CN107429414A - 铝电解槽电极(变体) - Google Patents

铝电解槽电极(变体) Download PDF

Info

Publication number
CN107429414A
CN107429414A CN201580078146.0A CN201580078146A CN107429414A CN 107429414 A CN107429414 A CN 107429414A CN 201580078146 A CN201580078146 A CN 201580078146A CN 107429414 A CN107429414 A CN 107429414A
Authority
CN
China
Prior art keywords
electrode
refractory
composite
metal
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580078146.0A
Other languages
English (en)
Inventor
D·A·斯马科夫
A·O·古谢夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminum Engineering Technology Center Co Ltd
Rusal Engineering and Technological Center LLC
Original Assignee
Aluminum Engineering Technology Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Engineering Technology Center Co Ltd filed Critical Aluminum Engineering Technology Center Co Ltd
Publication of CN107429414A publication Critical patent/CN107429414A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/18Electrolytes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及用于从氧化铝电解产生铝的电解槽的垂直或倾斜电极。电极包含电极基体和基于耐火陶瓷的表面涂层。根据本发明的第一变体,所述电极基体由含5质量%~90质量%的耐火陶瓷和至少一种金属和/或含有所述金属的至少一种合金的复合材料制成,所述至少一种金属具有超过1000℃的熔融温度并在与铝相互作用时形成难熔金属间化合物。根据本发明的第二变体,所述电极基体由金属合金制成,例如结构钢或其他合金,并且所述电极基体的表面具有施用于其上的由具有上述组成的复合材料构成的中间层。

