点,通过超重力旋转填充床强化铁盐溶液和碱液的微观混合,使反应体系快速均匀成核,得到含有均匀晶核的前驱体悬浮液,后期晶化过程采用溶剂热法,并通过改变旋转床转速、溶剂类型和碱液浓度等参数实现了产物形貌和尺寸的有效调控,制备出了颗粒形貌规整,分散性好,尺寸小且粒径分布均匀,尺寸为15‑30nm的纳米α‑Fe2O3

Description

一种纳米α-Fe2O3的制备方法
技术领域
本发明属于化工、材料交叉领域,涉及一种利用超重力技术制备纳米α-Fe2O3的方法。
背景技术
α-Fe2O3是一种有带隙的n型半导体,它是最稳定的铁氧物;由于其成本低廉,稳定性和抗腐蚀性强,具有磁性、高透明度,酸度吸附范围广等特点,在颜料、磁记录器件、防腐剂、催化剂及气体传感器、污水处理中都有广泛应用。纳米α-Fe2O3的晶粒尺寸和形貌很大程度上决定了其各种物理及化学性质,进而决定了其产品的性能及应用。如:棒状、纺锤状的α-Fe2O3颗粒具有更高的剩余磁化强度和矫顽力;空心球状的纳米α-Fe2O3颗粒基于其密度小、比表面积大等特点主要应用于废水处理过程及光电催化领域;颗粒尺寸为10nm左右的球状α-Fe2O3产品具有高彩度、高透明度和高着色力,在建筑涂料、橡胶、塑料和油墨、催化剂等领域得到广泛应用;颗粒尺寸为一至几微米的α-Fe2O3常被用作气体传感器等。
目前公开的制备纳米α-Fe2O3的方法主要包括气相法、液相法和固相法。其中气相法、固相法存在条件苛刻、设备复杂、能耗高、产率低等缺点,很难实现工业化,且难以对颗粒形貌和尺寸进行有效控制。在液相法中,溶胶凝胶法操作复杂,对过程控制要求严格;模板法反应速率较低又存在模板去除问题;反应沉淀法操作简单、条件温和、所得颗粒性能良好,且能够批量生产纳米颗粒,但传统反应沉淀法微观混合时间较长,即晶核形成和晶粒生长同时进行,此外还需经过煅烧等热处理过程,易造成产物形貌不规整、粒度分布不均匀、产物团聚严重等现象;水热法/溶剂热法主要控制产物晶化过程,制备的纳米颗粒结晶完整度高且形貌规整,此外产物无需经过高温煅烧,产物分散性好,但其无法控制晶体成核过程。因此提出一种能同时有效控制产物形貌和粒径的制备方法非常重要。
超重力技术作为一种过程强化技术,现已被应用于材料、生物、化工、能源等多个领域。超重力技术主要是通过超重力旋转填充床来实现超重力场的模拟。在旋转填充床中,电机带动缠有填料的转子高速旋转,产生极强的离心力;液体不是以连续相存在,而是被强大的剪切力粉碎成微米或纳米尺度的液膜、液滴,使得相界面更新速度快,微观混合大大加强。在超重力条件下,液体混合均匀所需要的时间tm约在0.04~0.4ms,远远小于晶体成核特征时间tn,保证了晶核形成和晶粒生长两个阶段独立进行,实现了产物粒度纳米化,且粒度分布也较常规方法窄化,可有效调控纳米颗粒的尺寸。因此将超重力技术与传统沉淀法结合,可以得到有均匀晶核的前躯体悬浮液,将前躯体悬浮液进行水热晶化,并通过改变旋转填充床转速、晶化温度、溶剂等参数可同时调控纳米α-Fe2O3的尺寸和形貌,且避免了产物的团聚。
发明内容
本发明要解决的技术问题是提供一种纳米α-Fe2O3尺寸及形貌可控制备的方法;该方法基于超重力旋转填充床可以强化微观混合的特点,以铁盐、碱、油酸、水、醇为原料,在超重力旋转填充床中进行预混,混合均匀后置于水热釜中加热,并经过洗涤、离心、干燥等步骤,得到纳米α-Fe2O3。该方法实现了纳米α-Fe2O3颗粒形貌和粒径的可控制备,制备的纳米α-Fe2O3颗粒粒径均匀。
实现上述纳米α-Fe2O3合成方法所采用的具体制备过程如下:
S1.将铁盐溶于水中,得到铁盐溶液;将碱溶于水、油酸、醇的混合溶剂中,得到碱液。
S2.将铁盐溶液和碱液通过输送泵打入超重力旋转填充床中,通过超重力旋转填充床强化铁盐溶液和碱液的微观混合,使反应体系快速均匀成核,得到含有均匀晶核的前驱体悬浮液。
S3.将含有均匀晶核的前躯体悬浮液转移至水热釜中,在一定温度下水热晶化一段时间;待晶化反应结束后,水热釜冷却至室温,将产物离心得到红棕色沉淀,并且用乙醇洗涤数次。
S4.将S3离心洗涤处理得到的产物置于真空干燥箱中干燥;冷却至室温后研磨,得到纳米α-Fe2O3粉体。
优选地,步骤S1中所述铁盐选自下列物质中的一种:氯化铁、硝酸铁、硫酸铁、草酸铁、高氯酸铁;所述铁盐溶液的浓度为0.1mol/L~0.4mol/L。
优选地,步骤S1中所述碱选自下列物质中的一种:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、氨水、碳酸氢铵;所述碱液的浓度为0.1mol/L~0.5mol/L。
优选地,步骤S1中所述醇选自下列物质中的一种或几种:甲醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇;所述混合溶剂中水、油酸、醇的体积比为1:2:(1~4)。
优选地,步骤S2中所述铁盐溶液和碱液的进料流量体积比为3:5。
优选地,步骤S2中所述超重力旋转填充床的转速为500~3000rpm;更优选地,超重力旋转填充床的转速为1000~2500rpm。
优选地,步骤S3中所述温度为160~200℃;
优选地,步骤S3中所述反应时间为4~12h;更优选地,反应时间为8~10h。
优选地,步骤S4中所述干燥温度为60~80℃。
本发明的有益效果是:
本发明方法利用超重力旋转填充床可以强化微观混合的特点,通过调节旋转床转速等参数可制备出颗粒尺寸小且粒径分布均匀,尺寸为15-30nm的纳米α-Fe2O3;晶化过程采用溶剂热法,使得产物形貌规整,分散性好;此外本方法还通过改变溶剂类型和碱液浓度等实现了形貌的有效调控,得到的产物形貌有半锥形、纺锤形、球形和立方形,如采用的醇类为乙醇,碱液对应的浓度为每2g氢氧化钠对应25mL水、50mL油酸及50mL乙醇时得到的为纯的立方块形;而同等条件采用甲醇得到的为球形结构。本发明工艺流程简单、易于操作、可重复性好、易于放大。
采用本发明方法制备的纳米α-Fe2O3根据具体领域的应用要求,可用作催化剂、磁性储存介质、颜料、油墨、涂料等,此外,还可用于工业废水处理中。
附图说明
图1为本发明方案所使用超重力旋转填充床的一种工艺流程图。
图2为本发明实施例1的产物透射电镜(TEM)照片。
图3为本发明实施例2的产物透射电镜(TEM)照片。
图4为本发明实施例3的产物透射电镜(TEM)照片。
图5为本发明实施例4的产物透射电镜(TEM)照片。
图6为本发明实施例5的产物扫描电镜(SEM)照片。
图7为本发明实施例6的产物扫描电镜(SEM)照片。
图8为本发明对比例1的产物扫描电镜(SEM)照片。
附图中涉及的数字标记如下:
1-铁盐溶液储罐,2-输送泵,3-碱液储罐,4-输送泵,5-超重力旋转填充床,6-铁盐溶液进料口,7-碱液进料口,8-填料,9-电机,10-液体出口,11-水热釜。
具体实施方式
下面结合附图和实施例对本发明的实施方案进一步说明,但本发明并不限于以下实施例。
本发明中所采用的超重力旋转填充床为现有技术,例如已公开专利(ZL95215430.7);本发明采用超重力旋转填充床的一种实施方案的反应流程图如图1所示,实施方案如下:
开启超重力旋转填充床5;铁盐溶液储罐1中铁盐溶液采用输送泵2打入超重力旋转填充床中的铁盐溶液进料口6;碱液储罐3中碱液采用输送泵4打入超重力旋转填充床中的碱液进料口7;电机9带动缠有填料8的超重力旋转填充床中的转子高速旋转,产生超重力环境;铁盐溶液和碱液经由进料管上的液体分布器喷淋到超重力旋转填充床转子的内缘后与填料碰撞并进入填料内,进而被强大的剪切力粉碎成微米或纳米尺度的液膜、液滴,使得相界面更新速度快,微观混合大大加强,缩短了晶核生长时间,进而控制成核粒子的颗粒尺寸;经超重力旋转填充床反应后的带有均匀晶核的前驱体悬浮液从填充床下部的液体出口10流出,流入水热釜11中。
下面的实施例仅用于进一步说明本发明而不是对本发明进行限制,在不背离本发明精神和范围的条件下,本领域的技术人员可对其进行各种改动或修改。这里无法对所有的实施方式进行穷举,凡是属于本发明的技术方案所引申的显而易见的变化或变动同样处于本申请所附权利要求书所限定的范围。
实施例1
将浓度为0.13mol/L的氯化铁溶液,2g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为1000rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图2表明基于实施例1制备得到的产物颗粒形貌为立方块,尺寸约为45nm。
实施例2
将浓度为0.13mol/L的氯化铁溶液,2g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为2000rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图3表明基于实施例2制备得到的产物颗粒形貌为立方块,尺寸约为25nm。
实施例3
将浓度为0.13mol/L的氯化铁溶液,2g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为2500rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图4表明基于实施例3制备得到的产物颗粒形貌为立方块,尺寸约为75nm。
实施例4
将浓度为0.13mol/L的氯化铁溶液,2g氢氧化钠溶于25mL水、50mL油酸及50mL甲醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为2000rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图5表明基于实施例4制备得到的产物颗粒形貌为球形,尺寸约为15nm。
实施例5
将浓度为0.13mol/L的氯化铁溶液,1g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为2000rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图6表明基于实施例5制备得到的产物颗粒形貌为半锥形。
实施例6
将浓度为0.13mol/L的氯化铁溶液,0.8g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液同时通过输送泵打入超重力旋转填充床中,进料流量比为3:5,转速设置为2000rpm,得到带有均匀晶核的前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图7表明基于实施例6制备得到的产物颗粒形貌为纺锤形和半锥形。
对比例1
将浓度为0.13mol/L的氯化铁溶液,以及2g氢氧化钠溶于25mL水、50mL油酸及50mL乙醇组成的混合溶剂中得到的碱液在搅拌条件下同时加入到烧杯中混合,得到前躯体悬浮液;将前躯体悬浮液转移至250mL水热釜中,在烘箱中180℃下晶化10h;待晶化反应完成,水热釜冷却至室温后,将产物离心得到红棕色沉淀,离心速度为5000rpm,并用乙醇洗涤4~5次;将离心洗涤处理得到的产物置于真空干燥箱中,在60℃干燥8小时;冷却至室温后研磨,得到纳米α-Fe2O3粉体。图8表明基于对比例1制备得到的产物颗粒尺寸不均匀,且为混合形貌,立方形和长棒状同时存在。

Claims (10)

1.一种纳米α-Fe2O3的制备方法,其特征在于,包括以下步骤:
S1.将铁盐溶于水中,得到铁盐溶液;将碱溶于水、油酸、醇的混合溶剂中,得到碱液;
S2.将铁盐溶液和碱液通过输送泵打入超重力旋转填充床中,通过超重力旋转填充床强化铁盐溶液和碱液的微观混合,使反应体系快速均匀成核,得到含有均匀晶核的前驱体悬浮液;
S3.将含有均匀晶核的前躯体悬浮液转移至水热釜中,在一定温度下水热晶化一段时间;待晶化反应结束后,水热釜冷却至室温,将产物离心得到红棕色沉淀,并且用乙醇洗涤数次;
S4.将S3离心洗涤处理得到的产物置于真空干燥箱中干燥;冷却至室温后研磨,得到纳米α-Fe2O3粉体。
2.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S1中所述铁盐选自下列物质中的一种:氯化铁、硝酸铁、硫酸铁、草酸铁、高氯酸铁;所述铁盐溶液的浓度为0.1mol/L~0.4mol/L。
3.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S1中所述碱选自下列物质中的一种:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、氨水、碳酸氢铵;所述碱液的浓度为0.1mol/L~0.5mol/L。
4.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S1中所述醇选自下列物质中的一种或几种:甲醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇;所述混合溶剂中水、油酸、醇的体积比为1:2:(1~4)。
5.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S2中所述铁盐溶液和碱液的进料流量体积比为3:5。
6.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S2中所述超重力旋转填充床的转速为500~3000rpm。
7.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,超重力旋转填充床的转速为1000~2500rpm。
8.按照权利要求1所述的一种纳米α-Fe2O3的制备方法,其特征在于,步骤S3中所述温度为160~200℃;步骤S3中所述反应时间为4~12h;步骤S4中所述干燥温度为60~80℃。
9.按照权利要求1-8任一项所述的一种纳米α-Fe2O3的制备方法,其特征在于,产物形貌有半锥形、纺锤形、球形和立方形中的一种或几种。
10.按照权利要求1-8任一项所述的一种纳米α-Fe2O3的制备方法,其特征在于,通过改变溶剂中醇类类型和碱液浓度进行形貌的有效调控。
CN201710888205.1A 2017-09-25 2017-09-25 一种纳米α‑Fe2O3的制备方法 Pending CN107601574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710888205.1A CN107601574A (zh) 2017-09-25 2017-09-25 一种纳米α‑Fe2O3的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710888205.1A CN107601574A (zh) 2017-09-25 2017-09-25 一种纳米α‑Fe2O3的制备方法

Publications (1)

Publication Number Publication Date
CN107601574A true CN107601574A (zh) 2018-01-19

Family

ID=61058581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710888205.1A Pending CN107601574A (zh) 2017-09-25 2017-09-25 一种纳米α‑Fe2O3的制备方法

Country Status (1)

Country Link
CN (1) CN107601574A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338466A (zh) * 2018-09-02 2019-02-15 景德镇陶瓷大学 一种制备单晶Fe2O3纳米颗粒自组装椭圆球微纳米结构的方法
CN109987640A (zh) * 2019-04-29 2019-07-09 北京科技大学 一种制备纳米α-Fe2O3的方法
CN110885087A (zh) * 2018-09-10 2020-03-17 临沂大学 一种制备纳米二氧化硅的方法
CN110883339A (zh) * 2018-09-10 2020-03-17 临沂大学 一种制备超细金属粉的方法
CN111330595A (zh) * 2020-04-17 2020-06-26 天津大学 氧化铁负载单原子Pd、Pt催化剂及其制备方法和在选择性加氢反应中的应用
CN111592048A (zh) * 2020-06-03 2020-08-28 四川轻化工大学 一种纺锤形氧化铁纳米材料及其制备方法和应用
CN112125344A (zh) * 2019-06-25 2020-12-25 北京化工大学 一种单分散纳米铁氧化物分散体的制备方法
CN112341630A (zh) * 2019-08-07 2021-02-09 北京化工大学 使用超重力技术连续制备纳米金属-有机框架材料的方法
CN112547072A (zh) * 2019-09-10 2021-03-26 中国石油化工股份有限公司 负载型催化剂和应用以及制备低级脂肪胺的方法
CN112744869A (zh) * 2020-12-29 2021-05-04 重庆文理学院 一种腰鼓状α-Fe2O3纳米材料及其制备方法
CN114733459A (zh) * 2022-04-01 2022-07-12 北京化工大学 一种非均相纳米分散体强化反应装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928043A (zh) * 2010-09-16 2010-12-29 厦门大学 一种α型三氧化二铁微米球及其制备方法
CN103601253A (zh) * 2013-11-05 2014-02-26 陕西科技大学 一种圆片状α-Fe2O3 光催化剂及其制备方法和应用
CN104402060A (zh) * 2014-10-29 2015-03-11 宁夏大学 一种合成α-Fe2O3十二面体和十四面体微晶的方法
CN105399153A (zh) * 2015-11-27 2016-03-16 中北大学 一种撞击流旋转填料床制备磁性纳米材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928043A (zh) * 2010-09-16 2010-12-29 厦门大学 一种α型三氧化二铁微米球及其制备方法
CN103601253A (zh) * 2013-11-05 2014-02-26 陕西科技大学 一种圆片状α-Fe2O3 光催化剂及其制备方法和应用
CN104402060A (zh) * 2014-10-29 2015-03-11 宁夏大学 一种合成α-Fe2O3十二面体和十四面体微晶的方法
CN105399153A (zh) * 2015-11-27 2016-03-16 中北大学 一种撞击流旋转填料床制备磁性纳米材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张怡: "氧化铁纳米结构的水热/溶剂热合成及其催化性能的表征", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338466A (zh) * 2018-09-02 2019-02-15 景德镇陶瓷大学 一种制备单晶Fe2O3纳米颗粒自组装椭圆球微纳米结构的方法
CN110883339B (zh) * 2018-09-10 2022-09-09 临沂大学 一种制备超细金属粉的方法
CN110885087A (zh) * 2018-09-10 2020-03-17 临沂大学 一种制备纳米二氧化硅的方法
CN110883339A (zh) * 2018-09-10 2020-03-17 临沂大学 一种制备超细金属粉的方法
CN110885087B (zh) * 2018-09-10 2023-01-03 佛山市农芯智能科技有限公司 一种制备纳米二氧化硅的方法
CN109987640A (zh) * 2019-04-29 2019-07-09 北京科技大学 一种制备纳米α-Fe2O3的方法
CN112125344B (zh) * 2019-06-25 2022-12-09 北京化工大学 一种单分散纳米铁氧化物分散体的制备方法
CN112125344A (zh) * 2019-06-25 2020-12-25 北京化工大学 一种单分散纳米铁氧化物分散体的制备方法
CN112341630A (zh) * 2019-08-07 2021-02-09 北京化工大学 使用超重力技术连续制备纳米金属-有机框架材料的方法
CN112341630B (zh) * 2019-08-07 2022-11-15 北京化工大学 使用超重力技术连续制备纳米金属-有机框架材料的方法
CN112547072A (zh) * 2019-09-10 2021-03-26 中国石油化工股份有限公司 负载型催化剂和应用以及制备低级脂肪胺的方法
CN112547072B (zh) * 2019-09-10 2023-08-15 中国石油化工股份有限公司 负载型催化剂和应用以及制备低级脂肪胺的方法
CN111330595A (zh) * 2020-04-17 2020-06-26 天津大学 氧化铁负载单原子Pd、Pt催化剂及其制备方法和在选择性加氢反应中的应用
CN111592048A (zh) * 2020-06-03 2020-08-28 四川轻化工大学 一种纺锤形氧化铁纳米材料及其制备方法和应用
CN112744869A (zh) * 2020-12-29 2021-05-04 重庆文理学院 一种腰鼓状α-Fe2O3纳米材料及其制备方法
CN114733459A (zh) * 2022-04-01 2022-07-12 北京化工大学 一种非均相纳米分散体强化反应装置及方法
CN114733459B (zh) * 2022-04-01 2023-08-08 北京化工大学 一种非均相纳米分散体强化反应装置及方法

Similar Documents

Publication Publication Date Title
CN107601574A (zh) 一种纳米α‑Fe2O3的制备方法
CN105776335B (zh) 高纯相球形纳米二硫化钼的制备方法
CN105399153B (zh) 一种撞击流旋转填料床制备磁性纳米材料的方法
Bagherzadeh et al. Morphology Modification of the Iron Fumarate MIL‐88A Metal–Organic Framework Using Formic Acid and Acetic Acid as Modulators
CN105271307B (zh) 一种普鲁士蓝衍生物Cd2[Fe(CN)6]纳米棒及其制备方法
CN107961764A (zh) 一种羧甲基-β-环糊精功能化磁性介孔硅微球的制备方法
CN107993784B (zh) 多种形貌的磁性颗粒及其制备方法与应用
US20240140818A1 (en) Preparation method and application of amorphous metal oxide hollow multi-shell material
CN105489330B (zh) 一种壳聚糖基磁性纳米材料的超重力制备方法
CN106495192B (zh) 一种制备粒径分布均匀的水滑石的方法
CN107915257A (zh) 一种钨青铜纳米分散体的制备方法及其应用
CN106976898A (zh) 一种连续碳化生产粒径可控碳酸钙的方法
CN104229901A (zh) 一种磁性四氧化三铁纳米粒子的制备方法
CN105600833B (zh) 一种球状介孔氧化铁及其制备方法
CN110627025A (zh) 一种超声耦合超重力旋转床剥离制备二维石墨相氮化碳分散液的方法
CN109317149A (zh) 一种负载镍的SiO2@C核壳材料的制备方法及应用
CN107032412A (zh) 一种钴铁氧体磁性纳米颗粒的制备方法
CN109603760B (zh) 一种吸附盐酸四环素的磁性纳米材料NiFe2O4@ N–C的制备方法
CN105469920B (zh) 一种半胱氨酸修饰的磁性纳米材料的超重力制备方法
CN105198004B (zh) 一种Fe3O4‑SnO2纳米复合材料及其制备方法
CN104030363B (zh) 一种四氧化三铁纳米粒子的制备方法
CN105753035A (zh) 一种纳米氧化亚铜的制备方法
CN113086998B (zh) 一种Mg6Al2(OH)18·4.5H2O纳米片及其制备方法和应用
CN107680768A (zh) 一种钴纳米磁性材料的制备方法
CN107140690A (zh) 一种改善铋铁钛类氧化物纳米粉体团聚的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180119