CN107473739B - 锆酸镧复相陶瓷及其制备方法和应用 - Google Patents

锆酸镧复相陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN107473739B
CN107473739B CN201710806874.XA CN201710806874A CN107473739B CN 107473739 B CN107473739 B CN 107473739B CN 201710806874 A CN201710806874 A CN 201710806874A CN 107473739 B CN107473739 B CN 107473739B
Authority
CN
China
Prior art keywords
lanthanum
lanthanum zirconate
phase ceramic
aluminate
complex phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710806874.XA
Other languages
English (en)
Other versions
CN107473739A (zh
Inventor
王衍飞
韩敬
刘荣军
曹英斌
赵静泽
贺鹏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201710806874.XA priority Critical patent/CN107473739B/zh
Publication of CN107473739A publication Critical patent/CN107473739A/zh
Application granted granted Critical
Publication of CN107473739B publication Critical patent/CN107473739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种锆酸镧复相陶瓷及其制备方法和应用,该锆酸镧复相陶瓷包括锆酸镧和铝酸镧,所述铝酸镧弥散分布于锆酸镧中。制备方法包括以下步骤:将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷。铝酸镧以铁弹增韧方式对锆酸镧进行增韧,因而该锆酸镧复相陶瓷具有断裂韧性高、致密度高、化学稳定性及体积稳定性好等优点,在高温热障涂层应用领域具有广泛的应用前景。

Description

锆酸镧复相陶瓷及其制备方法和应用
技术领域
本发明属于复相陶瓷及其制备技术领域,尤其涉及一种锆酸镧(La2Zr2O7)复相陶瓷及其制备方法和应用。
背景技术
热障涂层(TBC)是一种先进的陶瓷材料系统,主要应用于燃气轮机和航空发动机的高温金属元件上,如燃烧室和透平叶片。目前最常用的热障涂层是传统的质量分数为8%的氧化钇稳定的氧化锆(8YSZ)。随着热障涂层的不断发展,与传统的8YSZ热障涂层相比,锆酸镧由于其更低的热导率,更低的氧透过率,更高的熔点作为具有潜力的新一代替代涂层。
与传统的8YSZ热障涂层相比,锆酸镧具有更低的断裂韧性,导致热障涂层抗冲击性能较差,更容易在服役过程中碎裂。同时,锆酸镧热胀系数低,与基体的热胀系数相差较大,热震性能和使用寿命也就相应降低。众所周知,对于结构用的工程陶瓷,脆性一直是其应用的主要障碍。很多的研究工作都是围绕着克服脆性,或者说增韧的主题展开的,虽然目前关于陶瓷增韧机理的研究成果很多,但是实际上研究开发的增韧陶瓷并不多,或者虽然有增韧复合陶瓷面世,但其增韧机理尚不明确。另外,某些增韧相的加入有可能使热障涂层在热循环过程中出现体积变化,从而导致与基体出现体积失配的现象,或者增韧相在高温下与基体或陶瓷基相发生反应,这些现象均会严重降低热障涂层的使用寿命。例如,现有技术中有采用钛酸钡增韧锆酸镧,但是长期的热循环过程中,钛酸钡会锆酸镧产生反应,导致涂层失效。还有案例采用氧化钇稳定四方相的氧化锆增韧锆酸镧,通过相变增韧提高锆酸镧的断裂韧性,但是体积变化易导致涂层产生内应力,促使涂层开裂,不利于热障涂层的长期使用。因此,锆酸镧复相陶瓷应用于高温热障涂层,还有众多技术难点函待解决。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种断裂韧性高、致密度高、化学稳定性及体积稳定性好的锆酸镧复相陶瓷,还相应提供该锆酸镧复相陶瓷的制备方法及作为热障涂层的应用。
为解决上述技术问题,本发明采用以下技术方案:
一种锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,所述铝酸镧弥散分布于锆酸镧中。
上述的锆酸镧复相陶瓷,优选的,所述铝酸镧中存在c轴取向与裂纹扩展方向平行的铁弹畴,所述铁弹畴在裂纹扩展时发生转向,消耗裂纹扩展能量。
铁弹材料及铁弹相变是近年来的研究热点,然而将铁弹材料引入陶瓷材料中,铁弹材料并不一定能成功发挥其铁弹增韧作用,也即,在裂纹扩展阶段,铁弹相中的众多取向各异的铁弹畴不一定会受裂纹拉应力影响而发生铁弹相变,进而也就无法消耗裂纹扩展能量实现增韧。目前即使有铁弹材料增韧陶瓷的文献报道,但均是将提高的断裂韧性估计为铁弹增韧,并没有直接从微观上观察到在裂纹扩展阶段,铁弹相中的众多取向各异的铁弹畴受到裂纹周围的拉应力发生铁弹相变的现象,因而无法证明铁弹材料成功发挥了其铁弹增韧作用。
而申请人在提高热障涂层断裂韧性的研究过程中发现,将铝酸镧(LaAlO3)作为第二相引入锆酸镧基体,铝酸镧在裂纹尖端存在一个铁弹畴,其c轴取向与裂纹扩展方向平行,当外加一载荷作用于材料时,材料内部产生的应力导致裂纹扩展,应力超过临界值后,在裂纹尖端应力弛豫,该铁弹畴受裂纹拉应力作用从而发生垂直于裂纹扩展的方向的转向,这个过程会消耗掉一部分裂纹扩展过程中所需要的能量,阻碍裂纹扩展,从而提高材料的断裂韧性,也即,铝酸镧引入锆酸镧陶瓷基体后成功发挥了其铁弹增韧作用。
上述的锆酸镧复相陶瓷,优选的,所述铝酸镧在复相陶瓷中的摩尔分数为10%~50%。如果铝酸镧含量低于10%,则由于含量太少,增韧效果不明显。如果含量超过50%,则容易使锆酸镧其他优异的性能如热导率、高熔点降低。
上述的锆酸镧复相陶瓷,优选的,所述锆酸镧复相陶瓷的断裂韧性大于2MPa·m1 /2
作为一个总的发明构思,本发明还提供一种上述锆酸镧复相陶瓷的制备方法,包括以下步骤:
将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷。
上述的锆酸镧复相陶瓷的制备方法,优选的,所述混合粉末中,铝酸镧的摩尔分数为10%~50%。
上述的锆酸镧复相陶瓷的制备方法,优选的,所述混合粉末的粒径≤200目。
上述的锆酸镧复相陶瓷的制备方法,优选的,所述放电等离子烧结的工艺为:温度1400℃~1600℃,压力30MPa~50MPa,保温时间10min~20min。
作为一个总的发明构思,本发明还提供一种上述的锆酸镧复相陶瓷或上述的制备方法所制备的锆酸镧复相陶瓷作为热障涂层的应用。
与现有技术相比,本发明的优点在于:
1、本发明将铝酸镧作为增韧相引入锆酸镧基体,铝酸镧在裂纹扩展过程中发生铁弹相变,消耗裂纹扩展所需能量,从而实现增韧目的。并且,该相变过程为二级相变,无体积变化,可避免在作为热障涂层的应用过程中,因热障涂层体积变化,在热障涂层和基体中产生内应力,导致热障涂层过早失效的问题。
2、铝酸镧和锆酸镧在在高温下不反应,化学稳定性好,可避免在作为热障涂层的应用过程中,因杂相的生成产生热胀系数失配、内应力过大、涂层与基体脱落等现象,最终导致热障涂层失效的问题。并且铝酸镧的热胀系数(11.4×10-6K-1)高于锆酸镧(8.6×10- 6K-1),可提高锆酸镧复相陶瓷的热胀系数。
3、本发明采用放电等离子烧结法制备锆酸镧复相陶瓷,该烧结方法制备涂层的大气等离子喷涂以及等离子辅助-物理气相沉积的方法接近,保证了热障涂层在喷涂或沉积到基体后断裂韧性的变化值较小。并且,放电等离子烧结的时间短,晶粒来不及长大,相对于晶粒尺寸更大的烧结方法,断裂韧性会更好。同时,放电等离子烧结具有较高的致密度,作为热障涂层,可降低氧气的透过率。另外,采用的放电等离子烧结出的样品成分均匀,性能均匀,避免了局部性能不均匀导致的突然失效。
附图说明
图1为本发明实施例4所制备的锆酸镧复相陶瓷的表面形貌SEM照片。
图2为对比例1所制备的锆酸镧陶瓷的断面SEM照片。
图3为实施例5所制备的锆酸镧复相陶瓷的断面SEM照片。
图4为实施例2所制备的锆酸镧复相陶瓷的表面形貌(a图)和压痕导致裂纹(b、c图)的AFM对照照片,其中c图为b图的局部放大图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1:
一种本发明的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为10%。
一种上述本实施例的锆酸镧复相陶瓷的制备方法,包括以下步骤:
