CN107488028A - 一种铑基氧化物热电材料及其制备方法 - Google Patents

一种铑基氧化物热电材料及其制备方法 Download PDF

Info

Publication number
CN107488028A
CN107488028A CN201710572784.9A CN201710572784A CN107488028A CN 107488028 A CN107488028 A CN 107488028A CN 201710572784 A CN201710572784 A CN 201710572784A CN 107488028 A CN107488028 A CN 107488028A
Authority
CN
China
Prior art keywords
oxide
rhodium
pyroelectric material
base oxide
rhodium base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710572784.9A
Other languages
English (en)
Other versions
CN107488028B (zh
Inventor
于杰
战祥浩
张昆华
周晓龙
戴炳蔚
胡明钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710572784.9A priority Critical patent/CN107488028B/zh
Publication of CN107488028A publication Critical patent/CN107488028A/zh
Application granted granted Critical
Publication of CN107488028B publication Critical patent/CN107488028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种铑基氧化物热电材料及其制备方法,属于新能源材料及其制备技术领域。本发明铑基氧化物热电材料的化学通式为ABxRh2‑2xO4;其中x=0.1~0.5,A为元素Cu、Li、Bi、Ca、Zn、Sr、Na或La,B为元素Fe、Co、Ni、Mn、Cr、Mg。该铑基氧化物热电材料粉体混合、预烧结、放电等离子体烧结等步骤制备而成。本发明所述的铑基氧化物热电材料具有耐高温、耐腐蚀、耐氧化性高等特点,可应用在废热发电、空调系统、冷热两用箱、干洗机、医疗保健、生物工程、通讯、航空航天领域等领域。

Description

一种铑基氧化物热电材料及其制备方法
技术领域
本发明涉及一种铑基氧化物热电材料及其制备方法,属于新能源材料及其制备技术领域。
背景技术
近年来,人口飞速增长及工业迅猛发展,化石燃料过度开采,能源和环境问题越发凸显,能源危机和环境危机已引起各国关注。然而,全球每年消耗的能源中约有70%以废热的形式被浪费掉,如果能将这些废热进行有效的回收利用,将极大的缓解能源短缺的问题。热电材料能直接将热能转换成电能,具有无传动部件、体积小、无噪音、无污染及可靠性好等优点,在汽车废热回收利用,工业余热发电方面有着巨大的应用前景。
热电材料的转换效率由无量纲热电优值ZT(ZT=s2σT/κ,其中s为Seebeck系数、σ为电导率、κ为导热系数、T为绝对温度,s2σ称为功率因子) 决定。ZT越大,材料的热电转换效率越高。由上述方程式所显见;为了改善热电转换材料的性能,需要提高塞贝克系数s和电导率或需要降低导热系数κ。
Martinez H等通过固相反应法,用Mg对CuRhO2的Rh位掺杂,得到一种在1000 K温度下ZT为0.15的热电结构的CuMgxRh1-xO2热电材料,在x=0.05附近,室温下显示出金属-绝缘体的转变,x=0.2时,样品显示低电阻率(4mΩ•cm),高赛贝克系数(130μV/K),功率因子为4225μW/cm.K2,是一种很好的热电材料。
目前对铑基氧化物热电材料研究较少,尚未有简单易行的制备铑基氧化物热电材料的方法。
发明内容
本发明的目的是公开一种铑基氧化物热电材料,其化学通式为ABxRh2-2xO4;其中x=0.1~0.5,A为元素Cu、Li、Bi、Ca、Zn、Sr、Na或La,B为元素Fe、Co、Ni、Mn、Cr、或Mg。
进一步地,A金属元素与铑金属元素的摩尔比为1:(0.5~1),铑金属元素与B金属元素的摩尔比为1:(0.05~0.5)。
本发明的另一目的是提供该铑基氧化物热电材料的制备方法,具体步骤如下:
(1)将氧化铑、A金属的氧化物和B金属的氧化物混合均匀、过筛得到混合粉体A;
(2)将步骤(1)所得混合粉体A进行预烧结、磨碎、过筛得到混合粉体B;
(3)在真空条件下,将步骤(2)所得混合粉体B进行放电等离子体烧结即得铑基氧化物热电材料;
所述过筛的筛网为200~300目筛网;
所述步骤(1)中A金属的氧化物与铑金属的氧化物摩尔比为1:(0.5~1),A金属的氧化物为CuO、Cu2O、Li2O、Bi2O3、CaO、ZnO、SrO、Na2O或La2O3;铑金属的氧化物与B金属的氧化物的摩尔比为1:(0.1~1),B金属的氧化物为Fe2O3、Co2O3、Ni2O3、MnO2、Cr2O3、或MgO;
所述步骤(2)中预烧结的温度为800~1000℃,时间为24~48h;
进一步地,所述步骤(2)中磨碎为球磨,磨球直径为10~20mm,球磨介质为无水乙醇,球磨球、原料和无水乙醇的质量比为6~8:1:1.5~2;球磨机转速为300~500r/min,球磨时间为6~12h;
所述步骤(3)中放电等离子体烧结温度为700~1100℃,时间为10~30min,压力为15-30kN;
进一步地,所述步骤(3)中真空条件的真空度为5x10-3~1x10-2Pa。
本发明的有益效果是:
(1)本发明所述铑基氧化物热电材料具有耐高温、耐腐蚀、耐氧化性高等特点;
(2)本发明方法可制备出质量好的铑基氧化物热电材料;
(3)本发明方法具有工艺流程简单、效率高、生产成本低、对环境无污染的特点。
附图说明
图1为铜铑基氧化物热电材料的结构示意图;
图2为实施例1铑基氧化物热电材料CuMg0.1Rh1.8O4的XRD图;
图3为实施例1~5的铑基氧化物热电材料的ZT值。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种铑基氧化物热电材料CuMg0.1Rh1.8O4的制备方法,具体步骤如下:
(1)称取0.8g氧化铜(CuO)、0.04g氧化镁(MgO)、2.54g氧化铑(Rh2O3),即A金属的氧化物(氧化铜)与氧化铑的摩尔比为1:1,氧化铑与B金属的氧化物(氧化镁)的摩尔比为1:0.1;然后将粉体置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙磨球和无水乙醇,在转速300r/min磨球机上进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体A;
(2)将步骤(1)所得混合粉体A置于箱式电阻炉中,设定升温速率为5℃/min,加热至温度为940℃,并进行恒温预烧结36h,随炉冷却至室温,将预烧结产物置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速300r/min进行球磨6h将其粉体混合均匀,在过200目筛网得到混合粉体B;
(3)将步骤(2)所得混合粉体B置于石墨模具中,然后再置于放电等离子(SPS)烧结炉中,抽真空至真空度为5x10-3pa,设定升温速率为60℃/min,加热至温度为720℃,压力为15kN,恒温烧结10min,随炉冷却至室温即得铑基氧化物热电材料CuMg0.1Rh1.8O4
本实施例铜铑基氧化物热电材料的结构示意图如图1所示,从图1可知,铜铑基氧化物热电材料由Cu2+和RhO单元沿c轴交替叠加组成,具有热电材料层状分布的结构特点;
本实施例铑基氧化物热电材料CuMg0.1Rh1.8O4的XRD图如图2所示,从图2可知, Mg的掺杂量摩尔比为0.1时,与标准CuRh2O4的标准PDF卡片衍射峰位置相吻合,并无明显杂相峰,说明通过SPS烧结工艺,掺杂效果较好,已完成单一物相的制备;
本实施例铑基氧化物热电材料CuMg0.1Rh1.8O4的ZT值如图3所示,从图3可知,CuMg0.1Rh1.8O4的ZT值随着温度的上升而增大,在温度900℃时可达到0.31。
实施例2:一种铑基氧化物热电材料CaMn0.2Rh1.6O4的制备方法,具体步骤如下:
(1)称取0.56g氧化钙(CaO)、0.087g二氧化锰(MnO2)、2.413g氧化铑(Rh2O3),即A金属的氧化物(氧化钙)与氧化铑的摩尔比为1:0.8,B金属的氧化物(二氧化锰)与氧化铑的摩尔比为1: 0.125;然后将粉体置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在转速400r/min磨球机上进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体A;
(2)将步骤(1)所得混合粉体A置于箱式电阻炉中,设定升温速率为5℃/min,加热至温度为930℃,并进行恒温预烧结48h,随炉冷却至室温,将预烧结产物置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速300r/min进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体B;
(3)将步骤(2)所得混合粉体B置于石墨模具中,然后再置于放电等离子(SPS)烧结炉中,抽真空至真空度为6x10-3pa,设定升温速率为50℃/min,加热至温度为850℃,压力为20kN,恒温烧结30min,随炉冷却至室温即得铑基氧化物热电材料CaMn0.2Rh1.6O4
本实施例铑基氧化物热电材料CaMn0.2Rh1.6O4的ZT值如图3所示,从图3可知,CaMn0.2Rh1.6O4的ZT值也是随着温度的上升而增大,在温度900℃时达到0.40。
实施例3:一种铑基氧化物热电材料ZnCo0.2Rh1.6O4的制备方法,具体步骤如下:
(1)称取0.83g氧化锌(ZnO)、0.164g氧化钴(Co2O3)、2.413g氧化铑(Rh2O3),即A金属的氧化物(氧化锌)与氧化铑的摩尔比为1:0.8,B金属的氧化物(氧化钴)与氧化铑的摩尔比为1:0.125;然后将粉体置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在转速300r/min磨球机上进行球磨10h将其粉体混合均匀,过200目筛网得到混合粉体A;
(2)将步骤(1)所得混合粉体A置于箱式电阻炉中,设定升温速率为5℃/min,加热至温度为900℃,并进行恒温预烧结36h,随炉冷却至室温,将预烧结产物置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速300r/min进行球磨12h将其粉体混合均匀,过300目筛网得到混合粉体B;
(3)将步骤(2)所得混合粉体B置于石墨模具中,然后再置于放电等离子(SPS)烧结炉中,抽真空至真空度为1x10-2pa,设定升温速率为100℃/min,加热至温度为1000℃,压力为25kN,恒温烧结20min,随炉冷却至室温即得铑基氧化物热电材料ZnCo0.3Rh1.4O4
本实施例铑基氧化物热电材料ZnCo0.2Rh1.6O4的ZT值如图3所示,从图3可知,ZnCo0.2Rh1.6O4的ZT值随着温度的上升而增大,在温度900℃时达到0.43。
实施例4:一种铑基氧化物热电材料CuCr0.4Rh1.2O4的制备方法,具体步骤如下:
(1)称取1.44g氧化亚铜(Cu2O)、0.152g氧化铬(Cr2O3)、2.413g氧化铑(Rh2O3),即A金属的氧化物(氧化亚铜)与氧化铑的摩尔比为1:0.6,B金属的氧化物(氧化铬)与氧化铑的摩尔比为1:0.35;然后将粉体置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在转速300r/min磨球机上进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体A;
(2)将步骤(1)所得混合粉体A置于箱式电阻炉中,设定升温速率为5℃/min,加热至温度为850℃,并进行恒温预烧结48h,随炉冷却至室温,将预烧结产物置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速300r/min进行球磨12h将其粉体混合均匀,过250目筛网得到混合粉体B;
(3)将步骤(2)所得混合粉体B置于石墨模具中,然后再置于放电等离子(SPS)烧结炉中,抽真空至真空度为5x10-3pa,设定升温速率为50℃/min,加热至温度为950℃,压力为20kN,恒温烧结30min,随炉冷却至室温即得铑基氧化物热电材料CuCr0.4Rh1.2O4
本实施例铑基氧化物热电材料CuCr0.4Rh1.2O4的ZT值图如图3所示,从图3可知,CuCr0.4Rh1.2O4的ZT值随着温度的上升而增大,在温度900℃时达到0.55。
实施例5:一种铑基氧化物热电材料SrNi0.5RhO4的制备方法,具体步骤如下:
(1)称取1.04g氧化锶(SrO)、0.164g氧化镍(Ni2O3)、2.413g氧化铑(Rh2O3),即A金属的氧化物(氧化锶)与氧化铑的摩尔比为1:0.5,B金属的氧化物(氧化镍)与氧化铑的摩尔比为1:1;然后将粉体置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速500r/min进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体A;
(2)将步骤(1)所得混合粉体A置于箱式电阻炉中,设定升温速率为5℃/min,加热至温度为800℃,并进行恒温预烧结36h,随炉冷却至室温,将预烧结产物置于玛瑙球磨罐中,按照球磨球、原料和无水乙醇的质量比为6:1:1.5的比例,加入玛瑙球磨球和无水乙醇,在磨球机上,转速300r/min进行球磨12h将其粉体混合均匀,过200目筛网得到混合粉体B;
(3)将步骤(2)所得混合粉体B置于石墨模具中,然后再置于放电等离子(SPS)烧结炉中,抽真空至真空度为8x10-3pa,设定升温速率为100℃/min,加热至温度为900℃,压力为30kN,恒温烧结20min,随炉冷却至室温即得铑基氧化物热电材料SrNi0.5RhO4
本实施例铑基氧化物热电材料SrNi0.5RhO4的ZT值如图3所示,从图3可知, SrNi0.5RhO4的ZT值随着温度的上升而增大,在温度900℃时达到0.46。

