CN107032412A - 一种钴铁氧体磁性纳米颗粒的制备方法 - Google Patents

一种钴铁氧体磁性纳米颗粒的制备方法 Download PDF

Info

Publication number
CN107032412A
CN107032412A CN201710269685.3A CN201710269685A CN107032412A CN 107032412 A CN107032412 A CN 107032412A CN 201710269685 A CN201710269685 A CN 201710269685A CN 107032412 A CN107032412 A CN 107032412A
Authority
CN
China
Prior art keywords
preparation
magnetic nanoparticle
conjugate ferrite
ferrite magnetic
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710269685.3A
Other languages
English (en)
Inventor
于永生
焦建国
杨微微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710269685.3A priority Critical patent/CN107032412A/zh
Publication of CN107032412A publication Critical patent/CN107032412A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种钴铁氧体磁性纳米颗粒的制备方法,涉及一种钴铁氧体磁性纳米颗粒的制备方法。本发明是为了解决目前的纳米钴铁氧体制备方法复杂、易团聚、分散性差、粒径不可控和结晶度差的技术问题。本发明:一、磁力搅拌;二、水热反应;三、冷却;四、洗涤;五、干燥。本发明采用一种简单的水热合成方法,制备了尺寸可控,分散均匀,结晶良好的高矫顽力钴铁氧纳米颗粒,且装置操作简单,原料成本低廉,易于工业化生产。该材料在核磁共振成像、药物运输、催化剂、高密度磁存储、气体传感器、磁流体等领域具有潜在的应用价值。本发明应用于制备钴铁氧体磁性纳米颗粒。

Description

一种钴铁氧体磁性纳米颗粒的制备方法
技术领域
本发明涉及一种钴铁氧体磁性纳米颗粒的制备方法。
技术背景
钴铁氧体(CoFe2O4)具有适中的饱和磁化强度、大的磁晶各向异性常数、较高的矫顽力,并且具有良好的机械性能和化学稳定性,这些独特的性质使得钴铁氧体在核磁共振成像、药物运输、催化剂、高密度磁存储、气体传感器、磁流体等领域得到广泛应用。钴铁氧体的磁性能受到其形貌和尺寸的影响很大,随着钴铁氧体粒径的减小和形状各向异性的提高,用于磁存储材料时可以显著提高记录密度和信噪比。因此,控制钴铁氧体的形貌和尺寸成为提高其磁性能的关键。钴铁氧体传统的制备方法有溶胶-凝胶法、热分解法、共沉淀法等,这些方法虽然可以制备出纳米级的钴铁氧体,但是团聚现象比较严重,粒径分布较大,并且能耗较高,方法比较复杂,难以一步制备出形貌规则,粒径分布窄,矫顽力和饱和磁化强度高的钴铁氧纳米粒子。
发明内容
本发明是为了解决目前的纳米钴铁氧体制备方法复杂、易团聚、分散性差、粒径不可控和结晶度差的技术问题,而提供一种钴铁氧体磁性纳米颗粒的制备方法。
本发明的一种钴铁氧体磁性纳米颗粒的制备方法是按以下步骤进行的:
一、磁力搅拌:将表面活性剂加入到水中,在温度为20℃~30℃的条件下磁力搅拌至形成澄清溶液,然后加入前驱体和络合剂,继续搅拌至形成均相溶液;所述的表面活性剂为十六烷基三甲基溴化铵;所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:(2~3);所述的氯化钴和络合剂的物质的量之比为1:(30~35);所述的络合剂为尿素;
二、水热反应:将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为150℃~180℃的条件下水热反应8h~12h;
三、冷却:步骤二的水热反应结束后,在鼓风干燥箱中自然冷却至室温,取出反应釜;
四、洗涤:
①、将步骤三反应釜中冷却后的产物放入离心管中,以6500r/min的转速离心3min~5min,保留固体,加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
②、继续加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
③、重复步骤四②的过程2次~3次,保留固体,得到洗涤后的产物;
五、干燥:将步骤四洗涤后的产物放入真空干燥箱中,在真空和温度为60℃~70℃的条件下干燥3h~4h,得到黑色钴铁氧纳米颗粒。
本发明采用一种简单的水热合成方法,制备了尺寸可控,分散均匀,结晶良好的高矫顽力钴铁氧纳米颗粒,且装置操作简单,原料成本低廉,易于工业化生产。该材料在核磁共振成像、药物运输、催化剂、高密度磁存储、气体传感器、磁流体等领域具有潜在的应用价值。
本发明采用简单的水热合成法,以CTAB(十六烷基三甲基溴化铵)为表面活性剂,尿素为络合剂,在反应釜中高温高压条件下一步制备得到了具有优异磁性能的高矫顽力钴铁氧纳米颗粒,并且还可以通过调节前驱体浓度,反应温度和反应时间从而进一步调节产物的磁性能、形貌和尺寸。
附图说明
图1是试验一制备的黑色钴铁氧纳米颗粒的SEM照片;
图2是试验一制备的黑色钴铁氧纳米颗粒的EDS谱图;
图3是试验一制备的黑色钴铁氧纳米颗粒的X射线衍射花样;
图4是试验一制备的黑色钴铁氧纳米颗粒的VSM曲线图。
具体实施方式:
具体实施方式一:本实施方式为一种钴铁氧体磁性纳米颗粒的制备方法,具体是按以下步骤进行的:
一、磁力搅拌:将表面活性剂加入到水中,在温度为20℃~30℃的条件下磁力搅拌至形成澄清溶液,然后加入前驱体和络合剂,继续搅拌至形成均相溶液;所述的表面活性剂为十六烷基三甲基溴化铵;所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:(2~3);所述的氯化钴和络合剂的物质的量之比为1:(30~35);所述的络合剂为尿素;
二、水热反应:将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为150℃~180℃的条件下水热反应8h~12h;
三、冷却:步骤二的水热反应结束后,在鼓风干燥箱中自然冷却至室温,取出反应釜;
四、洗涤:
①、将步骤三反应釜中冷却后的产物放入离心管中,以6500r/min的转速离心3min~5min,保留固体,加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
②、继续加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
③、重复步骤四②的过程2次~3次,保留固体,得到洗涤后的产物;
五、干燥:将步骤四洗涤后的产物放入真空干燥箱中,在真空和温度为60℃~70℃的条件下干燥3h~4h,得到黑色钴铁氧纳米颗粒。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:2。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是:步骤一中所述的氯化钴和络合剂的物质的量之比为1:30。其它与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一不同的是:步骤二中将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为180℃的条件下水热反应8h。其它与具体实施方式一相同。
具体实施方式五:本实施方式与具体实施方式一不同的是:步骤五中将步骤四离心后的产物放入真空干燥箱中,在真空和温度为60℃的条件下干燥3h,得到黑色钴铁氧纳米颗粒。其它与具体实施方式一相同。
通过以下试验验证本发明的效果:
试验一:本试验为一种钴铁氧体磁性纳米颗粒的制备方法,具体是按以下步骤进行的:
一、磁力搅拌:将表面活性剂加入到水中,在温度为30℃的条件下磁力搅拌至形成澄清溶液,然后加入前驱体和络合剂,继续搅拌至形成均相溶液;所述的表面活性剂为十六烷基三甲基溴化铵;所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:2;所述的氯化钴和络合剂的物质的量之比为1:30;所述的络合剂为尿素;
二、水热反应:将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为150℃的条件下水热反应12h;
三、冷却:步骤二的水热反应结束后,在鼓风干燥箱中自然冷却至室温,取出反应釜;
四、洗涤:
①、将步骤三反应釜中冷却后的产物放入离心管中,以6500r/min的转速离心3min,保留固体,加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
②、继续加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
③、重复步骤四②的过程2次,保留固体,得到洗涤后的产物;
五、干燥:将步骤四洗涤后的产物放入真空干燥箱中,在真空和温度为60℃的条件下干燥3h,得到黑色钴铁氧纳米颗粒。
图1是试验一制备的黑色钴铁氧纳米颗粒的SEM照片,可以看出CoFe2O4纳米颗粒分散均匀,形貌规整,粒径分布窄,直径约为60nm。
图2是试验一制备的黑色钴铁氧纳米颗粒的EDS谱图,表1是相应的数据,可以看出,产物中含有铁与钴元素,且原子百分比接近2:1。
表1
图3是试验一制备的黑色钴铁氧纳米颗粒的X射线衍射花样,从图中可以看出,峰形尖锐,强度很高,说明所得样品有很好的结晶度;所有衍射峰与立方相钴铁氧体的标准衍射峰一致,这证实形成的产物是纯相化合物。
图4是试验一制备的黑色钴铁氧纳米颗粒的VSM曲线图,可以看出钴铁氧纳米颗粒具有较大的矫顽力与饱和磁化强度,Hc=3.57kOe,Ms=34.74emu/g。

Claims (5)

1.一种钴铁氧体磁性纳米颗粒的制备方法,其特征在于钴铁氧体磁性纳米颗粒的制备方法是按以下步骤进行的:
一、磁力搅拌:将表面活性剂加入到水中,在温度为20℃~30℃的条件下磁力搅拌至形成澄清溶液,然后加入前驱体和络合剂,继续搅拌至形成均相溶液;所述的表面活性剂为十六烷基三甲基溴化铵;所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:(2~3);所述的氯化钴和络合剂的物质的量之比为1:(30~35);所述的络合剂为尿素;
二、水热反应:将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为150℃~180℃的条件下水热反应8h~12h;
三、冷却:步骤二的水热反应结束后,在鼓风干燥箱中自然冷却至室温,取出反应釜;
四、洗涤:
①、将步骤三反应釜中冷却后的产物放入离心管中,以6500r/min的转速离心3min~5min,保留固体,加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
②、继续加入乙醇水溶液,超声均匀,然后以6500r/min的转速离心3min~5min,保留固体;所述的乙醇水溶液中乙醇和水的体积比为1:2;
③、重复步骤四②的过程2次~3次,保留固体,得到洗涤后的产物;
五、干燥:将步骤四洗涤后的产物放入真空干燥箱中,在真空和温度为60℃~70℃的条件下干燥3h~4h,得到黑色钴铁氧纳米颗粒。
2.根据权利要求1所述的一种钴铁氧体磁性纳米颗粒的制备方法,其特征在于步骤一中所述的前驱体由氯化铁和氯化钴组成,且氯化钴和氯化铁的物质的量之比为1:2。
3.根据权利要求1所述的一种钴铁氧体磁性纳米颗粒的制备方法,其特征在于步骤一中所述的氯化钴和络合剂的物质的量之比为1:30。
4.根据权利要求1所述的一种钴铁氧体磁性纳米颗粒的制备方法,其特征在于步骤二中将步骤一所得的均相溶液转移至内胆为聚四氟乙烯的不锈钢高压反应釜中,密封,然后将反应釜放入到鼓风干燥箱中,在温度为180℃的条件下水热反应8h。
5.根据权利要求1所述的一种钴铁氧体磁性纳米颗粒的制备方法,其特征在于步骤五中将步骤四离心后的产物放入真空干燥箱中,在真空和温度为60℃的条件下干燥3h,得到黑色钴铁氧纳米颗粒。
CN201710269685.3A 2017-04-21 2017-04-21 一种钴铁氧体磁性纳米颗粒的制备方法 Pending CN107032412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710269685.3A CN107032412A (zh) 2017-04-21 2017-04-21 一种钴铁氧体磁性纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710269685.3A CN107032412A (zh) 2017-04-21 2017-04-21 一种钴铁氧体磁性纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN107032412A true CN107032412A (zh) 2017-08-11

Family

ID=59536481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710269685.3A Pending CN107032412A (zh) 2017-04-21 2017-04-21 一种钴铁氧体磁性纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN107032412A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533177A (zh) * 2020-04-28 2020-08-14 中国人民解放军陆军装甲兵学院 一种亚微米级空心钴铁氧体吸波材料及其制备方法
WO2020241065A1 (ja) * 2019-05-24 2020-12-03 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
CN114181402A (zh) * 2021-12-21 2022-03-15 吉林化工学院 一种可磁回收的金属有机框架材料及其制备方法和用途
CN116589053A (zh) * 2023-06-19 2023-08-15 大庆师范学院 一种兼具除铬功能的核壳结构CCoS磁性絮凝剂及其绿色合成方法和应用
WO2023176926A1 (ja) * 2022-03-17 2023-09-21 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693616A (zh) * 2009-10-29 2010-04-14 北京理工大学 一步法制备磁性尖晶石铁氧体空心球的方法
CN102503394A (zh) * 2011-10-31 2012-06-20 上海理工大学 以Fe2+盐为铁源制备系列铁氧体纳米材料的方法
CN106082349A (zh) * 2016-06-20 2016-11-09 济南大学 一种尖晶石型硫掺杂钴铁氧体纳米粉体及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693616A (zh) * 2009-10-29 2010-04-14 北京理工大学 一步法制备磁性尖晶石铁氧体空心球的方法
CN102503394A (zh) * 2011-10-31 2012-06-20 上海理工大学 以Fe2+盐为铁源制备系列铁氧体纳米材料的方法
CN106082349A (zh) * 2016-06-20 2016-11-09 济南大学 一种尖晶石型硫掺杂钴铁氧体纳米粉体及制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241065A1 (ja) * 2019-05-24 2020-12-03 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
JP7454425B2 (ja) 2019-05-24 2024-03-22 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
CN111533177A (zh) * 2020-04-28 2020-08-14 中国人民解放军陆军装甲兵学院 一种亚微米级空心钴铁氧体吸波材料及其制备方法
CN114181402A (zh) * 2021-12-21 2022-03-15 吉林化工学院 一种可磁回收的金属有机框架材料及其制备方法和用途
WO2023176926A1 (ja) * 2022-03-17 2023-09-21 日鉄鉱業株式会社 コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
CN116589053A (zh) * 2023-06-19 2023-08-15 大庆师范学院 一种兼具除铬功能的核壳结构CCoS磁性絮凝剂及其绿色合成方法和应用

Similar Documents

Publication Publication Date Title
CN107032412A (zh) 一种钴铁氧体磁性纳米颗粒的制备方法
Chen et al. Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route
Hu et al. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles
US7892520B2 (en) Solid-state synthesis of iron oxide nanoparticles
CN101794652B (zh) 碳包覆超顺磁性四氧化三铁胶体球的制备方法
Yan et al. Hierarchical Fe3O4 core–shell layered double hydroxide composites as magnetic adsorbents for anionic dye removal from wastewater
CN107042087A (zh) 一种原位水热制备磁性金属有机骨架核壳材料的方法
CN107601574A (zh) 一种纳米α‑Fe2O3的制备方法
Xu et al. Solvothermal synthesis, characterization and magnetic properties of α-Fe2O3 and Fe3O4 flower-like hollow microspheres
Liqin et al. Co1− xMgxFe2O4 magnetic particles: preparation and kinetics research of thermal transformation of the precursor
Mohammadzadeh Kakhki et al. Visible light photocatalytic degradation of textile waste water by Co doped NiFe 2 O 4 nanocomposite
Yan et al. Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid
CN103818971B (zh) 一种超顺磁性铁氧体纳米粒子的制备方法
Cheng et al. A facile method to fabricate porous Co3O4 hierarchical microspheres
CN103613374A (zh) 一种钴铁氧体@碳纳米管复合材料及其制备方法
Roy et al. Effect of interstitial oxygen on the crystal structure and magnetic properties of Ni nanoparticles
Chen et al. A facile solvothermal synthesis and magnetic properties of MnFe 2 O 4 spheres with tunable sizes
Nurhayati et al. Syntheses of hematite (α-Fe2O3) nanoparticles using microwave-assisted calcination method
Dai et al. Hollow structured (Ni/C)/ZnFe2O4 composite with enhanced low-frequency microwave absorption performance
Yang et al. Zn (ii)-doped γ-Fe 2 O 3 single-crystalline nanoplates with high phase-transition temperature, superparamagnetic property and good photocatalytic property
CN106395914A (zh) 油酸包裹的超顺磁性纳米Fe3O4及其制备方法
Khan et al. Aging study of the powdered magnetite nanoparticles
CN103028738A (zh) 一种可控制备多种形貌FeNi3微纳米材料的方法
Dong et al. Effect of a static magnetic field on the preparation of MnOOH and Mn 3 O 4 by a hydrothermal process
CN104843802A (zh) 一种微米级超顺磁四氧化三铁微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170811

WD01 Invention patent application deemed withdrawn after publication