CN107492498A - 鳍式场效应管的形成方法 - Google Patents

鳍式场效应管的形成方法 Download PDF

Info

Publication number
CN107492498A
CN107492498A CN201610410566.0A CN201610410566A CN107492498A CN 107492498 A CN107492498 A CN 107492498A CN 201610410566 A CN201610410566 A CN 201610410566A CN 107492498 A CN107492498 A CN 107492498A
Authority
CN
China
Prior art keywords
layer
fin
type workfunction
opening
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610410566.0A
Other languages
English (en)
Other versions
CN107492498B (zh
Inventor
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201610410566.0A priority Critical patent/CN107492498B/zh
Priority to US15/491,501 priority patent/US10090306B2/en
Priority to EP17174829.6A priority patent/EP3258500B1/en
Publication of CN107492498A publication Critical patent/CN107492498A/zh
Application granted granted Critical
Publication of CN107492498B publication Critical patent/CN107492498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种半导体器件的形成方法,包括:在第一开口底部和侧壁上形成高k栅介质层,所述高k栅介质层还位于所述暴露出的NMOS区域的鳍部的部分顶部和侧壁上;在所述高k栅介质层上形成阻挡层;在所述阻挡层上形成N型功函数层,所述N型功函数层内含有Al离子;对所述N型功函数层进行回流退火处理,所述回流退火处理适于使位于所述拐角区域的N型功函数层厚度变厚,且还适于使所述拐角区域的N型功函数层内的Al离子向所述阻挡层内扩散;在进行所述回流退火处理之后,在所述N型功函数层上形成填充满所述第一开口的金属层。本发明增加了NMOS鳍式场效应管的沟道区的有效沟道长度,改善了形成的鳍式场效应管的电学性能。

Description

鳍式场效应管的形成方法
技术领域
本发明涉及半导体制作技术领域,特别涉及一种鳍式场效应管的形成方法。
背景技术
随着半导体工艺技术的不断发展,半导体工艺节点遵循摩尔定律的发展趋势不断减小。为了适应工艺节点的减小,不得不不断缩短MOSFET场效应管的沟道长度。沟道长度的缩短具有增加芯片的管芯密度,增加MOSFET场效应管的开关速度等好处。
然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,这样一来栅极对沟道的控制能力变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(SCE:short-channeleffects)更容易发生。
因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面MOSFET晶体管向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET中,栅至少可以从两侧对超薄体(鳍部)进行控制,具有比平面MOSFET器件强得多的栅对沟道的控制能力,能够很好的抑制短沟道效应;且FinFET相对于其他器件,具有更好的现有的集成电路制作技术的兼容性。
然而,现有技术形成的鳍式场效应管的性能有待进一步提高。
发明内容
本发明解决的问题是提供一种鳍式场效应管的形成方法,改善形成的鳍式场效应管的电学性能。
为解决上述问题,本发明提供一种鳍式场效应管的形成方法,包括:提供包括NMOS区域的衬底、位于衬底上分立的鳍部,所述衬底上还形成有覆盖鳍部侧壁的隔离层,所述隔离层顶部低于鳍部顶部,所述隔离层上还形成有层间介质层,其中,所述NMOS区域的层间介质层内形成有第一开口,所述第一开口横跨NMOS区域的鳍部,且暴露出NMOS区域的鳍部的部分顶部和侧壁,所述第一开口的底部与侧壁之间具有拐角区域;在所述第一开口底部和侧壁上形成高k栅介质层,所述高k栅介质层还位于所述暴露出的NMOS区域的鳍部的部分顶部和侧壁上;在所述高k栅介质层上形成阻挡层;在所述阻挡层上形成N型功函数层,所述N型功函数层内含有Al离子;对所述N型功函数层进行回流退火处理,所述回流退火处理适于使位于所述拐角区域的N型功函数层厚度变厚,且还适于使所述拐角区域的N型功函数层内的Al离子向所述阻挡层内扩散;在进行所述回流退火处理之后,在所述N型功函数层上形成填充满所述第一开口的金属层。
可选的,所述高于隔离层顶部表面的鳍部包括:鳍部底部区域、以及位于鳍部底部区域上方的鳍部顶部区域;其中,所述回流退火处理还适于使位于所述鳍部底部区域侧壁上的N型功函数层的厚度变薄。
可选的,在进行所述回流退火处理之前,位于所述鳍部底部区域侧壁上的N型功函数层的厚度为33埃~88埃;在进行所述回流退火处理之后,位于所述鳍部底部区域侧壁上的N型功函数层的厚度为30埃~80埃。