Claims (6)

1.一种铑基氧化物热电材料,其特征在于,其化学通式为ABxRh2-2xO4;其中x=0.1~0.5,A为元素Cu、Li、Bi、Ca、Zn、Sr、Na或La,B为元素Fe、Co、Ni、Mn、Cr、或Mg。
2.根据权利要求1所述的铑基氧化物热电材料,其特征在于:A金属元素与铑金属元素的摩尔比为1:(0.5~1),铑金属元素与B金属元素的摩尔比为1:(0.05~0.5)。
3.如权利要求1所述的铑基氧化物热电材料的制备方法,其特征在于,具体步骤如下:
(1)将氧化铑、A金属的氧化物和B金属的氧化物混合均匀、过筛得到混合粉体A;
(2)将步骤(1)所得混合粉体A进行预烧结、磨碎、过筛得到混合粉体B;
(3)在真空条件下,将步骤(2)所得混合粉体B进行放电等离子体烧结即得铑基氧化物热电材料。
4.根据权利要求3所述的铑基氧化物热电材料的制备方法,其特征在于:步骤(1)中A金属的氧化物与铑金属的氧化物的摩尔比为1:(0.5~1),A金属的氧化物为CuO、Cu2O、Li2O、Bi2O3、CaO、ZnO、SrO、Na2O或La2O3;铑金属的氧化物与B金属的氧化物的摩尔比为1:(0.1~1),B金属的氧化物为Fe2O3、Co2O3、Ni2O3、MnO2、Cr2O3、或MgO。
5.根据权利要求3或4所述的铑基氧化物热电材料的制备方法,其特征在于:步骤(2)中预烧结的温度为800~1000℃,时间为24~48h。
6.根据权利要求3所述的铑基氧化物热电材料的制备方法,其特征在于:步骤(3)中放电等离子体烧结温度为700~1100℃,时间为10~30min,压力为15~30kN。
CN201710572784.9A 2017-07-14 2017-07-14 一种铑基氧化物热电材料及其制备方法 Active CN107488028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710572784.9A CN107488028B (zh) 2017-07-14 2017-07-14 一种铑基氧化物热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710572784.9A CN107488028B (zh) 2017-07-14 2017-07-14 一种铑基氧化物热电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107488028A true CN107488028A (zh) 2017-12-19
CN107488028B CN107488028B (zh) 2020-10-27

Family

ID=60643755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710572784.9A Active CN107488028B (zh) 2017-07-14 2017-07-14 一种铑基氧化物热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107488028B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280706A (zh) * 1997-10-24 2001-01-17 住友特殊金属株式会社 热电转换材料及其制造方法
CN101189740A (zh) * 2005-05-30 2008-05-28 松下电器产业株式会社 热电变换材料、使用该热电变换材料的热电变换元件以及具有该元件的电子设备和冷却装置
CN101331623A (zh) * 2006-01-17 2008-12-24 松下电器产业株式会社 热电变换材料和使用该热电变换材料的热电变换元件以及具有该元件的电子设备和冷却装置
CN103934459A (zh) * 2014-01-20 2014-07-23 武汉理工大学 一种超快速低成本制备高性能Half-Heusler块体热电材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280706A (zh) * 1997-10-24 2001-01-17 住友特殊金属株式会社 热电转换材料及其制造方法
CN101189740A (zh) * 2005-05-30 2008-05-28 松下电器产业株式会社 热电变换材料、使用该热电变换材料的热电变换元件以及具有该元件的电子设备和冷却装置
CN101331623A (zh) * 2006-01-17 2008-12-24 松下电器产业株式会社 热电变换材料和使用该热电变换材料的热电变换元件以及具有该元件的电子设备和冷却装置
CN103934459A (zh) * 2014-01-20 2014-07-23 武汉理工大学 一种超快速低成本制备高性能Half-Heusler块体热电材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.K. LE A, D.FLAHAUT ET AL.: "《The electronic structure of the CuRh1-xMgxO2 thermoelectric materials:An X-ray photoelectron spectroscopy study》", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
薛锦红等: "《M-Rh-O 热电材料的研究进展》", 《稀有金属材料与工程》 *

Also Published As

Publication number Publication date
CN107488028B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
JP6976012B2 (ja) n−型Mg−Sb基室温熱電材料及びその製造方法
TWI467910B (zh) 熱磁發電器
CN102655204B (zh) 一种Sr掺杂氧化物BiCuSeO热电材料的制备方法
Robert et al. Synthesis and high-temperature thermoelectric properties of Ni and Ti substituted LaCoO3
JP2021515411A5 (zh)
CN103011838B (zh) 一种BiCuSeO基热电氧化物粉体的制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN101550009A (zh) 一类掺杂的铁基高温超导材料的制备方法
CN102931336B (zh) 一种GeTe基复合热电材料及其制备方法
CN111640853B (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN110078476A (zh) 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN101101954A (zh) 一种镉锑基p型热电材料及其制备方法
CN102983261B (zh) 一种内外电极均为一端封闭金属管的热电转换电池
CN101157482B (zh) 一种掺杂改性Ca-Co-O体系过渡金属复合氧化物及其制备方法
CN106129241A (zh) 固相反应法制备层错结构硫族化合物热电材料的方法
CN106006738A (zh) 一种Ni掺杂CuCrO2基氧化物热电材料及其制备方法
JP4002964B2 (ja) 層状アルカリチタン酸塩熱電酸化物材料
CN107488028A (zh) 一种铑基氧化物热电材料及其制备方法
CN106098922A (zh) 一种Cu掺杂立方相Ca2Si热电材料
CN104733605B (zh) 一种包含纳米超晶格和微米相分离的热电材料的制备方法
CN102856540A (zh) 一种快速合成锂离子电池多元层状正极材料的方法
CN103924109B (zh) 一种自蔓延燃烧合成超快速制备高性能CoSb3基热电材料的方法
CN104762501B (zh) 低温固相反应结合热压工艺制备碲化银锑热电材料的方法
CN107516709A (zh) 一种铑基热电材料及其制备方法
CN111312888A (zh) 通过Bi、Cu、Cd掺杂提高SnTe热电性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant