RU2452798C1 - Электрохимический способ получения покрытий из диборида титана - Google Patents

Электрохимический способ получения покрытий из диборида титана Download PDF

Info

Publication number
RU2452798C1
RU2452798C1 RU2011113571/02A RU2011113571A RU2452798C1 RU 2452798 C1 RU2452798 C1 RU 2452798C1 RU 2011113571/02 A RU2011113571/02 A RU 2011113571/02A RU 2011113571 A RU2011113571 A RU 2011113571A RU 2452798 C1 RU2452798 C1 RU 2452798C1
Authority
RU
Russia
Prior art keywords
titanium
coating
titanium diboride
temperature
diboride
Prior art date
Application number
RU2011113571/02A
Other languages
English (en)
Inventor
Людмила Августовна Елшина (RU)
Людмила Августовна Елшина
Андрей Николаевич Елшин (RU)
Андрей Николаевич Елшин
Александр Николаевич Зюзин (RU)
Александр Николаевич Зюзин
Владимир Яковлевич Кудяков (RU)
Владимир Яковлевич Кудяков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2011113571/02A priority Critical patent/RU2452798C1/ru
Application granted granted Critical
Publication of RU2452798C1 publication Critical patent/RU2452798C1/ru

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к получению покрытий из диборида титана путем высокотемпературного электрохимического синтеза. Способ включает анодную гальваническую поляризацию титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре 810-840 К в атмосфере аргона. Технический результат - получение беспористого сплошного однородного покрытия из диборида титана. 4 ил., 1 пр.

Description

Изобретение относится к получению покрытий из диборида титана путем высокотемпературного электрохимического синтеза.
Диборид титана обладает рядом таких ценных свойств, как высокая твердость, низкое электросопротивление, большое сечение захвата тепловых нейтронов, высокая смачиваемость и переносимость термошоков. Благодаря комплексу этих свойств покрытия из диборида титана могут найти применение в качестве покрытия электродов при производстве алюминия, лопаток турбин, химических реакторов, тиглей, деталей насосов, термопар и режущих инструментов.
К самым распространенным методам синтеза диборида титана можно отнести твердофазную диффузию бора в технический титан (99%), которую проводят в закрытом реакторе при 850-1050°С в течение 24 ч в замкнутом контейнере, плотно забитом смесью борирующего агента, активатора и солевой среды. Получаемое таким образом покрытие состоит из двух слоев: внешнего - плотного диборидного покрытия - и внутреннего, состоящего из вискеров борида титана, растущих по нормали к поверхности (N.M.Tikekar, K.S.R.Chandran, A.Sanders. Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium // Scripta materialia, 57 (2007) 273-276) [1].
Плазменно-дуговое выращивание монокристаллов боридов титана и других переходных металлов проводят в плазмотроне, создающем электрические дуги прямого и косвенного действия в среде инертного газа (Дементьев В.А., Сдобырев В.В., Пономарев М.А., Штейнберг А.С., Трофимов А.И. Плазменное выращивание монокристаллов TiB2, ZrB2, NbB2 // В сб.: Высокочистые и монокристаллические материалы. - М.: Наука. - 1987. - С.71-74) [2], (Ponomarev М.А., Steinberg A.S., Sclyarov S.N. The Production of Single Crystal from SHS TiB2 / Proceeding of the First US-Japanese Workshop on Combustion Synthesis. - Tokyo, Japan, - 1990. - P.97-99) [3]. При выращивании монокристаллов карбидов и боридов переходных металлов используются стержни, полученные методом СВС. Для синтеза стержней применяются образцы из активных порошковых смесей, запрессованные в длинномерные оболочки (L/d>>1) из огнеупорных и неогнеупорных материалов. Процесс осуществляется в специальной установке в инертной атмосфере; контролируется изменение температур образца и оболочки.
Аргоновым лазером наносят покрытие диборида титана на алюминий из фторидов. При этом микротвердость поверхности повышается в три раза по сравнению с чистым алюминием, значительно увеличивается износостойкость боридного покрытия. Однако коррозионная стойкость его в 3% растворе хлорида натрия уменьшается в 3-4 раза по сравнению с чистым алюминием (J.D.Majumdar, B.R.Chandra, A.K.Nath, I.Manna In situ dispersion of titanium boride by laser composite surfacing for improved wear resistance // Surface and Coating Technology, 201, 3-4, 2006, 1236-1242) [4].
Покрытие диборида титана на сплавах ВТ9 и ОТ4 может быть получено при помощи метода взрывоплазменного напыления, который основан на воздействии мощных импульсных потоков низкотемпературной плазмы на обрабатываемую поверхность и распыляемый порошок. При взаимодействии высокотемпературного газового потока с поверхностью титановых образцов в присутствии порошка бора образуется монолитное покрытие (Валюженич М.К., Кривченко А.Л., Никульшин П.А. Получение покрытий на основе титана путем синтеза тугоплавких соединений // Вести Самарского государственного технического университета, серия Физ.-мат. науки, Самара, 27, 2004, с.103-106) [5].
По оборудованию и расходным материалам электрохимический синтез дешевле и проще известных способов. Кроме того, электрохимическим способом можно получить гладкое покрытие на изделии сложной формы, в зависимости от параметров процесса могут быть получены монокристаллы, поликристаллическое покрытие. Состав полученного осадка может быть тщательно проконтролирован при помощи параметров процесса осаждения. Процесс имеет довольно низкую температуру синтеза.
Известно электрохимическое осаждение диборида титана на стальную и молибденовую подложки, которое проводили в электролите NaCl-KCl-NaF-KBF4-K2TiF6 при 600°С в гальваностатическом режиме (U.Fastner, Т.Steck, A.Pascual, G.Fafilek, G.E.Nauer. Electrochemical deposition of TiB2 in high temperature molten salts // J. Alloys and Compounds, 452, 1, 2008, 32-35) [6]. Однако этим методом не удалось получить сплошные беспористые покрытия. При высоких плотностях катодного тока образуются губчатые осадки неудовлетворительного качества.
Задача настоящего изобретения заключается в электрохимическом получении беспористого сплошного однородного покрытия из диборида титана. Для решения поставленной задачи заявлен электрохимический способ получения покрытий из диборида титана, характеризующийся анодной гальванической поляризацией титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре 810-840 К в атмосфере аргона.
Сущность заявленного решения заключается в следующем. Поскольку известно, что в результате высокотемпературного взаимодействия титана с расплавом, содержащим оксид бора, получаются два продукта - диборид титана и оксид титана, происходящему процессу можно приписать следующее уравнение реакции:
Figure 00000001
Однако реакция (1) может проходить только в бестоковом режиме, тогда как по-настоящему хорошо сцепленные с металлической основой покрытия диборида титана могут быть получены в условиях анодной поляризации. Может быть, поэтому несмотря на большое отрицательное значение энергии Гиббса реакции (1) этот процесс никогда не был реализован на практике. Возможной причиной активного протекания реакции (1) в среде расплавленных хлоридов щелочных металлов является то, что расплавленные хлориды щелочных металлов и хлорид цезия в частности являются агрессивной средой по отношению к титану. Вероятно, уже в первые секунды высокотемпературного взаимодействия происходит разрушение «естественной» оксидно-нитридной пленки на титане. При бестоковом взаимодействии оксидная пленка разрушается только по дефектам, тогда как анодная поляризация разрушает оксидную пленку на всей поверхности, активируя ее. Косвенным подтверждением этого факта является несовпадение анодных поляризационных кривых на титане, снятых последовательно. Возможно, что именно анодная поляризация способствует активации поверхности титана, что позволяет получать прочные компактные покрытия диборида титана на его поверхности.
Кроме того, изучение коррозионно-электрохимического поведения титана в эвтектической смеси хлоридов цезия и натрия, содержащей от 0,1 до 1 мас.% оксида бора, в температурном интервале 810-870 К в атмосфере аргона показало, что при бестоковом взаимодействия титана с борсодержащим расплавом образуемые на поверхности титана слои твердых продуктов коррозии не имеют сцепления с металлической основой, осыпаются в хлоридный расплав в виде порошков. Повышение содержания оксида бора в солевом расплаве свыше 2,0 мас.% приводит к образованию более рыхлого покрытия. Разрыхление поверхности получаемого боридного покрытия на титане происходит и при повышении температуры взаимодействия свыше 840 К. Покрытие имеет плохое сцепление с металлической основой, в нем имеются дефекты. Повышение температуры взаимодействия до 870 К приводило к значительному коррозионному поражению образца титана. Вероятно, при температуре 870 К расплавленная эвтектическая смесь хлоридов цезия и натрия, содержащая до 1 мас.% оксида бора, является очень агрессивной средой, а скорости коррозии титана превышают величину 0,01 г см-2 ч-1. Поляризация титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре в интервале 810-840 К в атмосфере аргона позволила получить плотное, хорошо сцепленное с металлической основой защитное покрытие из диборида титана. Таким образом, новый технический результат, достигаемый заявленным изобретением, заключается в анодной активации поверхности, приводящей к разрушению поверхностного «естественного» оксидного слоя на титане, в результате чего образуется беспористое сплошное однородное покрытие из диборида титана.
ПРИМЕР. В кварцевую ячейку помещали 50 г мелкораздробленной смеси хлоридов цезия и натрия, добавляли к ней 0,2 мас.% порошкообразного оксида бора (0,1 г). Ячейку закрывали вакуумной пробкой, вакуумировали, нагревали до температуры 810 К при непрерывной откачке, после чего наполняли газовое пространство ячейки аргоном марки «вч». Образец титана с площадью 4 см2 на титановом токоподводе опускали в расплав и немедленно начинали анодную поляризацию в гальваностатическом режиме с плотностью анодного тока 0,7 мА см-2 в течение от 30 мин до 1 ч. В ходе анодной гальваностатической поляризации титана в расплавленной эвтектической смеси цезия и натрия на титановой поверхности образуется блестящий плотный стекловидный, чрезвычайно прочно сцепленный с основой слой черного цвета, толщина которого регулируется временем анодирования.
Для исследования полученного покрытия его аккуратно сняли с поверхности металла и его торец сфотографировали на микроскопе "Reichert". На микрофотографиях (фиг.1-4) видно, что покрытие равномерно распределено по поверхности титана, является однородным по толщине, многослойным и состоит из многочисленных пластинчатых и игольчатых кристаллов диборида титана толщиной 100-200 нм, плотно упакованных и ориентированных взаимно перпендикулярно по отношению друг к другу. По данным рентгенофазового анализа полученное покрытие состоит из диборида титана, однофазное, многослойное, имеет толщину от 14 до 30 мкм. Таким образом, поляризация титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре в интервале 810-840 К в атмосфере аргона позволила получить плотное, хорошо сцепленное с металлической основой защитное покрытие из диборида титана.

Claims (1)

  1. Способ электрохимического получения покрытия из диборида титана, характеризующийся тем, что покрытие образуют анодной гальванической поляризацией титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре в интервале 810-840 К в атмосфере аргона.
RU2011113571/02A 2011-04-07 2011-04-07 Электрохимический способ получения покрытий из диборида титана RU2452798C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011113571/02A RU2452798C1 (ru) 2011-04-07 2011-04-07 Электрохимический способ получения покрытий из диборида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011113571/02A RU2452798C1 (ru) 2011-04-07 2011-04-07 Электрохимический способ получения покрытий из диборида титана

Publications (1)

Publication Number Publication Date
RU2452798C1 true RU2452798C1 (ru) 2012-06-10

Family

ID=46680023

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011113571/02A RU2452798C1 (ru) 2011-04-07 2011-04-07 Электрохимический способ получения покрытий из диборида титана

Country Status (1)

Country Link
RU (1) RU2452798C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171580A1 (ru) 2015-04-23 2016-10-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Электрод алюминиевого электролизера (варианты)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU800249A1 (ru) * 1978-07-19 1981-01-30 Киевский Ордена Ленина Политехни-Ческий Институт Им.50-Летия Великойоктябрьской Социалистической Pebo-Люции Расплав дл анодировани металли-чЕСКОй пОВЕРХНОСТи

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU800249A1 (ru) * 1978-07-19 1981-01-30 Киевский Ордена Ленина Политехни-Ческий Институт Им.50-Летия Великойоктябрьской Социалистической Pebo-Люции Расплав дл анодировани металли-чЕСКОй пОВЕРХНОСТи

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Валюженич М.К. и др. Получение покрытий на основе титана путем синтеза тугоплавких соединений. - Вести Самарского государственного технического университета, серия Физ-мат. науки, Самара, 2004, №27, с.103-106. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171580A1 (ru) 2015-04-23 2016-10-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Электрод алюминиевого электролизера (варианты)

Similar Documents

Publication Publication Date Title
Gu et al. Electrodeposition of alloys and compounds from high-temperature molten salts
Malyshev et al. High-temperature electrochemical synthesis of carbides, silicides and borides of VI-group metals in ionic melts
Bai et al. Effects of cathodic current density and temperature on morphology and microstructure of iridium coating prepared by electrodeposition in molten salt under the air atmosphere
Liu et al. Electro-deposition metallic tungsten coatings in a Na2WO4–WO3 melt on copper based alloy substrate
EP2058418A1 (en) Method for boriding of coatings using high speed electrolytic process
Hao et al. High-temperature oxidation resistance of ceramic coatings on titanium alloy by micro-arc oxidation in aluminate solution
Wang et al. Electrochemical deposition of zirconium diboride coatings in NaCl-KCl-K2ZrF6-KBF4 melts
RU2452798C1 (ru) Электрохимический способ получения покрытий из диборида титана
Ozkalafat et al. Electrodeposition of titanium diboride from oxide based melts
CN106544627B (zh) 一种抗高温热腐蚀复合涂层及其制备方法
CN109778251B (zh) 一种复合涂层结构的制备方法以及由此得到的复合涂层结构
Jiang et al. Effect of pulse current parameters on microstructure of tungsten coating electroplated from Na2WO4–WO3–NaPO3
Huang et al. Electrochemical studies of Ir coating deposition from NaCl-KCl-CsCl molten salts
RU2491374C1 (ru) Электрохимический способ получения сплошных слоев кремния
Topor et al. Molybdenum carbide coatings electrodeposited from molten fluoride bath: preparation of a coherent coating
Massot et al. Preparation of tantalum carbide layers on carbon using the metalliding process
RU2744087C1 (ru) Электрохимический способ металлизации алмазных частиц
Hu et al. Micromorphology and texture of niobium coating electrodeposited in NaCl—KCl—CsCl molten salt system
Yan et al. Preparation of TiC powders and coatings by electrodeoxidation of solid TiO2 in molten salts
Cao et al. High temperature electrochemical synthesis of tungsten boride from molten salt
Nagle et al. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves
Stulov et al. Coatings by refractory metal carbides: deposition from molten salts, properties, application
RU2775044C1 (ru) Электролитический способ получения покрытий и изделий из ниобия, легированного танталом
Jun et al. Preparation of highly preferred orientation TiB2 coatings
Hab High-temperature electrochemical synthesis of coatings of carbides, borides, and silicides of metals of the IV–VI B groups from ionic melts

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150408