Description

铝电解槽电极(变体)
技术领域
本发明涉及用于从氧化铝电解产生铝的装置,特别是用于从溶于熔融电解质的氧化铝电解产生铝的电解槽的垂直或倾斜电极,即阴极或双极电极的阴极部分。
新型铝电解槽中垂直或倾斜的润湿阴极以及双极电极的应用可以通过降低电极之间的阳极到阴极的距离(ACD)来降低铝生产的特定额定功率消耗,并基于每个占用面积提高电解槽性能。配备垂直或倾斜电极的新型电解槽的发展滞后特别是与缺乏技术性、成本效益性和技术上可行的铝润湿电解槽电极相关,其可用作垂直或倾斜的润湿阴极或双极电极的阴极部分。出于此目的,这种电极必须表现出高导电性、机械强度、抗裂性,并且它们必须在1000℃对铝和熔融电解液的冲击具有抗性。此外,要求这些电极与金属集流体的连接的可制造性、可靠性和电阻率应与金属材料之间的焊接接触相当。将所有这些性质组合在一起是非常困难的,因此目前难以看到功能有效的铝润湿电极和工业上新型且更高效的铝生产电解槽的实施。
背景技术
目前,铝润湿阴极的适合材料是纯二硼化钛(TiB2)(Kvande H.Inert electrodesin aluminum electrolyzers//Light metals.–1999.–第369–376页)。其原因在于抗电解质和铝的相互作用的独特组合(Wendt H.;Dermeteik S.Dermeteik S.Erosion ofsintered titanium diboride cathodes during cathodic aluminum deposition fromlithium chloride/aluminum chloride melts.//J.Appl.Electrochem.–20.–1990.–第438-441页)、良好的抗氧化性(Tampieri A.,Landi E.,Bellosi A.On the oxidationbehaviour of monolithic titanium diboride and alumina-TiB2 and siliconnitride-TiB2 composites.//J.Therm.Anal.–38(12).–1992.-第2657-2668页)和铝的润湿性。通常,添加到TiB2中来改善某些性质的大部分添加剂对暴露于熔融铝的组合物化学稳定性具有负面影响(Odegard R.On the formation and dissolution of aluminumcarbide in aluminum cells.//Aluminum.–64.–1988.-第84-86页)。
已知来自二硼化钛的具有96%二硼化钛的润湿阴极(美国专利4308114号,С25С3/06,于1981年12月29日公开)通过在超过2000℃的压制而获得。已知有具有金属添加剂的来自二硼化钛的润湿阴极(美国专利申请2012/0222964号,С25С 7/02,于2012年9月6日公开),对于在1400℃~2100℃烧结的二硼化钛,添加剂的添加量为0.01质量%~0.75质量%。考虑到二硼化钛的高价格和需要在约2000℃温度的阴极烧结所引起的技术难题,这种润湿阴极生产方法在工业规模生产的背景下不能使用。后者是使用二硼化钛基复合材料的原因。
用于润湿阴极生产的陶瓷复合材料B4C-TiB2-TiC(俄罗斯专利2143411,C04B35/563,于1999年12月27日公开),TiB2-SiC(国际专利申请WO 2013/089886,С25С3/06,С25С2/07,于2013年6月20日公开)是已知的。
上述材料的缺点包括与高烧结温度、低抗冲击性和弯曲机械荷载、高成本和与纯二硼化钛相比更低的电导率相关的技术难题。此外,难以确保金属阴极集流体与这些材料之间的接触将具有与金属材料之间的焊接接触一样的可靠性和电阻性。
复合材料TiB2-C是已知的,其可用于生产铝润湿阴极或碳阴极的润湿涂层(俄罗斯专利2418888,C25C3/08,于2011年5月20日公开)。特别是,根据美国专利3400061(С25С3/08,于1968年9月3日公开),通过混合含碳填料,10%~20%的粘合剂和10%~80%的二硼化钛或其他减少铝生产的阳极与阴极间距离和电解槽功耗的铝润湿难熔化合物来制造泄流式阴极。将所得阴极成型,然后在900℃~1800℃烧结。
这些材料的缺点在于,为了提供具有高耐久性的垂直阴极并且允许高安培数直流电流通过其中,阴极必须更厚。因此这种阴极具有大尺寸、大重量和高价格。此外,难以确保金属阴极集流体与这些阴极之间的接触将具有与金属材料之间的焊接接触一样的可靠性和电阻性。
润湿复合材料是已知的,其包括铝润湿组分和诸如氧化铝等氧化物组分(国际专利申请WO 8902423,С25С3/08,于1989年3月23日公开;美国专利4717692,С25С 3/08,于1988年1月5日公开;俄罗斯专利2371523,С25С 3/08,于2008年10月27日公开;美国专利5753163,С25С 3/08,于1998年5月19日公开;俄罗斯专利2412283,С25С 3/08,于2010年2月24日公开)。
上述材料的缺点包括低导电性和低抗热冲击性。此外,难以确保金属阴极集流体与这些阴极之间的接触将具有与金属材料之间的焊接接触一样的可靠性和电阻性。
由填充有铝的惰性铝陶瓷基质获得的润湿阴极的复合材料是已知的(美国专利4560448,C25C3/08,于1985年12月24日公开;美国专利4600481,C25C3/08;于1986年7月15日公开;美国专利4650552,C25C3/06,于1987年3月17日公开;俄罗斯专利2281987,С25С3/08,于2006年8月20日公开)。
所述润湿电极的缺点是复合材料基体由陶瓷制成,因此其显示出在阴极的工业应用期间可能发生的低抗热冲击性以及低抗冲击性和弯曲机械荷载。此外,难以确保金属阴极集流体与这些阴极之间的这种接触将具有与金属材料之间的焊接接触一样的可靠性和电阻性。
中国专利103304239(С04B35/58,于2013年9月18日公开)公开了一种用于生产润湿的TiB2基金属陶瓷复合材料的方法,该方法包括混合复合颗粒TiB2-Al2O3、氧化物和金属添加剂,在惰性气氛中成型和烧结混合物。在该发明中,通过将60%~90%的TiB2颗粒和10%~40%的Al2O3溶胶混合,在900℃~1000℃烧制所得混合物,随后粉碎经烧结材料,而获得TiB2-Al2O3复合颗粒。氧化铝、氧化镁、尖晶石АВ2О4、钛酸铝、氧化钛或它们中某些的组合用作氧化物添加剂,其中А是Ni、Mg、Co、Zn、Cu、Li和Fe中的一种或它们的组合;В是Fe、Al、Co、Mn、Cr和Ge中的至少一种。氧化物添加剂含量为5%~25%。作为金属添加剂,使用0.5%~10%的Ni、Fe、Cu、Ti、Co、Cr、Mo、Mn或它们的组合。成型过程包括分别在200MPa~300MPa、250MPa~400MPa和80MPa~150MPa进行压制、振动压制或冷等静压制。在1250℃~1600℃烧结120分钟~480分钟,并且在开始时当温度为800℃~1200℃时,烧结过程在残余压力为10-2Pa~1Pa的真空中进行,然后在惰性气体气氛中,在0.8×105Pa的压力下,使用100mg/m3量的高纯度的Ar、N2或其与О2的组合。
这种润湿复合材料的缺点在于其结构主要由富含氧化物的陶瓷基体组成。因此,该材料具有低导电性,并且对冲击和弯曲机械荷载敏感。此外,难以在由所述材料制成的阴极和金属导体之间形成可靠的电接触。
已知用陶瓷复合材料涂覆碳基体的方法,因为它们显示比陶瓷材料更好的导电性、耐久性和抗热冲击性,并且还有利于建立与金属集流体的接触。例如,已知应用于铝电解槽的碳阴极的二硼化钛涂层(国际专利申请WO 9320027,С25С3/08,于1993年10月14日公开;中国专利1807693,С25С3/08,于2006年7月26日公开;俄罗斯专利2518032,С25С3/06,于2014年6月10日公开;俄罗斯专利2135643,С25С3/06,于1999年8月17日公开)。这种涂层的缺点包括使用来自含碳材料的基体,其必须非常厚以允许足够的耐久性和高安培数的直流电流通过。这就是这种阴极具有大的尺寸和重量的原因。此外,难以确保金属阴极集流体与这些阴极之间的接触将具有与金属材料之间的焊接接触一样的可靠性和电阻性。
此外,已知二硼化钛涂覆应用于金属基体的方法(美国专利3827954,C25D3/66,于1974年8月6日公开;US 3697390,C25D9/08,于1972年10月10日公开;国际专利申请WO9320027,С25С3/08,于1993年10月14日公开)。由于所述金属基体,具有这种涂层的铝润湿电极将具有高导电性并且抗机械和冲击荷载,并且可以容易地焊接到金属导体上以实现可靠的电接触。然而,如果这些涂层具有诸如裂纹、脱层和孔隙等缺陷,铝将渗透并与基体相互作用。这导致基体损坏和所得铝的污染。此外,涂敷的涂层的热膨胀系数(CTE)远低于金属基体,因此这种涂层在加热时将会从基体开裂和脱层。
在难熔金属表面上生成硼化物(硼化)和碳化物(渗碳)的扩散层的方法是已知的。例如,俄罗斯专利2452798(C25D11/26,2012年6月10日公开)提出了一种通过在氩气氛下、在810K~840K的温度、在含有0.2质量%~2.0质量%的氧化硼的氯化铯和氯化钠的熔融共晶混合物中,通过钛的电化学极化来制造二硼化钛涂层的方法。
所要求保护的技术方案的最接近的类似技术方案(原型)是根据国际专利申请2008132590(С25С3/08,2008年11月6日公开)的方案,其公开了一种由难熔金属-钼或钨制成的基底组成的铝润湿阴极,在其表面上具有整合到该基体中的该难熔金属碳化物的层。所述碳化物表面是铝被还原处的阴极工作表面,或者是在其上铝得到还原的铝润湿陶瓷材料涂层的中间层。根据该发明,阴极基体可以包含50质量%~100质量%的难熔金属,0.1质量%~30质量%的硅,0.1质量%~10质量%的铝,0.1质量%~20质量%的碳。基体表面上的碳化物层可以通过用碳将基体表面扩散饱和(渗碳)而产生,并且不小于0.01mm厚。碳化物层表面可以涂覆耐火陶瓷物质,其包括硼化钛、硼化铬、硼化钒、硼化锆、硼化铪、硼化铌、硼化钽、硼化钼、硼化铈、硼化镍和硼化铁中的至少一种。涂层还可以包含用于改善铝润湿的添加剂,其可以选自氧化物或部分氧化的金属:铁、铜、钴、镍、锌、锰及它们的组合。可以通过涂敷难熔物质颗粒和添加剂的悬浮液来制备涂层以改善无机聚合物和/或胶体粘合剂中的润湿。
所述最接近的类似技术方案的缺点是使用钼或钨作为基体,这些材料昂贵并且难以与金属导体焊接而用于可靠的电接触。此外,这些材料具有低抗氧化性,并且当用作从上述垂直或倾斜阴极悬浮的基体时,它们可能在暴露于熔融电解质的开放电极上氧化。此外,与众所周知的结构钢和耐热钢相比,钼和钨具有高脆性,并且因此对机械和冲击荷载的抗性差。此外,由于钼和钨的高密度,阴极会重得多,这对于阴极的材料要求和电解槽结构部件上的荷载而言是不期望的。
发明内容
对于最接近的类似(原型)技术方案和所要求保护的铝润湿电极的共同之处在于,它们的基体被基于耐火陶瓷的表面涂层的保护性铝润湿层覆盖。和原型中一样,铝润湿电极可用作电解槽倾斜或垂直阴极,用于在低于960℃的温度从熔融盐生产电解铝。
本发明的目的在于开发用于电化学铝生产的电解槽的铝润湿电极,其将陶瓷材料固有的高耐腐蚀性和金属材料典型的高导电性、可制造性和成本效益相结合。
技术效果可以通过改善电极基体的抗氧化性、降低电极重量、改善耐久性和铝电解槽的铝润湿电极的抗冲击性和抗机械荷载性、并且在铝润湿电极和金属导体(集流体)之间提供可靠的焊接接触来实现。
根据本发明的第一实施方式,所述技术效果通过以下方式获得:电极基体由包含导电的、铝润湿的及具有铝-电解质抗性的耐火陶瓷的复合材料制成,其在复合材料中的含量为5质量%~90质量%,复合材料包含熔融温度超过1000℃的金属或合金,其与铝相互作用形成难熔金属间化合物。根据本发明的第二实施方式,所述技术效果通过以下方式获得:具有耐火陶瓷表面涂层的电极基体由来自钢或其他金属的金属或金属合金制成,特别是,其可以具有耐火性和耐热性,并且基体表面可以覆盖有复合材料的中间层,所述复合材料包括耐火陶瓷以及在与铝相互作用时形成难熔金属间化合物的熔融温度超过1000℃的金属或熔融温度超过1000℃的合金,所述耐火陶瓷是导电的、铝润湿的、具有铝-电解质抗性并且在复合材料中的含量为5%~90质量%。
所述技术效果通过以下方式获得:在耐火陶瓷的表面涂层之下紧邻设置由复合材料制成的基体或中间层,所述复合材料包括导电的、铝润湿的及具有铝-电解质抗性的耐火陶瓷以及在与铝相互作用时形成难熔金属间化合物的熔融温度超过1000℃的金属或合金。当耐火陶瓷的表面涂层的完整性损失时,熔融铝到达包含与铝相互作用形成时形成难熔金属间化合物的熔融温度超过1000℃的金属或合金的复合材料。由复合材料中包含的金属与铝之间的相互作用产生的难熔金属间化合物形成保护层,从而极大地抑制铝进一步渗入电极体及其破坏。这与复合材料中包含的耐火陶瓷的高铝-电解质抗性一起确立了所要求保护的复合材料对熔融铝的改进的抗性。同时,通过使用位于电极表面涂层下方的具有所要求保护的化合物的复合材料,由于在复合材料中金属组分的存在,本发明允许改善电极对冲击和机械荷载的抗性、减小电极质量、以及在电极和集流体之间提供可靠的焊接接触。
此外,本发明的公开内容涵盖其特定实施方式。
为了从金属合金制造基体,使用熔点超过1000℃的结构碳钢或耐热和抗氧化的钢和合金。
为了从复合材料制造基材,作为熔融温度超过1000℃的金属,其在与铝相互作用时形成难熔金属间化合物,使用以下金属中的至少一种:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒和/或它们的合金中的至少一种。
作为复合材料中的耐火陶瓷,使用钛、锆、铌、钽、钨、钼、硼(仅碳化物)的硼化物和/或碳化物及它们的混合物。
作为电极制造方法的一部分,复合材料中的硼化物和碳化物可以通过在包含在复合材料中的金属或合金中添加硼和碳来制备。
复合材料中的耐火陶瓷以1μm~1000μm的颗粒的形式存在,其中,所述颗粒均匀分布在整个材料中。
电极基体可以通过铸造或自蔓延高温合成(SHS合成)的方法或通过粉末冶金技术制备。
根据本发明的第二实施方式,由碳钢或耐热耐火金属合金制成的基体涂覆有复合材料的中间层,所述复合材料含有5质量%~90质量%耐火陶瓷以及在与铝相互作用时形成难熔金属间化合物的熔融温度超过1000℃的金属或合金。中间层位于金属合金基体和基于耐火陶瓷的表面涂层之间,即表面涂层涂敷于中间层。
在本发明的第一和第二实施方式中,作为涂敷于基体的表面涂层的材料,可以使用含有90质量%的耐火陶瓷的复合材料或耐火陶瓷本身。
根据本发明的第二实施方式,使用含有5%~90质量%的耐火陶瓷以及在与铝相互作用时形成难熔金属间化合物的熔融温度超过1000℃的金属或合金的复合材料作为涂敷于电极基体的中间层的材料。根据本发明第二实施方式的电极的具体实施方式,所述中间层可以涂覆有与中间层相比具有更高含量的耐火陶瓷的附加复合材料层。可以有一个或多个附加层,其中由于这样的附加层的关系,可以将每个附加层的复合材料中的耐火陶瓷的含量从基体向表面涂层增加,例如,从5质量%~90质量%直至大于90质量%(但不小于表面涂层中的含量),并且条件仅在于,该复合材料必须包含在与铝相互作用时形成难熔金属间化合物的熔融温度超过1000℃的金属或合金。在本发明的另一个具体实施方式中,中间层可以以一层的形式生产,其中复合材料中耐火陶瓷的含量逐渐从基体向表面涂层增加。在这种情况下,表面涂层附近的中间层的复合材料中的耐火陶瓷含量可以大于90质量%,且在这种情况下,耐火陶瓷是表面涂层,即逐渐发展为表面涂层。
通常,中间层和表面涂层的累积厚度为0.5mm~10mm。
根据本发明的具体实施方式,将碳饱和的基体表面或中间层布置在由耐火陶瓷制成或基于耐火陶瓷的铝润湿表面涂层的下方。
电极可以是阴极或双极电极的阴极部分。
为了改善所述复合材料对熔融铝的抗性,包含在这些复合金属组合物中的金属或合金的熔融温度必须高于1000℃,并且所述金属或合金必须在与铝相互作用时形成难熔金属间化合物。为了满足这一标准并降低用作在与铝相互作用时形成难熔金属间化合物的复合材料组分的所述材料的成本,选择以下金属:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒,和/或包含以下金属中的一种的合金:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒。
为了确保复合材料的高导电性、铝润湿性和低热膨胀系数(CTE),并且为了提高所述复合材料的化学稳定性,它们必须包括导电的、铝可润湿的且具有铝-电解质抗抗性的耐火陶瓷。其可以包括钛、锆、铌、钽、硼(仅碳化物)的硼化物和碳化物,及它们的混合物。包含在复合材料中的耐火陶瓷颗粒的尺寸可以为1μm~1000μm,或者在所述1μm~1000μm宽范围内所包括的较窄尺寸范围内。颗粒应均匀分布在材料体积中,这可以通过已知技术确保。
材料中的硼化物和碳化物颗粒可以通过向金属组分中加入硼和碳来制备。在用于制造所述材料的产品的加热过程中,在这些材料上将发生金属与硼和碳之间的反应,形成相应的硼化物和碳化物。公知技术使得得到具有硼化物和碳化物颗粒的复合材料在产品体积上非常均匀地分布。
这些材料中陶瓷颗粒的含量可以有很大变化。在复合材料中的耐火陶瓷为表面涂层的最大90质量%时,金属基体可污染待生产的铝,因此具有最大90质量%的耐火陶瓷的复合材料应仅用作基体和/或铝润湿元件的中间涂层。使用这种材料作为基体涂层是不实际的。
陶瓷材料含量大于90质量%时,复合材料可直接用作铝润湿电极的表面涂层,因为在这种情况下,它们类似于基于耐火陶瓷的涂层。
耐火陶瓷含量小于5质量%时,复合材料具有与金属合金相似的性质,因此不能用基于耐火陶瓷的涂层覆盖。使用这种材料作为不具有包含超过5%陶瓷的复合材料涂层的基材或作为中间层材料是不实际的,因为它们与基于耐火陶瓷的表面涂层具有低粘附性,具有由于基材和涂层之间的CTE差而遭受涂层热破坏的风险,并且所述材料具有低的铝和电解质抗性。
具有所要求保护的含量为5质量%~90质量%的耐火陶瓷的复合材料的电极的基体可以通过任何已知的方法(铸造、SHS合成、粉末冶金技术等)制备。
由于较高的材料导电性和耐久性,可以降低基体厚度,并且这些材料的相对较低的CTE使得可以通过任何已知的方法用具有更好的铝抗性和更好的基于耐火陶瓷的铝润湿涂层(诸如钛、锆、铌、钽、钨、钼、硼(仅碳化物)的硼化物和碳化物)来将其覆盖。此外,基于耐火陶瓷的陶瓷涂层和复合金属-陶瓷材料的CTE的相似性防止了由阴极被加热到电解温度所引起的涂层破坏。
为了降低铝润湿电极的成本,它们的基体可以由具有熔融温度超过1000℃的公知的结构性的、耐热和耐火合金制成,其在与铝相互作用时形成难熔金属间化合物。在这种情况下,为了保护电极基体免受铝和电解质的冲击,应该以基于耐火陶瓷(例如钛、锆、铌、钽、硼(仅碳化物)、钨、钼的硼化物和碳化物)以及上述复合材料(耐火陶瓷大于90质量%)的表面涂层覆盖,或以由纯耐火陶瓷材料制成的表面涂层覆盖。当用作结构性的耐热和耐火金属和合金的基体的材料时,由于基材和涂层之间的差异,涂层可能会被破坏,因此需要通过上述含5质量%~90质量%的耐火陶瓷的复合材料的中间层预涂基体来防止这种破坏,这是因为耐火陶瓷的含量越高,复合材料的CTE与由耐火陶瓷制成的或基于耐火陶瓷的表面涂层的CTE越相似。因此,中间层可以由复合材料制成而其中的耐火陶瓷的含量从基体向涂层如上所述逐渐增加。作为另一种选择,可以用含有大于90%的陶瓷但不小于表面涂层中的陶瓷含量的附加层覆盖中间层。因此,表面涂层附近陶瓷含量的增加及其在金属基体附近的减少降低了界面“基体-中间涂层”和“中间(或附加)层-表面涂层”被破坏的风险。
表面涂层可以通过任何已知的方法(热喷涂、焊接、糊料和涂料涂覆并随后烧结等)涂敷到由结构碳钢或耐热和耐火合金制成的基材上所涂覆的中间层上。如上所述,电极中间层和表面涂层的累积厚度可以在0.5mm~10mm的范围内。为了改善电极对铝的抗性,并且提高对由复合材料制成的基体或对复合材料的表面涂层和中间层的粘附力,处于由耐火陶瓷制成的或基于耐火陶瓷的铝润湿表面涂层之下的基体表面或中间层可被碳饱和。
用于包含铁、难熔金属和具有碳(碳化)的合金的金属材料的表面饱和的方法是公知的,并且在工业上用于增强产品表面的硬度和耐磨性。金属或复合基材或复合中间层(或涂敷于中间层的附加层)的表面的碳饱和将允许在基体或中间层的顶部形成富含金属碳化物的层,其存在于以下金属中的至少一种的复合材料中:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒,和/或存在于选自所述金属的复合材料合金中的至少一种中。由于碳化物是耐火陶瓷,因此显而易见的是,渗碳将有助于增强基体和中间层和/或附加层对铝的抗性以及基于耐火陶瓷的电极表面涂层对其的粘附性。
因此,本发明的技术方案的特征在于,电极的铝润湿基体由结构钢或金属合金和/或复合材料制成,与原型溶液中使用的钨和钼相比,所述结构钢或金属合金和/或复合材料具有较低的密度和增强的耐久性以及抗冲击性和机械荷载。此外,由覆盖有中间复合材料层的结构钢或金属合金制成或由复合材料制成的基体具有较高的抗氧化性,并且通过焊接容易地与金属集流体连接。具有所述基体的润湿元件对铝和电解质的抗性通过涂敷由耐火陶瓷制成的或基于耐火陶瓷的铝润湿表面涂层来实现。因此,对于用作在低于960℃的温度从熔融盐生产电解铝的电解槽倾斜或垂直阴极而言,所要求保护的铝润湿电极在材料要求、成本和技术有效性方面是有利的。
就公知的垂直或倾斜双极电极包括必须满足与润湿阴极相同要求的阴极部分而言,根据本发明的两个实施方式的电极不仅可以用作在熔融盐生产电解铝的电解槽中的倾斜或垂直阴极,而且可以用作垂直或倾斜的双极电极的阴极部分。
附图说明
将参照本发明实施方式的铝润湿电极横截面部分的示意图进一步描述本发明技术方案的实质(图1和图2)。附图是与表面相邻的电极横截面的一部分的图示,因为可以随机选择电极的形状和尺寸。
图1是包含含有5质量%~90质量%的耐火陶瓷的复合材料的基体2的电极的第一实施方式的图示。
图1(А)是包含含有5质量%~90质量%的耐火陶瓷的复合材料的基体2和基于耐火陶瓷的涂层3的电极的图示。
图1(В)是包含含有5质量%~90质量%的耐火陶瓷的复合材料的基体2、被碳饱且具有涂敷于其上的基于耐火陶瓷的涂层3的表面4的电极的图示。
图2是包含金属合金1的基体和复合材料2的中间层的电极的第二实施方式的图示。
图2(А)是包含结构钢或金属合金的基体1(具有含有5质量%~90质量%的耐火陶瓷的复合材料的层2和涂覆于其上的基于耐火陶瓷的涂层3)的电极的图示。
图2(В)是包含结构钢或金属合金的基体1、被碳饱和且具有施用于其上的基于耐火陶瓷的涂层3的表面4的电极的图示。在这种情况下,被碳饱和的钢或合金表面在基体和涂层之间发挥着中间层的作用。
图2(С)是包含涂敷有含5质量%~90质量%的耐火陶瓷的复合材料的中间层2的结构钢或金属合金的基体1、被碳饱和且具有涂敷于其上的基于耐火陶瓷的涂层3的表面4的电极的图示。
具体实施方式
实施例1说明了本发明的第一实施方式。为了制造铝润湿电极,使用尺寸为94*77*10mm的80质量%Fe-20质量%TiB2的复合材料的板作为基体2的工件。将用作集流体的不锈钢棒电弧焊接在该板上。接下来,将润湿电极的工件表面在酚-醛树脂溶液中用陶瓷颗粒TiB2的悬浮液覆盖以产生表面涂层。将覆盖的涂层在室温干燥1小时,然后在150℃干燥1小时。以这种方式,在铝润湿电极表面上形成厚度为1.5mm,由二硼化钛(93质量%)和酚醛树脂(7质量%)组成的表面涂层3。
图1(А)示意性说明根据实施例1制备的电极的横截面。
通过该方法制备的样品作为以两个垂直电极电解的垂直阴极在直径为110mm且高度为220mm的刚玉容器中进行测试,并放置在安全石墨坩埚内。使用尺寸为115*80*5mm的铜板作为阳极。将阴极浸入熔体中,使得与集流体的焊接接触高于电解液水平。将阳极完全浸入熔体中。阳极和阴极的电流密度为0.5A/cm2,电解温度为850℃。
开始后的几分钟内,将电压设定在4.63V~4.65V的范围内,然后其变化不明显。测试时间为24小时。基于测试结果,发现根据本发明生产的电极-阴极的表面是良好铝润湿的,并且没有任何破坏的迹象。阴极保留其几何形状。阴极铝质量为350.2g。按纯铝计算的电流输出为70%。铁(阴极金属基体的主要成分)的金属污染小于0.1质量%。
实施例2示出了本发明的第二实施方式。为了制造铝润湿电极,使用尺寸为100*70*5mm的结构钢St3的金属基体。金属(钢)基体具有用于将金属集流体焊接到其上的柄。在第一步骤中,将厚度为3mm的泡沫镍铁板钎焊到基体1以形成中间层。泡沫镍铁的比孔隙率为60PPI。在酚-醛树脂溶液中将基体表面的多孔金属基体浸渍在陶瓷颗粒TiB2的悬浮液中以产生复合材料中间层。在接下来的步骤中,涂敷约1mm厚度的悬浮液层以形成表面涂层。此外,具有施用于其上的表面涂层的电极工件在室温干燥1小时,然后在150℃干燥1小时。对于涂层烧结,样品在活性炭填充物中在800℃烧3小时。因此,复合材料层由镍铁基体和散布在其中的二硼化钛颗粒构成,并且在金属(钢)基体的表面上形成基于耐火陶瓷的表面涂层3。中间层复合材料中的耐火陶瓷含量约为80质量%。
图2(А)示意性说明根据实施例1制备的电极的横截面。
通过该方法制备的样品作为以两个垂直电极电解的垂直阴极在直径为110mm且高度为220mm的刚玉容器中进行测试,并放置在安全石墨坩埚内。使用尺寸为100*70*3mm的铜板作为阳极。将阳极和阴极浸入熔体中,使得高于其的电解液水平为约1cm。阳极和阴极的电流密度为0.5A/cm2,电解温度为850℃。
开始后的几分钟内,将电压设定在5.36V~5.41V的范围内,然后不明显地变化。测试时间为24小时。基于测试结果,发现阴极的表面是良好铝润湿的,并且没有任何破坏的迹象。阴极保留其几何形状。阴极铝质量为365.3g。按纯铝计算的电流输出为75%。铁(阴极金属基体的主要成分)的金属污染小于0.1质量%。
使用根据图2B和2С的本发明实施方式的结构钢St3的金属基体制成的其他电极显示出类似结果。
实施例3是根据本发明的第一实施方式的具有复合材料基体表面渗碳的特定变体的说明。为了制造铝润湿电极,使用尺寸为96*81*10mm的80质量%Fe-20质量%TiB2的复合材料板作为基体2的工件。为了将样品的表面层4用碳扩散饱和,该板进行固相渗碳。作为渗碳剂,使用由80%的炭和20%的碳酸钠组成的混合物。渗碳过程在900℃的密封刚玉容器中持续10小时。然后,将作为集流体的不锈钢棒电弧焊接在复合材料板上。接下来,将润湿电极的工件表面在酚-醛树脂溶液中用陶瓷颗粒TiB2的悬浮液覆盖。电极基体2在室温干燥1小时,然后在150℃干燥1小时。以这种方式,形成厚度为2mm并且由二硼化钛(93质量%)和酚醛树脂(7质量%)组成的表面涂层3。
图1(В)示意性说明根据实施例3制备的电极的横截面。
通过该方法制备的样品作为以两个垂直电极电解的垂直阴极在直径为110mm且高度为220mm的刚玉容器中进行测试,并放置在安全石墨坩埚内。使用尺寸为114*79*4.4mm的铜板作为阳极。将阴极浸入熔体中,使得与集流体的焊接接触处高于电解液水平。将阳极完全浸入熔体中。阳极和阴极的电流密度为0.5A/cm2,电解温度为850℃。
开始后的几分钟内,将电压设定在5.95V~6.05V的范围内,然后不明显地改变。测试时间为24小时。基于测试结果,发现阴极的表面是良好铝润湿的,并且没有任何破坏的迹象。阴极保留其几何形状。阴极铝质量为360g。按纯铝计算的电流输出为65%。铁(阴极金属基体的主要成分)的金属污染小于0.1质量%。
所得结果证实,本发明的铝润湿电极具有抗氧化性、铝和电解质抗性,具有高导电性,并且确保了铝润湿元件与集流体之间可靠的电接触。

Claims (20)

1.一种用于从溶解在熔融电解质中的氧化铝电解产生铝的电解槽电极,所述电极包括电极基体和涂敷于所述基体上的基于耐火陶瓷或由耐火陶瓷制成的表面涂层,其特征在于,所述电极基体由复合材料制成,所述复合材料含有5质量%~90质量%的耐火陶瓷和至少一种金属和/或含有所述金属的至少一种合金,所述至少一种金属具有超过1000℃的熔融温度并在与铝相互作用时形成难熔金属间化合物。
2.如权利要求1所述的电极,其特征在于,作为包含在所述复合材料中的熔融温度超过1000℃的金属,使用以下金属中的至少一种:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒,和/或所述金属的至少一种合金。
3.如权利要求1所述的电极,其特征在于,作为包含在所述电极基体的所述复合材料中的和包含在所述表面涂层的复合材料中的耐火陶瓷,使用钛、锆、铌、钽、钨、钼的硼化物和碳化物、硼碳化物和/或它们的混合物。
4.如权利要求3所述的电极,其特征在于,在电极制造过程中,通过将硼和碳添加到复合材料中所含的金属和/或合金中,在电极基体的复合材料中形成硼化物和碳化物。
5.如权利要求3所述的电极,其特征在于,复合材料中的耐火陶瓷以1μm~1000μm的颗粒的形式均匀地分布在整个材料体积中。
6.如权利要求1所述的电极,其特征在于,将包含大于90质量%的耐火陶瓷的复合材料涂敷于电极基体上作为表面涂层。
7.如权利要求1所述的电极,其特征在于,位于耐火陶瓷的表面涂层下方的复合材料的电极基体表面被碳饱和。
8.如权利要求1所述的电极,其特征在于,所述电极是阴极或双极电极的阴极部分。
9.一种用于从溶解在熔融电解质中的氧化铝电解产生铝的电解槽电极,所述电极包括电极基体和涂敷于所述基体上的基于耐火陶瓷或由耐火陶瓷制成的表面涂层,其特征在于,所述电极基体由具有涂敷于电极基体表面的中间层的钢或金属合金制成,其中,所述中间层由复合材料制成,所述复合材料含有5质量%~90质量%的耐火陶瓷和至少一种金属和/或含有所述金属的至少一种合金,所述至少一种金属具有超过1000℃的熔融温度并在与铝相互作用时形成难熔金属间化合物。
10.如权利要求9所述的电极,其特征在于,用于金属合金基体的材料是结构碳钢。
11.如权利要求10所述的电极,其特征在于,使用耐热和耐火钢或者耐热和耐火金属合金作为基材。
12.如权利要求9所述的电极,其特征在于,作为包含在复合材料中的熔融温度超过1000℃的金属,使用以下金属中的至少一种:铁、镍、锰、钛、钽、锆、铬、铌、钴、钒,和/或所述金属的至少一种合金。
13.如权利要求9所述的电极,其特征在于,作为复合材料中的耐火陶瓷,使用钛、锆、铌、钽、钨、钼的硼化物和碳化物、硼碳化物和/或它们的混合物。
14.如权利要求13所述的电极,其特征在于,在电极制造过程中,通过将硼和碳添加到复合材料中所含的金属和/或合金中,在电极基体的复合材料中形成硼化物和碳化物。
15.如权利要求13所述的电极,其特征在于,耐火陶瓷以1μm~1000μm的颗粒形式存在,其中,所述颗粒均匀地分布在材料中。
16.如权利要求9所述的电极,其特征在于,所述中间层由复合材料制成,所述复合材料的耐火陶瓷的含量沿从电极基体到表面涂层的层厚度而增加,从基体表面附近的5质量%~90质量%直到表面涂层附件的大于90%。
17.如权利要求9所述的电极,其特征在于,涂覆有含有5质量%~90质量%的陶瓷的复合材料的中间层的电极基体表面被包含大于90质量%的陶瓷的附加层覆盖。
18.如权利要求9所述的电极,其特征在于,所述中间层和表面涂层的累积厚度为0.5mm~10mm。
19.如权利要求9或17所述的电极,其特征在于,用碳饱和的中间层或附加层表面布置在由耐火陶瓷制成或基于耐火陶瓷的铝润湿表面涂层的下方。
20.如权利要求9所述的电极,其特征在于,所述电极是阴极或双极电极的阴极部分。
CN201580078146.0A 2015-04-23 2015-04-23 铝电解槽电极(变体) Pending CN107429414A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2015/000264 WO2016171580A1 (ru) 2015-04-23 2015-04-23 Электрод алюминиевого электролизера (варианты)

Publications (1)

Publication Number Publication Date
CN107429414A true CN107429414A (zh) 2017-12-01

Family

ID=57144076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580078146.0A Pending CN107429414A (zh) 2015-04-23 2015-04-23 铝电解槽电极(变体)

Country Status (8)

Country Link
US (1) US11339490B2 (zh)
EP (1) EP3348676B1 (zh)
CN (1) CN107429414A (zh)
AU (1) AU2015391979A1 (zh)
BR (1) BR112017016120A2 (zh)
CA (1) CA2983583C (zh)
RU (1) RU2660448C2 (zh)
WO (1) WO2016171580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860916A (zh) * 2021-09-14 2021-12-31 内蒙古科技大学 耐侵蚀碳化铌钛涂层、耐侵蚀碳化硅容器及其制备方法和应用
CN115947602A (zh) * 2022-10-10 2023-04-11 中南大学 一种ZrB2基金属陶瓷惰性阳极及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571390B (en) 2016-02-03 2022-07-20 Luther Systems Ltd Systems and method for secure management of digital contracts
CN112441846A (zh) * 2020-12-03 2021-03-05 河北镭传科技有限责任公司 一种碳化硼陶瓷的处理方法及应用
CN115161690A (zh) * 2022-07-05 2022-10-11 海南大学 一种镍钼铁电解水催化剂的制备方法及所得产品和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
RU2031189C1 (ru) * 1992-07-02 1995-03-20 Лорис Петрович Шульгин Способ извлечения благородных металлов из руд, отходов и побочных продуктов обогащения и гидрометаллургии
US5658447A (en) * 1992-12-17 1997-08-19 Comalco Aluminium Limited Electrolysis cell and method for metal production
US6267866B1 (en) * 1999-10-14 2001-07-31 The United States Of America As Represented By The Secretary Of The Navy Fabrication of a high surface area boron-doped diamond coated metal mesh for electrochemical applications
CN1906331A (zh) * 2003-11-26 2007-01-31 艾尔坎国际有限公司 含二硼化钛的阴极结构的稳定剂
CN1986897A (zh) * 2006-11-22 2007-06-27 贵州大学 铝电解金属陶瓷惰性阳极的制备与组装方法
WO2008132590A2 (en) * 2007-04-25 2008-11-06 Moltech Invent S.A. Aluminium electrowinning cell with metal-based cathodes
CN101724861A (zh) * 2009-12-18 2010-06-09 中国铝业股份有限公司 一种铝电解槽用TiB2-C复合材料及其制备方法
CN102016125A (zh) * 2008-04-30 2011-04-13 力拓加铝国际有限公司 多层阴极块
CN102239272A (zh) * 2008-10-02 2011-11-09 魁北克水电公司 用于可润湿阴极的复合材料及其用于铝生产的应用
CN102373488A (zh) * 2011-10-26 2012-03-14 中国铝业股份有限公司 一种降低铝电解槽阴极压降的方法
CN102575362A (zh) * 2009-07-28 2012-07-11 美铝公司 用于制造铝熔炼中的可润湿阴极的组合物
CN103038396A (zh) * 2010-07-29 2013-04-10 西格里碳素欧洲公司 铝电解池用阴极块及其制造方法
CN103304239A (zh) * 2013-06-27 2013-09-18 中国铝业股份有限公司 一种铝电解槽用TiB2基金属陶瓷材料及其制备方法
CN103429791A (zh) * 2011-02-11 2013-12-04 西格里碳素欧洲公司 含有硬质材料的表面异形阴极块

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321392A (en) * 1962-09-07 1967-05-23 Reynolds Metals Co Alumina reduction cell and method for making refractory lining therefor
US3827954A (en) 1969-04-14 1974-08-06 Us Interior Electrodeposition of metallic boride coatings
US3697390A (en) 1969-04-14 1972-10-10 Us Interior Electrodeposition of metallic boride coatings
US4529494A (en) * 1984-05-17 1985-07-16 Great Lakes Carbon Corporation Bipolar electrode for Hall-Heroult electrolysis
US5364513A (en) 1992-06-12 1994-11-15 Moltech Invent S.A. Electrochemical cell component or other material having oxidation preventive coating
AUPO053496A0 (en) * 1996-06-18 1996-07-11 Comalco Aluminium Limited Cathode construction
US6533909B2 (en) * 1999-08-17 2003-03-18 Moltech Invent S.A. Bipolar cell for the production of aluminium with carbon cathodes
US6447667B1 (en) * 2001-01-18 2002-09-10 Alcoa Inc. Thermal shock protection for electrolysis cells
CN100465349C (zh) 2005-12-26 2009-03-04 石忠宁 一种带有二硼化钛涂层的铝电解阴极及其制备方法
RU2452798C1 (ru) 2011-04-07 2012-06-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электрохимический способ получения покрытий из диборида титана
US8501050B2 (en) * 2011-09-28 2013-08-06 Kennametal Inc. Titanium diboride-silicon carbide composites useful in electrolytic aluminum production cells and methods for producing the same
RU2518032C1 (ru) 2013-01-10 2014-06-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Композиция для материала смачиваемого покрытия катода алюминиевого электролизера
TWI561494B (en) 2013-06-21 2016-12-11 Univ Nat Tsing Hua Multicomponent composites composed of refractory metals and ceramic compounds for superhigh-temperature use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
RU2031189C1 (ru) * 1992-07-02 1995-03-20 Лорис Петрович Шульгин Способ извлечения благородных металлов из руд, отходов и побочных продуктов обогащения и гидрометаллургии
US5658447A (en) * 1992-12-17 1997-08-19 Comalco Aluminium Limited Electrolysis cell and method for metal production
US6267866B1 (en) * 1999-10-14 2001-07-31 The United States Of America As Represented By The Secretary Of The Navy Fabrication of a high surface area boron-doped diamond coated metal mesh for electrochemical applications
CN1906331A (zh) * 2003-11-26 2007-01-31 艾尔坎国际有限公司 含二硼化钛的阴极结构的稳定剂
CN1986897A (zh) * 2006-11-22 2007-06-27 贵州大学 铝电解金属陶瓷惰性阳极的制备与组装方法
WO2008132590A2 (en) * 2007-04-25 2008-11-06 Moltech Invent S.A. Aluminium electrowinning cell with metal-based cathodes
CN102016125A (zh) * 2008-04-30 2011-04-13 力拓加铝国际有限公司 多层阴极块
CN102239272A (zh) * 2008-10-02 2011-11-09 魁北克水电公司 用于可润湿阴极的复合材料及其用于铝生产的应用
CN102575362A (zh) * 2009-07-28 2012-07-11 美铝公司 用于制造铝熔炼中的可润湿阴极的组合物
CN101724861A (zh) * 2009-12-18 2010-06-09 中国铝业股份有限公司 一种铝电解槽用TiB2-C复合材料及其制备方法
CN103038396A (zh) * 2010-07-29 2013-04-10 西格里碳素欧洲公司 铝电解池用阴极块及其制造方法
CN103429791A (zh) * 2011-02-11 2013-12-04 西格里碳素欧洲公司 含有硬质材料的表面异形阴极块
CN102373488A (zh) * 2011-10-26 2012-03-14 中国铝业股份有限公司 一种降低铝电解槽阴极压降的方法
CN103304239A (zh) * 2013-06-27 2013-09-18 中国铝业股份有限公司 一种铝电解槽用TiB2基金属陶瓷材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860916A (zh) * 2021-09-14 2021-12-31 内蒙古科技大学 耐侵蚀碳化铌钛涂层、耐侵蚀碳化硅容器及其制备方法和应用
CN113860916B (zh) * 2021-09-14 2022-10-14 内蒙古科技大学 耐侵蚀碳化铌钛涂层、耐侵蚀碳化硅容器及其制备方法和应用
CN115947602A (zh) * 2022-10-10 2023-04-11 中南大学 一种ZrB2基金属陶瓷惰性阳极及其制备方法和应用
CN115947602B (zh) * 2022-10-10 2023-11-07 中南大学 一种ZrB2基金属陶瓷惰性阳极及其制备方法和应用

Also Published As

Publication number Publication date
BR112017016120A2 (pt) 2018-03-27
CA2983583C (en) 2019-09-17
RU2660448C2 (ru) 2018-07-06
US11339490B2 (en) 2022-05-24
WO2016171580A1 (ru) 2016-10-27
EP3348676A1 (en) 2018-07-18
EP3348676A4 (en) 2021-04-07
RU2016111763A (ru) 2017-10-02
US20180038004A1 (en) 2018-02-08
CA2983583A1 (en) 2016-10-27
AU2015391979A1 (en) 2017-08-10
EP3348676B1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
CN107429414A (zh) 铝电解槽电极(变体)
US3028324A (en) Producing or refining aluminum
Pawlek Inert anodes: an update
JPS58501079A (ja) アルミニウムの電解製造
US4600481A (en) Aluminum production cell components
US4529494A (en) Bipolar electrode for Hall-Heroult electrolysis
US5527442A (en) Refractory protective coated electroylytic cell components
US6645568B1 (en) Process for producing titanium diboride coated substrates
US3215615A (en) Current conducting element for aluminum production cells
US6692631B2 (en) Carbon containing Cu-Ni-Fe anodes for electrolysis of alumina
US6723222B2 (en) Cu-Ni-Fe anodes having improved microstructure
US3274093A (en) Cathode construction for aluminum production
US3328280A (en) Electrically conductive cermet compositions
NO141419B (no) Elektrode for elektrokjemiske prosesser
US5904828A (en) Stable anodes for aluminium production cells
RU2371523C1 (ru) Композиционный материал для смачиваемого катода алюминиевого электролизера
US3202600A (en) Current conducting element for aluminum reduction cells
JPS58501172A (ja) 焼結耐火硬質金属
CA2722116A1 (en) Multi-layer cathode block
CN101328598B (zh) 铝电解陶瓷基惰性阳极与金属导杆连接结构及其制备方法
Chuhua et al. Long-Term Testing of WC–Ni–Fe Coating as an Inert Anode in a Low-Temperature Electrolyte for Aluminum Production
RU2412284C1 (ru) Материал смачиваемого катода алюминиевого электролизера
US3186044A (en) Method of producing current conducting elements
JPS6017834B2 (ja) 不溶性電極をそなえた電気化学的装置
RU2106431C1 (ru) Шихта для изготовления инертных анодов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171201

RJ01 Rejection of invention patent application after publication