可选的,相邻鳍部之间的隔离层顶部表面为下凹弧形表面。
可选的,所述回流退火处理的工艺参数包括:退火温度为100℃~300℃,退火时长为10min~120min。
可选的,所述N型功函数层的材料为TiAl、TiAlC、TiAlN或AlN。
可选的,在进行所述回流退火处理之前,所述N型功函数层的厚度为33埃~88埃。
可选的,所述阻挡层的材料为TiN或TaN。
可选的,在进行所述回流退火处理之前,所述阻挡层的厚度为10埃~20埃。
可选的,高于所述隔离层的鳍部底部宽度尺寸大于所述鳍部顶部宽度尺寸。
可选的,所述衬底还包括PMOS区域,所述PMOS区域的层间介质层内形成有第二开口,所述第二开口横跨所述PMOS区域的鳍部,且暴露出PMOS区域的鳍部的部分顶部和侧壁。
可选的,所述第二开口底部和侧壁上还形成有高k栅介质层;所述第二开口内的高k栅介质层上还形成有P型功函数层;且所述金属层还位于所述P型功函数层上且填充满所述第二开口。
可选的,形成所述高k栅介质层、阻挡层以及P型功函数层的工艺步骤包括:在所述第一开口底部和侧壁上形成高k栅介质层,同时还在所述第二开口底部和侧壁上形成高k栅介质层;在所述第一开口内以及第二开口内的高k栅介质层上形成第一功函数层;去除位于所述第一开口内的第一功函数层,露出第一开口的高k栅介质层;在所述第一开口内的高k栅介质层上、以及第二开口的第一功函数层上形成第二功函数层,其中,所述第一开口内的第二功函数层为所述阻挡层,所述第二开口内的第一功函数层和第二功函数层作为所述P型功函数层。
可选的,所述第一功函数层的材料为TiN或TaN;所述第二功函数层的材料为TiN或TaN。
可选的,在形成所述金属层之前,还包括步骤:在所述N型功函数层上形成盖帽层,所述盖帽层的材料为TiN或TaN。
可选的,所述高k栅介质层的材料包括HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3
可选的,所述金属层的材料包括Cu、Al或W。
可选的,在形成所述金属层之前,所述高k栅介质层、阻挡层以及N型功函数层还位于层间介质层的顶部上;形成所述金属层的工艺步骤包括:在所述N型功函数层形成填充满所述第一开口的金属膜,所述金属膜顶部高于层间介质层顶部;去除高于所述层间介质层顶部的金属膜形成所述金属层,还去除高于所述层间介质层顶部的N型功函数层、阻挡层以及高k栅介质层。
与现有技术相比,本发明的技术方案具有以下优点:
本发明提供的鳍式场效应管的形成方法的技术方案中,对N型功函数层进行回流退火处理,所述回流退火处理适于使第一开口拐角区域的N型功函数层的厚度变厚,且还适于所述拐角区域的N型功函数层内的Al离子向阻挡层内扩散,由于拐角区域的N型功函数层的厚度较厚,使得扩散进入拐角区域的阻挡层内的Al离子含量足,所述拐角区域的Al离子扩散进入阻挡层的扩散能力较其他区域Al离子扩散进入阻挡层的扩散能力强,因此能够显著的改善拐角区域的阻挡层造成的势垒过高的问题,使得所述拐角区域阻挡层产生的势垒明显减小,因此NMOS区域的有效沟道区长度变长,具体的,含有Al离子的阻挡层下方的鳍部内也将形成有效沟道区。因此,本实施例形成的鳍式场效应中的有效沟道区长度变长,短沟道效应问题得到改善,从而提高器件的电学性能。
可选方案中,所述回流退火处理还适于使鳍部底部区域侧壁上的N型功函数层厚度变薄,因此所述鳍部底部区域对应的第一栅极结构具有较高的阈值电压,从而弥补或抵消了由于鳍部底部区域宽度尺寸较大造成的短沟道控制能力弱的缺陷,使得鳍部底部区域形成的第一栅极结构对沟道区也具有优异的短沟道控制能力,防止在鳍部底部区域出现源漏穿通问题,从而进一步改善形成的鳍式场效应管的电学性能。
附图说明
图1及图2为一种NMOS鳍式场效应管的剖面结构示意图;
图3至图14为本发明实施例提供的鳍式场效应管形成过程的剖面结构示意图。
具体实施方式
由背景技术可知,现有技术形成的鳍式场效应管的电学性能有待提高。
参考图1及图2,图1及图2为一种NMOS鳍式场效应管的剖面结构示意图,其中,图1为垂直于鳍部延伸方向上的剖面结构示意图,图2为平行于鳍部延伸方向的剖面结构示意图。
形成所述NMOS鳍式场效应管的工艺步骤包括:提供衬底101、位于衬底101上的鳍部102、以及位于衬底101上且覆盖鳍部102侧壁的隔离层103,所述隔离层103顶部低于鳍部102顶部;所述隔离层103上形成层间介质层104,所述层间介质层104内形成有开口,所述开口横跨所述鳍部102,且暴露出鳍部102的部分顶部和侧壁,所述开口两侧的鳍部102内形成有源漏掺杂区105;在所述开口底部和侧壁上形成高k栅介质层107,且所述高k栅介质层107与开口底部之间还形成有界面层106;在所述高k栅介质层107上形成阻挡层108;在所述阻挡层108上形成N型功函数层109;在所述N型功函数层109上形成填充满所述开口的金属层110。
上述形成方法中,所述阻挡层108的材料功函数值与N型功函数层109的材料功函数值相差较大,一般的,所述阻挡层108的材料为TiN或TaN。所述开口底部与侧壁之间的拐角区域A被阻挡层108占据,阻挡层108的材料功函数值大于N型功函数层109的材料功函数值,导致栅极结构对所述拐角区域A下方的沟道区的控制能力弱,沟道区的有效沟道长度变短,进而导致短沟道效应问题。并且,由于拐角区域A被阻挡层108占据,且所述拐角区域A与沟道区的距离较近,因此所述拐角区域A处的阻挡层108对沟道阈值电压影响较大,造成拐角区域A下方的沟道阈值电压较其他区域的沟道阈值电压大,这也将造成有效沟道长度变短的问题,影响NMOS鳍式场效应管的电学性能。
此外,由于高于隔离层103的鳍部102底部宽度尺寸大于顶部宽度尺寸,导致栅极结构对所述鳍部102底部沟道区的控制能力比鳍部102顶部沟道区的控制能力差,造成鳍部102底部沟道区容易发生短沟道效应问题。
为解决上述问题,本发明提供一种鳍式场效应管的形成方法,包括:在第一开口底部和侧壁上形成高k栅介质层,所述高k栅介质层还位于所述暴露出的NMOS区域的鳍部的部分顶部和侧壁上;在所述高k栅介质层上形成阻挡层;在所述阻挡层上形成N型功函数层,所述N型功函数层内含有Al离子;对所述N型功函数层进行回流退火处理,所述回流退火处理适于使位于所述拐角区域的N型功函数层厚度变厚,且还适于使所述拐角区域的N型功函数层内的Al离子向所述阻挡层内扩散;在进行所述回流退火处理之后,在所述N型功函数层上形成填充满所述第一开口的金属层。
本发明增加了NMOS鳍式场效应管的沟道区的有效沟道长度,改善形成的鳍式场效应管的电学性能。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图3至图14为本发明一实施例提供的鳍式场效应管形成过程的剖面结构示意图。
参考图3及图4,提供包括NMOS区域II的衬底201、位于衬底201上分立的鳍部202、以及位于衬底201上且覆盖鳍部202侧壁的隔离层203,所述隔离层203顶部低于鳍部202顶部,所述隔离层203上还形成有层间介质层204,其中,所述NMOS区域II的层间介质层204内形成有第一开口210,所述第一开口210横跨NMOS区域II的鳍部202,且暴露出NMOS区域II的鳍部202的部分顶部和侧壁。
其中,图3为平行于鳍部延伸方向的剖面结构示意图,图4为NMOS区域垂直于鳍部延伸方向的剖面结构示意图。
所述衬底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部202的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟。本实施例中,所述衬底201为硅衬底,所述鳍部202的材料为硅。
本实施例中,形成所述衬底201、鳍部202的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的硬掩膜层;以所述硬掩膜层为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底201,位于衬底201表面的凸起作为鳍部202。
本实施例中,所述隔离层203的材料为氧化硅。在其他实施例中,所述隔离层的材料还可以为氮化硅或氮氧化硅。形成所述隔离层203的工艺步骤包括:在所述相邻鳍部202之间的衬底201上填充满隔离膜,所述隔离膜顶部高于鳍部202顶部;对所述隔离膜顶部表面进行平坦化处理;回刻蚀去除部分厚度的隔离膜,暴露出鳍部202顶部以及部分侧壁,形成所述隔离层203。本实施例中,受到回刻蚀工艺的影响,相邻鳍部202之间的隔离层203顶部表面为下凹弧形表面。
所述第一开口210为后续形成第一栅极结构预留空间位置,所述第一开口210底部与侧壁之间具有拐角区域。所述第一开口210两侧的NMOS区域II鳍部202内形成有第一源漏掺杂区212,所述第一源漏掺杂区212的掺杂离子为N型离子,例如为P、As或Sb。
本实施例中,以形成的鳍式场效应管为CMOS器件为例,所述衬底201还包括PMOS区域I,所述PMOS区域I的层间介质层204内形成有第二开口220,所述第二开口220横跨PMOS区域I的鳍部202,且暴露出PMOS区域I鳍部202的部分顶部和侧壁。
所述第二开口220为后续形成第二栅极结构预留空间位置,所述第二开口220底部和侧壁之间也具有拐角区域(未标示)。所述第二开口220两侧的PMOS区域I鳍部202内形成有第二源漏掺杂区211,所述第二源漏掺杂区211的掺杂离子为P型离子,例如为B、Ga或In。
为避免后续的工艺影响所述第一开口210的宽度尺寸以及第二开口220的宽度尺寸,所述第一开口210侧壁上以及第二开口220侧壁上还形成有侧墙200,所述侧墙200的材料与层间介质层204的材料不同。本实施例中,所述侧墙200的材料为氮化硅。
参考图5及图6,图5为在图3基础上的示意图,图6为在图4基础上的示意图,在所述第一开口210底部和侧壁上形成高k栅介质层206,所述高k栅介质层206还位于所述暴露出的NMOS区域II的鳍部202的部分顶部和侧壁上。
本实施例中,在所述第一开口210底部和侧壁上形成高k栅介质层206的同时,还在所述第二开口220底部和侧壁上形成高k栅介质层206,且所述高k栅介质层206还位于层间介质层204顶部上,所述高k栅介质层206还位于所述暴露出的PMOS区域I的鳍部202的部分顶部和侧壁上。
所述高k栅介质层206的材料为高k栅介质材料,其中,高k栅介质材料指的是,相对介电常数大于氧化硅相对介电常数的栅介质材料,高k栅介质材料包括HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3
本实施例中,所述高k栅介质层206的材料为HfO2,所述高k栅介质层206的厚度为5埃~15埃,采用原子层沉积工艺形成所述高k栅介质层206。
需要说明的是,为了提高所述高k栅介质层206与鳍部202之间的界面性能,提高形成的高k栅介质层206的质量,在形成所述高k栅介质层206之前,还可以在所述第一开口210底部以及第二开口220底部形成界面层205。在一具体实施例中,采用热氧化工艺形成所述界面层205,所述界面层205的材料为氧化硅。在其他实施例中,还可以采用化学氧化工艺以及热氧化工艺形成所述界面层。
参考图7及图8,图7为在图5基础上的示意图,图8为在图6基础上的示意图,在所述第一开口210内的高k栅介质层206上形成阻挡层。
所述阻挡层的作用在于:后续在所述第一开口210内形成N型功函数层,且所述N型功函数层内具有易于向高k栅介质层206内扩散的Al离子;所述阻挡层起到阻挡Al离子向高k栅介质层206内扩散的作用,使得高k栅介质层206保持良好的性能,同时还避免Al离子扩散进入鳍部202内。
所述阻挡层的材料功函数值大于后续形成的N型功函数层的材料功函数值。本实施例中,所述阻挡层的材料为TiN。在其他实施例中,所述阻挡层的材料还可以为TaN。
本实施例中,形成的鳍式场效应管为CMOS器件,后续还会在第二开口220的高k栅介质层206上形成P型功函数层;为了节约工艺步骤,简化工艺难度,在形成所述P型功函数层的工艺过程中形成所述阻挡层。具体的,形成所述阻挡层以及P型功函数层的工艺步骤包括:在所述第一开口210内的高k栅介质层206上、以及第二开口220内的高k栅介质层206上形成第一功函数层207;刻蚀去除位于所述第一开口210内的第一功函数层207,暴露出所述第一开口210内的高k栅介质层206;接着,在所述第一开口210的高k栅介质层206上、以及第二开口220的第一功函数层207上形成第二功函数层208,其中,所述第一开口210内的高k栅介质层206上的第二功函数层208作为所述阻挡层,所述第二开口220内的高k栅介质层206上的第一功函数层207以及第二功函数层208作为所述P型功函数层。
所述第一功函数层207的材料为P型功函数材料,第一功函数层207的材料功函数值范围为5.1ev~5.5ev,例如为5.2ev、5.3ev或5.4ev。所述第一功函数层207的材料为TiN或TaN;采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第一功函数层207。
所述第二功函数层208的材料为P型功函数材料,所述第二功函数层208的材料为P型功函数材料。所述第二功函数层208的材料为TiN或TaN。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第二功函数层208。
所述第一功函数层207的厚度不宜过厚,否则刻蚀去除位于第一开口210内的第一功函数层207所需的刻蚀时间过长;所述第一功函数层207的厚度也不宜过薄,否则为满足PMOS鳍式场效应管对阈值电压的要求,相应形成的第二功函数层208的厚度将较厚,第一开口210内过厚的第二功函数层208对NMOS鳍式场效应管阈值电压带来的不良影响将更为显著。
并且,位于所述第一开口210内的第二功函数层208作为阻挡层,若所述第二功函数层208的厚度过薄,则第一开口210内第二功函数层208对高k栅介质层206的保护作用弱。
为此,本实施例中,所述第一功函数层207的材料为TiN,所述第一功函数层207的厚度为15埃~40埃;所述第二功函数层208的材料为TiN,所述第二功函数层208的厚度为10埃~20埃,相应的,在进行后续的回流退火处理之前,所述阻挡层的厚度为10埃~20埃。
需要说明的是,在其他实施例中,形成的鳍式场效应管为NMOS鳍式场效应管时,形成所述阻挡层的工艺步骤包括:直接在所述第一开口内的高k栅介质层上形成阻挡层,所述阻挡层的材料为TiN或TaN。
参考图9及图10,图9为在图7基础上的示意图,图10为在图8基础上的示意图,在所述阻挡层上形成N型功函数层209,所述N型功函数层209内含有Al离子。
具体的,本实施例中,在所述第一开口210内的第二功函数层208上形成所述N型功函数层209,所述N型功函数层209除位于所述第一开口210内外,还位于所述层间介质层204顶部上。
所述N型功函数层209的材料为N型功函数材料,N型功函数材料的功函数值范围为3.9ev~4.5ev,例如为4ev、4.1ev或4.3ev。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述N型功函数层209。
本实施例中,所述N型功函数层209的材料为TiAl,所述N型功函数层209的厚度为33埃~88埃。在其他实施例中,所述N型功函数层的材料还可以为TiAlC、TiAlN或AlN。
本实施例中,在所述阻挡层上形成N型功函数层209的同时,还在所述第二开口220内的第二功函数层208上形成N型功函数层209;并且,为了降低工艺难度节约光罩,采用沉积工艺在第二功函数层208上形成N型功函数层209后,保留位于第二开口220内的N型功函数层209。需要说明的是,在其他实施例中,为避免第二开口内的N型功函数层对PMOS鳍式场效应管的阈值电压产生不良影响,还可以去除位于第二开口内的N型功函数层。
参考图11及图12,图11为在图9基础上的示意图,图12为在图10基础上的示意图,对所述N型功函数层209进行回流退火处理301,所述回流退火处理301适于使位于第一开口210底部与侧壁之间的拐角区域的N型功函数层209厚度变厚,且还适于使所述拐角区域的N型功函数层209内的Al离子向所述阻挡层内扩散。
具体到本实施例中,所述回流退火处理301适于使拐角区域的N型功函数层209内的Al离子向所述第一开口210内的第二功函数层208内扩散,使得所述拐角区域的第二功函数层208的厚度变薄,因此拐角区域的第二功函数层208造成的势垒高度降低,NMOS区域II的有效沟道长度变长,使得NMOS区域II后续形成的第一栅极结构对沟道区的控制能力变强,改善形成的鳍式场效应管的电学性能。
在所述回流退火处理301过程中,位于所述第一开口210侧壁上的N型功函数层209为熔融状态,且所述位于第一开口210侧壁上的N型功函数层209在自身重力作用下向所述拐角区域堆积,使得所述拐角区域的N型功函数层209的厚度变厚。此外,在回流退火处理301过程中,所述N型功函数层209内的Al离子向所述阻挡层内扩散,使得部分厚度的阻挡层转化为N型功函数层209;特别的,所述拐角区域的N型功函数层209内的Al离子向所述阻挡层内扩散,并且,由于所述拐角区域的N型功函数层209厚度较厚,使得扩散进入拐角区域的阻挡层内的Al离子含量较高,因此,所述拐角区域内的阻挡层内的Al离子含量高,且Al离子扩散进入拐角区域内的阻挡层的厚度较厚,因此在回流退火处理301之后,所述拐角区域的阻挡层的厚度较其他区域的阻挡层的厚度更薄。
如果所述回流退火处理301的退火温度过低,则N型功函数层209的流动性差,造成拐角区域的N型功函数层209的厚度仍较薄,则扩散进入拐角区域内的阻挡层的Al离子含量少;若所述回流退火处理301的退火温度过高,则Al离子会穿透所述阻挡层进入高k栅介质层206中,影响高k栅介质层206的性能。同样的,考虑到所述拐角区域内的阻挡层中具有的Al离子含量较高,且防止Al离子扩散至高k栅介质层206内,所述退火时长应控制在合理范围内。
本实施例中,所述回流退火处理301的工艺参数包括:退火温度为100℃~300℃,退火时长为10min~120min,在N2、Ar或He氛围下进行。
本实施例中,所述高于隔离层203顶部表面的鳍部202包括:鳍部202底部区域、以及位于鳍部202底部区域上方的鳍部202顶部区域;其中,所述回流退火处理301还适于使位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度变薄。
由于相邻鳍部202之间的隔离层203顶部表面为下凹弧形表面,使得在回流退火处理301过程中,熔融的N型功函数层209向所述下凹弧形表面聚集,因此位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度变薄。
由于高于所述隔离层203的鳍部202底部尺寸大于鳍部202顶部尺寸,因此相较于鳍部202顶部区域而言,所述鳍部202底部区域后续形成的栅极结构对沟道区的短沟道控制能力更弱,因此鳍部202底部区域容易发生源漏穿通问题(source drain punch through);本实施例中,所述鳍部202底部区域侧壁上的N型功函数层209的厚度变薄,因此所述鳍部202底部区域对应的器件部分具有的阈值电压变大,从而弥补或抵消了由于鳍部202底部区域宽度尺寸较大造成的短沟道控制能力弱的缺陷,使得鳍部202底部区域形成的第一栅极结构对沟道区也具有优异的短沟道控制能力,防止在鳍部202底部区域出现源漏穿通问题。
在进行所述退火处理处理210之前,位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度为33埃~88埃。在进行所述回流退火处理301之后,位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度不宜过薄,否则所述鳍部202底部区域对应的器件部分的沟道区阈值电压过高,则开启所述沟道区所需的电压过高;在进行所述回流退火处理301之后,位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度也不宜过厚,否则鳍部202底部区域对应的第一栅极结构对沟道区的短沟道控制能力仍较低。
为此,本实施例中,在进行所述回流退火处理301之后,位于所述鳍部202底部区域侧壁上的N型功函数层209的厚度为30埃~80埃。
参考图13及图14,图13为在图11基础上的示意图,图14为在图12基础上的示意图,在进行所述回流退火处理301之后,在所述N型功函数层209上形成填充满所述第一开口210(参考图11及图12)的金属层303。
为避免所述金属层303内易扩散的离子扩散进入N型功函数层209内,在形成所述金属层303之前,还包括步骤,在所述N型功函数层209上形成盖帽层302,所述盖帽层302的材料为TiN或TaN。
本实施例中,形成的鳍式场效应管为CMOS器件,所述盖帽层302还位于P型功函数层表面且填充满第二开口220(参考图11),所述第二开口220内的金属层303位于盖帽层302表面。
本实施例中,所述金属层303的材料为W,采用化学气相沉积工艺形成所述金属层303。在其他实施例中,所述金属层的材料还可以为Cu或Al,还可以采用物理气相沉积工艺或原子层沉积工艺形成所述金属层。
在形成所述金属层303之前,所述高k栅介质层206、阻挡层以及N型功函数层209还位于所述层间介质层204顶部上;形成所述金属层303的工艺步骤包括:在所述N型功函数层209上形成填充满所述第一开口210的金属膜,本实施例中,在所述盖帽层302上形成填充满所述第一开口210和第二开口220的金属膜,所述金属膜顶部高于层间介质层204顶部;去除高于所述层间介质层204顶部的金属膜形成所述金属层303,且还去除高于所述层间介质层204顶部的盖帽层302、N型功函数层209、阻挡层以及高k栅介质层206。
其中,位于所述第一开口210内的高k栅介质层206、阻挡层、N型功函数层209、盖帽层302以及金属层303作为第一栅极结构;位于所述第二开口220内的高k栅介质层206、P型功函数层、N型功函数层209、盖帽层302以及金属层303作为第二栅极结构。
本实施例中,对N型功函数层209进行回流退火处理301,所述回流退火处理301适于使第一开口拐角区域的N型功函数层209的厚度变厚,且还适于所述拐角区域的N型功函数层209内的Al离子向阻挡层内扩散,由于拐角区域的N型功函数层209的厚度较厚,使得扩散进入拐角区域的阻挡层内的Al离子含量足,所述拐角区域的Al离子扩散进入阻挡层的扩散能力较其他区域Al离子扩散进入阻挡层的扩散能力强,因此能够显著的改善拐角区域的阻挡层造成的势垒过高的问题,使得所述拐角区域阻挡层产生的势垒明显减小,因此NMOS区域的有效沟道区长度变长,具体的,含有Al离子的阻挡层下方的鳍部内也将形成有效沟道区。
因此,与现有技术相比,本实施例形成的鳍式场效应中的有效沟道区长度变长,短沟道效应问题得到改善,从而提高器件的电学性能。
此外,所述回流退火处理301还适于使鳍部202底部区域侧壁上的N型功函数层209厚度变薄,因此所述鳍部202底部区域对应的第一栅极结构具有较高的阈值电压,从而弥补或抵消了由于鳍部202底部区域宽度尺寸较大造成的短沟道控制能力弱的缺陷,使得鳍部202底部区域形成的第一栅极结构对沟道区也具有优异的短沟道控制能力,防止在鳍部202底部区域出现源漏穿通问题,从而进一步改善形成的鳍式场效应管的电学性能。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (18)

1.一种鳍式场效应管的形成方法,其特征在于,包括:
提供包括NMOS区域的衬底、位于衬底上分立的鳍部,所述衬底上形成有覆盖鳍部侧壁的隔离层,所述隔离层顶部低于鳍部顶部,且所述隔离层上形成有层间介质层,其中,所述NMOS区域的层间介质层内形成有第一开口,所述第一开口横跨NMOS区域的鳍部,且暴露出NMOS区域的鳍部的部分顶部和侧壁,所述第一开口的底部与侧壁之间具有拐角区域;
在所述第一开口底部和侧壁上形成高k栅介质层,所述高k栅介质层还位于所述暴露出的NMOS区域的鳍部的部分顶部和侧壁上;
在所述高k栅介质层上形成阻挡层;
在所述阻挡层上形成N型功函数层,所述N型功函数层内含有Al离子;
对所述N型功函数层进行回流退火处理,所述回流退火处理适于使位于所述拐角区域的N型功函数层厚度变厚,且还适于使所述拐角区域的N型功函数层内的Al离子向所述阻挡层内扩散;
在进行所述回流退火处理之后,在所述N型功函数层上形成填充满所述第一开口的金属层。
2.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,高于所述隔离层顶部表面的鳍部包括:鳍部底部区域、以及位于鳍部底部区域上方的鳍部顶部区域;其中,所述回流退火处理还适于使位于所述鳍部底部区域侧壁上的N型功函数层的厚度变薄。
3.如权利要求2所述的鳍式场效应管的形成方法,其特征在于,在进行所述回流退火处理之前,位于所述鳍部底部区域侧壁上的N型功函数层的厚度为33埃~88埃;在进行所述回流退火处理之后,位于所述鳍部底部区域侧壁上的N型功函数层的厚度为30埃~80埃。
4.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,相邻鳍部之间的隔离层顶部表面为下凹弧形表面。
5.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述回流退火处理的工艺参数包括:退火温度为100℃~300℃,退火时长为10min~120min。
6.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述N型功函数层的材料为TiAl、TiAlC、TiAlN或AlN。
7.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,在进行所述回流退火处理之前,所述N型功函数层的厚度为33埃~88埃。
8.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述阻挡层的材料为TiN或TaN。
9.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,在进行所述回流退火处理之前,所述阻挡层的厚度为10埃~20埃。
10.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,高于所述隔离层的鳍部底部宽度尺寸大于所述鳍部顶部宽度尺寸。
11.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述衬底还包括PMOS区域,所述PMOS区域的层间介质层内形成有第二开口,所述第二开口横跨所述PMOS区域的鳍部,且暴露出PMOS区域的鳍部的部分顶部和侧壁。
12.如权利要求11所述的鳍式场效应管的形成方法,其特征在于,所述第二开口底部和侧壁上还形成有高k栅介质层;所述第二开口内的高k栅介质层上还形成有P型功函数层;且所述金属层还位于所述P型功函数层上且填充满所述第二开口。
13.如权利要求12所述的鳍式场效应管的形成方法,其特征在于,形成所述高k栅介质层、阻挡层以及P型功函数层的工艺步骤包括:
在所述第一开口底部和侧壁上形成高k栅介质层,同时还在所述第二开口底部和侧壁上形成高k栅介质层;
在所述第一开口内以及第二开口内的高k栅介质层上形成第一功函数层;
去除位于所述第一开口内的第一功函数层,露出第一开口的高k栅介质层;
在所述第一开口内的高k栅介质层上、以及第二开口的第一功函数层上形成第二功函数层,其中,所述第一开口内的第二功函数层为所述阻挡层,所述第二开口内的第一功函数层和第二功函数层作为所述P型功函数层。
14.如权利要求12所述的鳍式场效应管的形成方法,其特征在于,所述第一功函数层的材料为TiN或TaN;所述第二功函数层的材料为TiN或TaN。
15.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,在形成所述金属层之前,还包括步骤:在所述N型功函数层上形成盖帽层,所述盖帽层的材料为TiN或TaN。
16.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述高k栅介质层的材料包括HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3
17.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,所述金属层的材料包括Cu、Al或W。
18.如权利要求1所述的鳍式场效应管的形成方法,其特征在于,在形成所述金属层之前,所述高k栅介质层、阻挡层以及N型功函数层还位于层间介质层的顶部上;形成所述金属层的工艺步骤包括:在所述N型功函数层形成填充满所述第一开口的金属膜,所述金属膜顶部高于层间介质层顶部;去除高于所述层间介质层顶部的金属膜形成所述金属层,还去除高于所述层间介质层顶部的N型功函数层、阻挡层以及高k栅介质层。
CN201610410566.0A 2016-06-13 2016-06-13 鳍式场效应管的形成方法 Active CN107492498B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610410566.0A CN107492498B (zh) 2016-06-13 2016-06-13 鳍式场效应管的形成方法
US15/491,501 US10090306B2 (en) 2016-06-13 2017-04-19 Fin-FET devices and fabrication methods thereof
EP17174829.6A EP3258500B1 (en) 2016-06-13 2017-06-07 Fin-fet devices and fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610410566.0A CN107492498B (zh) 2016-06-13 2016-06-13 鳍式场效应管的形成方法

Publications (2)

Publication Number Publication Date
CN107492498A true CN107492498A (zh) 2017-12-19
CN107492498B CN107492498B (zh) 2020-03-10

Family

ID=59053951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610410566.0A Active CN107492498B (zh) 2016-06-13 2016-06-13 鳍式场效应管的形成方法

Country Status (3)

Country Link
US (1) US10090306B2 (zh)
EP (1) EP3258500B1 (zh)
CN (1) CN107492498B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444593A (zh) * 2019-08-29 2019-11-12 上海华力集成电路制造有限公司 金属栅mos晶体管
CN111627817A (zh) * 2019-02-28 2020-09-04 中芯国际集成电路制造(上海)有限公司 晶体管结构及其形成方法
CN112750828A (zh) * 2019-10-31 2021-05-04 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN114334828A (zh) * 2020-10-10 2022-04-12 长鑫存储技术有限公司 半导体器件制造方法、半导体器件及存储器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022874B (zh) * 2016-10-31 2021-02-09 中芯国际集成电路制造(上海)有限公司 半导体装置的制造方法
US10446550B2 (en) * 2017-10-13 2019-10-15 Globalfoundries Inc. Cut inside replacement metal gate trench to mitigate N-P proximity effect
US10741454B2 (en) 2018-08-09 2020-08-11 International Business Machines Corporation Boundary protection for CMOS multi-threshold voltage devices
US11374090B2 (en) * 2019-10-31 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures for semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839981A (zh) * 2012-11-21 2014-06-04 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN104795437A (zh) * 2014-01-17 2015-07-22 台湾积体电路制造股份有限公司 金属栅极结构及其制造方法
US20160049491A1 (en) * 2014-08-13 2016-02-18 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
US20160163809A1 (en) * 2014-12-02 2016-06-09 International Business Machines Corporation Low resistance replacement metal gate structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907431B2 (en) 2011-12-16 2014-12-09 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with multiple threshold voltages
US9105662B1 (en) 2014-01-23 2015-08-11 International Business Machines Corporation Method and structure to enhance gate induced strain effect in multigate device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839981A (zh) * 2012-11-21 2014-06-04 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN104795437A (zh) * 2014-01-17 2015-07-22 台湾积体电路制造股份有限公司 金属栅极结构及其制造方法
US20160049491A1 (en) * 2014-08-13 2016-02-18 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
US20160163809A1 (en) * 2014-12-02 2016-06-09 International Business Machines Corporation Low resistance replacement metal gate structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627817A (zh) * 2019-02-28 2020-09-04 中芯国际集成电路制造(上海)有限公司 晶体管结构及其形成方法
CN111627817B (zh) * 2019-02-28 2023-10-13 中芯国际集成电路制造(上海)有限公司 晶体管结构及其形成方法
CN110444593A (zh) * 2019-08-29 2019-11-12 上海华力集成电路制造有限公司 金属栅mos晶体管
CN112750828A (zh) * 2019-10-31 2021-05-04 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN114334828A (zh) * 2020-10-10 2022-04-12 长鑫存储技术有限公司 半导体器件制造方法、半导体器件及存储器

Also Published As

Publication number Publication date
US20170358578A1 (en) 2017-12-14
EP3258500A1 (en) 2017-12-20
EP3258500B1 (en) 2020-09-02
US10090306B2 (en) 2018-10-02
CN107492498B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN107492498A (zh) 鳍式场效应管的形成方法
US11699758B2 (en) Isolation structure having different distances to adjacent FinFET devices
US10573563B2 (en) Semiconductor structure and fabrication method thereof
US12057343B2 (en) FinFET devices with embedded air gaps and the fabrication thereof
CN108010884B (zh) 半导体结构及其形成方法
CN106952908B (zh) 半导体结构及其制造方法
US10658512B2 (en) Fin field effect transistor and fabrication method thereof
CN108022882A (zh) 半导体结构及其形成方法
US10388573B2 (en) Fin-FET devices and fabrication methods thereof
CN107293488A (zh) 半导体结构及其制造方法
US11239364B2 (en) Semiconductor device and method for manufacturing the same
CN106876335A (zh) 半导体结构的制造方法
CN106876273B (zh) 半导体结构的制造方法
CN106469652B (zh) 半导体器件及其形成方法
CN108281477A (zh) 鳍式场效应管及其形成方法
CN108257918B (zh) 半导体结构及其形成方法
CN106847695A (zh) 鳍式场效应管的形成方法
CN108155235B (zh) 半导体结构及其形成方法
CN108258033B (zh) 半导体器件及其形成方法
CN108878362B (zh) 半导体结构及其形成方法
CN106158645A (zh) 半导体器件的形成方法
CN108074816B (zh) 晶体管及其形成方法
CN105551957A (zh) Nmos晶体管及其形成方法
CN107492522B (zh) Cmos器件、pmos器件及nmos器件的形成方法
CN107492499A (zh) 半导体器件的形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant