CN107502337A - 单相磷光体量子点及其白光led芯片的制备方法 - Google Patents

单相磷光体量子点及其白光led芯片的制备方法 Download PDF

Info

Publication number
CN107502337A
CN107502337A CN201710736807.5A CN201710736807A CN107502337A CN 107502337 A CN107502337 A CN 107502337A CN 201710736807 A CN201710736807 A CN 201710736807A CN 107502337 A CN107502337 A CN 107502337A
Authority
CN
China
Prior art keywords
inp
zns
quantum dot
solution
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710736807.5A
Other languages
English (en)
Inventor
李清华
纪丽珊
张虚谷
蒋杰
王凛烽
李龙翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201710736807.5A priority Critical patent/CN107502337A/zh
Publication of CN107502337A publication Critical patent/CN107502337A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/305Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种单相磷光体量子点及其白光LED芯片的制备方法。本发明将包括一种单相磷光体量子点及其白光LED芯片的制备,包括制备掺杂铜的Cu:InP量子点核(d‑Core),包括制备ZnS屏障(Barrier),包括制备InP量子井(q‑Well),包括制备ZnS壳(Shell),形成Cu:InP/ZnS/InP/ZnS QDs结构单相磷光体量子点,包括将单相磷光体量子点涂覆在蓝光LED芯片上得到单相磷光体量子点白光LED芯片。本发明采用分步合成法、涂覆技术和紫外固化技术实现单相磷光体量子点白光LED芯片的制备。

Description

单相磷光体量子点及其白光LED芯片的制备方法
技术领域
本发明涉及光致发光二极管技术领域,特别涉及一种单相磷光体量子点及其白光LED芯片的制备方法。
背景技术
模拟黑体辐射将磷元素应用于白光LED灯的荧光粉上的做法已被认为是具有高能效的的传统光源替代方案。量子点是具有优异发光特性的半导体纳米材料,由于其高的量子产率、连续可调的荧光发射光谱、优异的摩尔吸收性能,被视为荧光粉的替代物,在照明技术领域有广阔的应用前景。
量子点光致发光二极管是一种以量子点为发光层,以蓝光LED为背光源的新型量子点LED发光器件,与传统光源相对比,量子点光致发光二极管具有更高的转化效率。
但是,目前P元素量子点的稳定性不高,量子产率不稳定。
发明内容
本发明的目的在于提供一种单相磷光体量子点及其白光LED芯片的制备方法。本发明提供的制备方法,方法简单,制备所得的量子点稳定性高,制备所得的光致发光芯片显示指数90以上。
为了实现上述发明目的,本发明提供以下技术方案:本发明提供了单相磷光体量子点及其白光LED芯片的制备方法,包括以下步骤:
(1)制备得到掺杂铜的Cu:InP量子点核(d-Core);
(2)在步骤(1)的Cu:InP量子点核的基础上制备ZnS屏障层(Barrier),得到Cu:InP/ZnS(d-Core/Barrier)结构量子点;
(3)在步骤(2)的Cu:InP/ZnS的基础上制备InP量子井(q-Well),得到Cu:InP/ZnS/InP(d-Core/Barrier/q-Well)结构量子点;
(4)在步骤(3)的Cu:InP/ZnS/InP的基础上制备ZnS壳(Shell),得到Cu:InP/ZnS/InP/ZnS QDs(d-Core/Barrier/q-Well/Shell)结构量子点;
(5)将制备得到的Cu:InP/ZnS/InP/ZnS QDs(d-Core/Barrier/q-Well/Shell)结构单相磷光体量子点涂覆在蓝光LED芯片上制得单相磷光体量子点白光LED芯片。
步骤(1),在单口瓶中加入0.2mmolP(TMS)3、2.4mmol辛胺和1.5mlODE,得到P前驱液;在单口瓶中加入0.2mlODE和0.02mmolCu(Ac)2,得到Cu前驱体;在50ml三口瓶中加入0.4mmolIn(Ac)3、1.2mmolMA和4mlODE;将三口瓶中的混合物在N2气条件下加热到188℃,注入制备好的磷前驱液;将反应温度保持在178℃,有利于InP量子点核充分生长;十分钟后将反应温度降到130℃,注入制备好的铜前驱液;再将反应温度升高到210℃,有利于在InP量子点核中掺杂Cu离子。
步骤(2),将在步骤(1)的反应降温到150℃,逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液;将反应温度升高到210℃,保持30分钟,有利于ZnS屏障层的生长;将反应温度降到150℃,再次逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/mlS-TOP溶液并再次升温到210℃保持30分钟;重复三遍此步骤后将反应温度降到室温,在反应物中加入正己烷和乙醇进行萃取,反复多次,除掉多余的反应物及副产品;加入丙酮、正己烷溶液沉淀、离心、干燥得到Cu:InP/ZnS core/Barrier量子点。
步骤(3),其特征在于,在50ml三口瓶中加入权利要求3中得到的量子点粉末和4mlODE溶液,在N2气环境下加热到100℃,逐滴滴加0.142mmol/ml P (TMS)3-ODE溶液和0.2ml辛胺溶液;迅速升温至120℃,保持5分钟,在降温至80℃,逐滴滴加3mmol/ml MA-ODE溶液和0.142mmol/ml In(MA)3–ODE溶液,将反应升温到178℃,保持30分钟,有利于InP量子井层的生长;将反应温度降为100℃,逐滴滴加0.09mmol/ml P (TMS)3-ODE溶液和0.3ml辛胺溶液;迅速升温至120℃,逐滴滴加3mmol/ml MA-ODE溶液和0.09mmol/ml In(MA)3–ODE溶液;将反应温度升高到220℃,保持30分钟,有利于InP量子井层生长。
步骤(4),将在步骤(3)的反应降温到150℃,逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液;
将反应温度升高到210℃,保持30分钟,有利于ZnS壳层的生长;
将反应温度降到150℃,再次逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/mlS-TOP溶液并再次升温到210℃保持30分钟;
重复三遍此步骤后将反应温度降到室温,在反应物中加入正己烷和乙醇进行萃取,反复多次,除掉多余的反应物及副产品,最终得到Cu:InP/ZnS/InP/ZnS QDs量子点。
步骤(5),沉淀量子点的方法得到Cu:InP/ZnS/InP/ZnS量子点粉末,将量子点粉末于三氯甲烷溶液按质量比1:10配置成混合溶液,加入0.05gPMMA,将配置好的混合溶液涂覆在蓝光芯片上,放置在在紫外灯下2小时,进行紫外固化,得到基于Cu:InP/ZnS/InP/ZnS量子点的白光LED芯片。
本发明的优点是:一种单相磷光体量子点及其白光LED芯片的制备方法。本发明将包括一种单相磷光体量子点及其白光LED芯片的制备,包括制备掺杂铜的Cu:InP量子点核(d-Core),包括制备ZnS屏障(Barrier),包括制备InP量子井(q-Well),包括制备ZnS壳(Shell),形成Cu:InP/ZnS/InP/ZnS QDs结构单相磷光体量子点,包括将单相磷光体量子点涂覆在蓝光LED芯片上得到单相磷光体量子点白光LED芯片。本发明采用分步合成法、涂覆技术和紫外固化技术实现单相磷光体量子点白光LED芯片的制备。
具体实施方式
本发明提供了单相磷光体量子点及其白光LED芯片的制备方法,包括以下步骤:
(1)制备得到掺杂铜的Cu:InP量子点核(d-Core)。
(2)在步骤(1)的Cu:InP量子点核的基础上制备ZnS屏障层(Barrier),得到Cu:InP/ZnS(d-Core/Barrier)结构量子点。
(3)在步骤(2)的Cu:InP/ZnS的基础上制备InP量子井(q-Well),得到Cu:InP/ZnS/InP(d-Core/Barrier/q-Well)结构量子点。
(4)在步骤(3)的Cu:InP/ZnS/InP的基础上制备ZnS壳(Shell),得到Cu:InP/ZnS/InP/ZnS QDs(d-Core/Barrier/q-Well/Shell)结构量子点。
(5)将制备得到的Cu:InP/ZnS/InP/ZnS QDs(d-Core/Barrier/q-Well/Shell)结构单相磷光体量子点涂覆在蓝光LED芯片上制得单相磷光体量子点白光LED芯片。
本发明中,制备方法步骤(1)具体实施步骤为,在单口瓶中加入0.2mmolP(TMS)3、2.4mmol辛胺和1.5mlODE,得到P前驱液。在单口瓶中加入0.2mlODE和0.02mmolCu(Ac)2,得到Cu前驱体。在50ml三口瓶中加入0.4mmolIn(Ac)3、1.2mmolMA和4mlODE。将三口瓶中的混合物在N2气条件下加热到188℃,注入制备好的磷前驱液。将反应温度保持在178℃,有利于InP量子点核充分生长。十分钟后将反应温度降到130℃,注入制备好的铜前驱液。再将反应温度升高到210℃,有利于在InP量子点核中掺杂Cu离子。
本发明中,制备方法步骤(2)具体实施步骤为,将在步骤(1)的反应降温到150℃,逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液。将反应温度升高到210℃,保持30分钟,有利于ZnS屏障层的生长。将反应温度降到150℃,再次逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液并再次升温到210℃保持30分钟。重复三遍此步骤后将反应温度降到室温。在反应物中加入正己烷和乙醇进行萃取,反复多次,除掉多余的反应物及副产品。加入丙酮、正己烷溶液沉淀、离心、干燥得到Cu:InP/ZnS core/Barrier量子点。
本发明中,制备方法步骤(3)具体实施步骤为,在50ml三口瓶中加入权利要求3中得到的量子点粉末和4mlODE溶液,在N2气环境下加热到100℃,逐滴滴加0.142mmol/ml P(TMS)3-ODE溶液和0.2ml辛胺溶液。迅速升温至120℃,保持5分钟,在降温至80℃。逐滴滴加3mmol/ml MA-ODE溶液和0.142mmol/ml In(MA)3–ODE溶液。将反应升温到178℃,保持30分钟,有利于InP量子井层的生长。将反应温度降为100℃,逐滴滴加0.09mmol/ml P (TMS)3-ODE溶液和0.3ml辛胺溶液。迅速升温至120℃,逐滴滴加3mmol/ml MA-ODE溶液和0.09mmol/ml In(MA)3–ODE溶液。将反应温度升高到220℃,保持30分钟,有利于InP量子井层生长。
本发明中,制备方法步骤(4)具体实施步骤为,采取与权利要求3中一致的方法,在权利要求4中得到的Cu:InP/ZnS/InP(d-Core/Barrier/qWell)量子点的表面包裹一层ZnS壳,修饰量子点表面缺陷,最终得到Cu:InP/ZnS/InP/ZnS QDs (d-Core/Barrier/qWell/Shell)量子点。
本发明中,制备方法步骤(5)具体实施步骤为,根据权利要求3中沉淀量子点的方法得到Cu:InP/ZnS/InP/ZnS (d-core/barrier/q-well/shell)量子点粉末。将量子点粉末于三氯甲烷溶液按质量比1:10配置成混合溶液。加入0.05gPMMA。将配置好的混合溶液涂覆在蓝光芯片上,放置在在紫外灯下2小时,进行紫外固化,得到基于Cu:InP/ZnS/InP/ZnS量子点的白光LED芯片。

Claims (6)

1.单相磷光体量子点及其白光LED芯片的制备方法,包括以下步骤:
(1)制备得到掺杂铜的Cu:InP量子点核;
(2)在步骤(1)的Cu:InP量子点核的基础上制备ZnS屏障层,得到Cu:InP/ZnS结构量子点;
(3)在步骤(2)的Cu:InP/ZnS的基础上制备InP量子井,得到Cu:InP/ZnS/InP结构量子点;
(4)在步骤(3)的Cu:InP/ZnS/InP的基础上制备ZnS壳,得到Cu:InP/ZnS/InP/ZnS QDs结构量子点;
(5)将制备得到的Cu:InP/ZnS/InP/ZnS QDs结构单相磷光体量子点涂覆在蓝光LED芯片上制得单相磷光体量子点白光LED芯片。
2.根据权利要求1所述的单相磷光体量子点及其白光LED芯片的制备方法,其特征在于:
步骤(1),在单口瓶中加入0.2mmolP(TMS)3、2.4mmol辛胺和1.5mlODE,得到P前驱液;
在单口瓶中加入0.2mlODE和0.02mmolCu(Ac)2,得到Cu前驱体;
在50ml三口瓶中加入0.4mmolIn(Ac)3、1.2mmolMA和4mlODE;将三口瓶中的混合物在N2气条件下加热到188℃,注入制备好的磷前驱液;
将反应温度保持在178℃,有利于InP量子点核充分生长;
十分钟后将反应温度降到130℃,注入制备好的铜前驱液;
再将反应温度升高到210℃,有利于在InP量子点核中掺杂Cu离子。
3.根据权利要求1所述的单相磷光体量子点及其白光LED芯片的制备方法,其特征在于:
步骤(2),将在步骤(1)的反应降温到150℃,逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液;
将反应温度升高到210℃,保持30分钟,有利于ZnS屏障层的生长;
将反应温度降到150℃,再次逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液并再次升温到210℃保持30分钟;
重复三遍此步骤后将反应温度降到室温,在反应物中加入正己烷和乙醇进行萃取,反复多次,除掉多余的反应物及副产品;
加入丙酮、正己烷溶液沉淀、离心、干燥得到Cu:InP/ZnS core/Barrier量子点。
4.根据权利要求1所述的单相磷光体量子点及其白光LED芯片的制备方法,其特征在于:
步骤(3),其特征在于,在50ml三口瓶中加入权利要求3中得到的量子点粉末和4mlODE溶液,在N2气环境下加热到100℃,逐滴滴加0.142mmol/ml P (TMS)3-ODE溶液和0.2ml辛胺溶液;
迅速升温至120℃,保持5分钟,在降温至80℃,逐滴滴加3mmol/ml MA-ODE溶液和0.142mmol/ml In(MA)3–ODE溶液,将反应升温到178℃,保持30分钟,有利于InP量子井层的生长;
将反应温度降为100℃,逐滴滴加0.09mmol/ml P (TMS)3-ODE溶液和0.3ml辛胺溶液;迅速升温至120℃,逐滴滴加3mmol/ml MA-ODE溶液和0.09mmol/ml In(MA)3–ODE溶液;将反应温度升高到220℃,保持30分钟,有利于InP量子井层生长。
5.根据权利要求1所述的单相磷光体量子点及其白光LED芯片的制备方法,其特征在于:
步骤(4),将在步骤(3)的反应降温到150℃,逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液;
将反应温度升高到210℃,保持30分钟,有利于ZnS壳层的生长;
将反应温度降到150℃,再次逐滴滴加0.08mmol/mlZn(st)2-ODE溶液和0.06mmol/ml S-TOP溶液并再次升温到210℃保持30分钟;
重复三遍此步骤后将反应温度降到室温,在反应物中加入正己烷和乙醇进行萃取,反复多次,除掉多余的反应物及副产品,最终得到Cu:InP/ZnS/InP/ZnS QDs量子点。
6.根据权利要求1或3所述的单相磷光体量子点及其白光LED芯片的制备方法,其特征在于:
步骤(5),沉淀量子点的方法得到Cu:InP/ZnS/InP/ZnS量子点粉末,将量子点粉末于三氯甲烷溶液按质量比1:10配置成混合溶液,加入0.05gPMMA,将配置好的混合溶液涂覆在蓝光芯片上,放置在在紫外灯下2小时,进行紫外固化,得到基于Cu:InP/ZnS/InP/ZnS量子点的白光LED芯片。
CN201710736807.5A 2017-08-24 2017-08-24 单相磷光体量子点及其白光led芯片的制备方法 Pending CN107502337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710736807.5A CN107502337A (zh) 2017-08-24 2017-08-24 单相磷光体量子点及其白光led芯片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710736807.5A CN107502337A (zh) 2017-08-24 2017-08-24 单相磷光体量子点及其白光led芯片的制备方法

Publications (1)

Publication Number Publication Date
CN107502337A true CN107502337A (zh) 2017-12-22

Family

ID=60692735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710736807.5A Pending CN107502337A (zh) 2017-08-24 2017-08-24 单相磷光体量子点及其白光led芯片的制备方法

Country Status (1)

Country Link
CN (1) CN107502337A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795392B2 (en) 2020-04-20 2023-10-24 Samsung Electronics Co., Ltd. Cadmium-free quantum dot, quantum dot-polymer composite, and electronic device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084250A1 (en) * 2009-10-09 2011-04-14 Samsung Electronics Co., Ltd. Nanoparticle complex, method of manufacturing the same, and device including the nanoparticle complex
CN103952137A (zh) * 2014-04-29 2014-07-30 吉林大学 一种白光量子点材料及制备方法
US20150083969A1 (en) * 2013-09-26 2015-03-26 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
CN106590624A (zh) * 2016-12-05 2017-04-26 河北工业大学 一种发光纳米颗粒及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084250A1 (en) * 2009-10-09 2011-04-14 Samsung Electronics Co., Ltd. Nanoparticle complex, method of manufacturing the same, and device including the nanoparticle complex
US20150083969A1 (en) * 2013-09-26 2015-03-26 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
CN103952137A (zh) * 2014-04-29 2014-07-30 吉林大学 一种白光量子点材料及制备方法
CN106590624A (zh) * 2016-12-05 2017-04-26 河北工业大学 一种发光纳米颗粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHUOLEI ZHANG ET AL: "Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source "Greener" Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes", 《CHEM. MATER.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795392B2 (en) 2020-04-20 2023-10-24 Samsung Electronics Co., Ltd. Cadmium-free quantum dot, quantum dot-polymer composite, and electronic device including the same

Similar Documents

Publication Publication Date Title
Cui et al. The use of carbon quantum dots as fluorescent materials in white LEDs
Chen et al. Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs
CN103773364B (zh) 基于锰掺杂铜铟锌硫的双色荧光半导体纳米材料的制备方法
KR100819337B1 (ko) 양자점을 이용한 백색광 led 구조 및 그 제조 방법
CN104037310B (zh) 基于碳量子点和ZnCuInS量子点的三原色匹配白光LED及其制备方法
Chen et al. A dual-emitting core–shell carbon dot–silica–phosphor composite for white light emission
CN110205124B (zh) 一种荧光磷光双发射白光碳量子点及制备方法和应用
KR101355120B1 (ko) InP/GaP/ZnS 양자점과 이를 이용한 백색 LED
CN104868041B (zh) 全碳基量子点混合荧光粉led及其制备方法
CN110606505B (zh) 一种零维卤族钙钛矿结构材料Cs4PbBr6的制备及应用
CN108929682A (zh) 发射白光的碳点的一步制备方法
KR20130043442A (ko) 에어로졸 분사를 이용한 양자점 및 무기물 보호층을 포함하는 복합입자의 제조방법
Song et al. Synthesis of Ba2Si3O8: Eu2+ phosphor for fabrication of white light-emitting diodes assisted by ZnCdSe/ZnSe quantum dot
CN108441208A (zh) 一种单一颗粒多色发光的纳米材料的制备方法
CN107502337A (zh) 单相磷光体量子点及其白光led芯片的制备方法
CN110964529A (zh) 一种高荧光产率的ZnSe/CdSe/ZnSe阱式量子点的制备方法
CN107722291B (zh) 引入有机染料的稀土-有机框架材料及其制备方法
CN110129055A (zh) CdSeZnS/ZnS/ZnS核/壳/壳量子点的制备
KR20090026508A (ko) Yag계 황색 형광체와 적색 양자점을 결합한 높은연색성을 갖는 백색발광 장치 및 그 제조 방법
CN104073247B (zh) 一种侧链芳基共轭有机发光材料及其制备方法
CN110527508A (zh) 一种白光led用氮化物红色荧光粉及其制备方法
CN113249121B (zh) 一种白光碳纳米点复合材料及其制备方法和应用
CN112830475B (zh) 一种大量制备全色荧光碳点的方法及其制备的全色荧光碳点
Cao et al. Full‐visible spectrum emitting Zn–In–S: Cu/ZnS nanocrystals based on varying Cu concentrations and its application in white LEDs
CN116333734B (zh) 一种基于钙钛矿纳米晶的材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222

RJ01 Rejection of invention patent application after publication