(1)将粒径都不超过5μm的锆酸镧粉末和铝酸镧粉末置于聚氨酯球磨罐中,其中,铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的10%。把球磨罐置于行星式球磨仪中,用锆珠在酒精或水中以300转/min的转速球磨24h,得到混合粉末浆料。
(2)将球磨罐中的混合粉末浆料倒入容器中,然后放入干燥箱中充分除去水分或者酒精,其中干燥箱的温度在80℃,干燥时间为2h。将干燥后的粉末用200目的筛子过筛,密封干燥保存,即得到混合粉末。
(3)将混合粉末装入直径40mm的模具中,进行放电等离子烧结。烧结过程为:以100K/min的升温速率升温至1500℃的烧结温度,在40MPa的压力下保温10min,即烧结出圆柱状块体锆酸镧复相陶瓷。每次装料40g左右,会烧出高度5mm,直径40mm的圆柱状块体锆酸镧复相陶瓷。
对比例1:
本对比例为锆酸镧陶瓷,不含铝酸镧。本对比例的锆酸镧陶瓷制备方法与实施例1基本相同,其不同点仅在于:不含铝酸镧粉末。
实施例2:
本实施例的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为20%。其制备方法与实施例1基本相同,其不同点仅在于:铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的20%。
实施例3:
本实施例的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为30%。其制备方法与实施例1基本相同,其不同点仅在于:铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的30%。
实施例4:
本实施例的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为30%。其制备方法与实施例1基本相同,其不同点仅在于:铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的30%。
图1为实施例4所制备的锆酸镧复相陶瓷的表面形貌SEM照片,通过截线法算出两相的平均晶粒尺寸在1.2μm左右。由图可见,晶粒尺寸相对较小的铝酸镧颗粒弥散分布于锆酸镧中,且致密度较高。
实施例5:
本实施例的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为50%。其制备方法与实施例1基本相同,其不同点仅在于:铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的50%。
将实施例1~5的锆酸镧复相陶瓷样品、对比例1的锆酸镧陶瓷样品进行断裂韧性测试,测试结果见表1。
Figure BDA0001402914770000041
Figure BDA0001402914770000051
可见,铝酸镧的加入,可显著提高锆酸镧陶瓷材料的断裂韧性,并且,在10mol%~50mol%之间,断裂韧性随着铝酸镧的加入量增加而提高。
图2为对比例1的锆酸镧陶瓷的断面SEM照片,图3为实施例5的锆酸镧复相陶瓷的断面SEM照片,由图2和图3的对照可见,加入铝酸镧第二相后,断裂方式从沿晶断裂转变为同时存在穿晶断裂和沿晶断裂,说明加入第二相铝酸镧后的锆酸镧复相陶瓷韧性提高,与由单边梁切口法测试出来的断裂韧性增加一致。
图4为实施例2所制备的锆酸镧复相陶瓷的表面形貌(a图)和压痕导致裂纹(b、c图)的AFM对照照片,如a图所示,第二相铝酸镧晶粒内有很多排列无序呈条纹状的铁弹畴。c图是b图的裂纹局部放大图。可见,当裂纹扩展时,铁弹畴由无序排列转为沿着裂纹扩展的方向垂直排列,转向的过程中消耗了裂纹扩展所需的能量,起到了阻碍裂纹扩展的作用,具有增韧的效果。由此说明,第二相铝酸镧对锆酸镧陶瓷的增韧机制为铁弹增韧。该铁弹相变为无体积变化相变,另外,研究表明,铝酸镧和锆酸镧相稳定好,即使在高温下也不会发生反应;因此,本发明的锆酸镧复相陶瓷在作为热障涂层的应用过程中,可避免其他增韧机制产生的体积变化,导致在热障涂层和基体中产生内应力,从而导致热障涂层过早失效的问题。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种用于热障涂层的锆酸镧复相陶瓷,包括锆酸镧,其特征在于,还包括铝酸镧,所述铝酸镧弥散分布于锆酸镧中,所述铝酸镧中存在c轴取向与裂纹扩展方向平行的铁弹畴,所述铁弹畴在裂纹扩展时发生转向,消耗裂纹扩展能量,制备方法包括如下步骤:
将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷,所述放电等离子烧结的工艺为:温度1400℃~1600℃,压力30MPa~50MPa,保温时间10min~20min;所述铝酸镧在复相陶瓷中的摩尔分数为10%~50%。
2.根据权利要求1所述的锆酸镧复相陶瓷,其特征在于,所述锆酸镧复相陶瓷的断裂韧性大于2MPa·m1/2
3.一种如权利要求1所述的用于热障涂层的锆酸镧复相陶瓷的制备方法,包括以下步骤:
将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷;所述放电等离子烧结的工艺为:温度1400℃~1600℃,压力30MPa~50MPa,保温时间10min~20min。
4.根据权利要求3所述的锆酸镧复相陶瓷的制备方法,其特征在于,所述混合粉末中,铝酸镧的摩尔分数为10%~50%。
5.根据权利要求4所述的锆酸镧复相陶瓷的制备方法,其特征在于,所述混合粉末的粒径≤200目。
6.一种如权利要求1或2所述的锆酸镧复相陶瓷或如权利要求3~5任一项所述的制备方法所制备的锆酸镧复相陶瓷作为热障涂层的应用。
CN201710806874.XA 2017-09-08 2017-09-08 锆酸镧复相陶瓷及其制备方法和应用 Active CN107473739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710806874.XA CN107473739B (zh) 2017-09-08 2017-09-08 锆酸镧复相陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710806874.XA CN107473739B (zh) 2017-09-08 2017-09-08 锆酸镧复相陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107473739A CN107473739A (zh) 2017-12-15
CN107473739B true CN107473739B (zh) 2020-08-07

Family

ID=60583778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710806874.XA Active CN107473739B (zh) 2017-09-08 2017-09-08 锆酸镧复相陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107473739B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430091B (zh) * 2020-11-24 2022-11-11 中国人民解放军国防科技大学 一种高韧性复相陶瓷材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1362933A1 (de) * 2002-05-15 2003-11-19 Siemens Aktiengesellschaft Wärmedämmschicht
US7514387B2 (en) * 2005-02-15 2009-04-07 Umicore Ag & Co. Kg Reformer and method of making the same
WO2013003213A1 (en) * 2011-06-28 2013-01-03 3M Innovative Properties Company Glass-ceramics and methods of making the same
CN104451518B (zh) * 2014-11-20 2017-02-01 西安交通大学 一种低导热抗烧结热障涂层及其制备方法
CN106435432B (zh) * 2016-09-14 2019-05-24 西安交通大学 一种孔隙率及孔隙形貌可控的热障涂层及其制备方法

Also Published As

Publication number Publication date
CN107473739A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
EP2371987B1 (en) Thermal barrier coating member, method for producing the same, use of the thermal barrier coating material, gas turbine, and sintered body
CN111471998B (zh) 一种Yb改性防CMAS复合结构热障涂层及其制备方法
WO2020215699A1 (zh) 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法
CN108101533B (zh) 一种热障涂层用陶瓷靶材的制备方法
JP2015505898A (ja) 遮熱及び耐環境コーティングを生成するための水性スラリー並びにこれを作製及び適用するための方法
CN112341197B (zh) 一种抗cmas腐蚀的高熵陶瓷材料、制备方法及其应用
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
JP2015166479A (ja) エロージョン及び衝撃特性が改善された超低熱伝導率の遮熱コーティングのための新規構成
CN112430091B (zh) 一种高韧性复相陶瓷材料及其制备方法和应用
US20200385871A1 (en) Thermal barrier coatings for components in high-temperature mechanical systems
Sun et al. Effect of heat treatment on microstructure and property of plasma-sprayed lanthanum hexaaluminate coating
Guo et al. Progress on high-temperature protective coatings for aero-engines
CN114000107A (zh) 一种利用eb-pvd技术制备的高熵氧化物超高温热障涂层及其方法
CN111099907B (zh) 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN107473739B (zh) 锆酸镧复相陶瓷及其制备方法和应用
CN101948308B (zh) 一种陶瓷高温隔热材料
CN106966763B (zh) 一种发动机环境下纤维增强的复合材料表面涂层及其制备方法
CN112250476B (zh) 具有高温陶瓷涂层YSZ-RETaO4的SiC基复合材料及其制备方法
CN111099909B (zh) 一种表面改性多晶莫来石纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
Di Girolamo et al. Microstructure and thermal properties of plasma-sprayed ceramic thermal barrier coatings
CN108754398B (zh) 高纯多孔陶瓷可磨耗封严涂层的制备方法
Gao et al. Thermal cycling property of supersonic atmospheric plasma sprayed thermal barrier coatings reinforced by Ni-coated YSZ fibers
CN115073172B (zh) 一种陶瓷靶材及其制备方法和应用
CN114368969A (zh) TiSi2掺杂Gd2Zr2O7陶瓷材料、制备方法及热障涂层
CN115057704A (zh) 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant