CN107229597A - 同步挤压广义s变换信号时频分解与重构方法 - Google Patents

同步挤压广义s变换信号时频分解与重构方法 Download PDF

Info

Publication number
CN107229597A
CN107229597A CN201710397687.0A CN201710397687A CN107229597A CN 107229597 A CN107229597 A CN 107229597A CN 201710397687 A CN201710397687 A CN 201710397687A CN 107229597 A CN107229597 A CN 107229597A
Authority
CN
China
Prior art keywords
mrow
msub
generalized
frequency
transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710397687.0A
Other languages
English (en)
Inventor
陈辉
陈旭平
卢柃岐
陈学华
胡英
徐丹
康佳星
陈元春
周心悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201710397687.0A priority Critical patent/CN107229597A/zh
Publication of CN107229597A publication Critical patent/CN107229597A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/148Wavelet transforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了同步挤压广义S变换信号时频分解与重构方法,首先对信号进行四参数广义S变换,通过调节其基本小波幅度、能量衰减率、能量延迟时间及基本小波视频率4个参数来调节基本小波函数的变化趋势;其次,对四参数广义S变换结果求模,得到每一时频点能量,从而得到时频谱;然后,利用信号的四参数广义S变换结果求取瞬时频率;接着,以广义S变换后的频率集合为中心频率集合,把每一中心频率附近区间内的瞬时频率对应的时频点值挤压到该中心频率点,得到同步挤压广义S变换值;最后,本发明推导了同步挤压广义S变换的逆变换公式。同步挤压广义S变换兼具同步挤压变换和广义S变换的优点,是一种高精度信号时频分解与重构方法。

Description

同步挤压广义S变换信号时频分解与重构方法
技术领域
本发明涉及信号处理领域,是一种高精度的同步挤压广义S变换信号时频分解与重构方法。
背景技术
信号是指携带信息的一元函数或多元函数。在实际的生活中,我们每天都会接触大量的信号,例如,某医院每天看病的人数、太阳每年的黑子数等。信号处理作为信息科学的一个分支,已经渗透到科学技术的各个领域,甚至渗透到社会科学的许多领域。信号处理以傅里叶分析为理论基础,研究信号的变换、滤波和特征提取。信号是时间的函数,傅里叶分析为我们提供了新的角度看待信号,即从频率的角度去看待信号,把时间信号变换成频率的函数。
时频分析是分析时变非平稳信号的强有力工具,常见的时频分析方法有:短时傅里叶变换(STFT)、小波变换(CWT)、S变换(ST)等。其中,STFT因其窗口长度固定,而无法根据信号的频率变换自动调节分辨率,对非平稳信号处理效果较差;CWT通过对信号的时间-尺度分析,具有多分辨分析的特点,但小波基难以选择;ST能够较好的刻画信号中分量,并能实现无损逆变换,但其基本小波函数是固定的,这使其在应用中受到限制;通过ST加以推导得到广义S变换,其基本小波函数能够根据所处理问题的需要进行调整,在应用中具有更好的实用性和灵活性,但受不确定性原理影响,广义S变换时频谱的分辨率达不到最优。
同步挤压变换(SST)是Daubechies等在小波变换的基础上提出的一种新的时频变换方法。它通过严格的数学推导,把小波变换结果在一定频率范围内的时频能量“挤压”到信号的中心频率附近,达到提高时频分辨率的目的。目前已经成功的应用于信号识别、信号恢复和消噪、机械故障诊断等领域。
发明内容
本发明的目的在于提供一种解决上述问题,能根据实际需要灵活地调节窗函数,适应具体信号分析的同步挤压广义S变换信号时频分解与重构方法。
为了实现上述目的,本发明提出同步挤压广义S变换信号时频分解与重构方法,包括以下步骤:
(1)获取信号x(t);
(2)利用下式对信号x(t)进行四参数广义S变换,
其中,所述四参数分别为:基本小波幅度A,能量衰减率α(α>0),能量延迟时间β,基本小波视频率f0,f为四参数广义S变换的频率,b为四参数广义S变换时间轴位移参数;
(3)对四参数广义S变换结果GSTx(f,b)求模,得到每一时频点能量,从而得到广义S变换时频谱,
SGST=|GSTx(f,b)|;
(4)基于步骤(2)中得到的四参数广义S变换结果GSTx(f,b),利用下式估计信号x(t)的瞬时频率fx(f,b),
(5)以广义S变换后的频率f为中心频率集合,把每一中心频率fl附近区间[fl-Lf,fl+Lf」内瞬时频率对应的每一时频点值挤压到中心频率点fl上,得到同步挤压广义S变换值SSGSTx(fl,b),即为
其中,Lf是在广义S变换时频谱上以fl为中心的频率区间半长度,fk为广义S变换时频谱上频率区间的离散化频率样点,且Δfk=fk-fk-1
作为优选:(6)同步挤压广义S变换的逆变换公式为
用该逆变换公式对同步挤压广义S变换结果进行反变换,重构信号x(b)。
为了证明同步挤压广义S变换的可行性,我们在提出同步挤压广义S变换基本理论的同时,推导出同步挤压广义S变换及其逆变换的表达式,该逆变换表达式可以对同步挤压广义S变换结果进行反变换,重构出高精度的原信号。
本发明推导方法如下:
信号x(t)的四参数广义S变换为:
式中,A为基本小波幅度,α(α>0)为能量衰减率,β为能量延迟时间,β为基本小波视频率。
将(1)式改写如下:
式(2)可表示为:
其中,为函数ψ(t)的复共轭。
根据Parseval定理以及傅里叶变换中的尺度变换和平移变换性质,得
其中,是信号x(t)的傅氏变换,为ψ(t)的傅氏变换的复共轭(特别地,当w<0时,)。
用(5)式估计信号x(t)的瞬时频率
现用谐波信号x(t)=A0cos2πω0t来验证其可行性,则
把(6)式带入(4)式得:
由(5)式得该谐波信号的瞬时频率为
通过谐波信号的验证说明该瞬时频率表达式的合理性,那么信号的瞬时频率可由(5)式进行估计。
以广义S变换后的频率集合为中心频率集合,将每一中心频率fl附近区间内瞬时频率对应的每一时频点值挤压到中心频率点fl上,得到同步挤压广义S变换值SSGST(fl,b),即为
其中,Lf是在广义S变换时频谱上以fl为中心的频率区间半长度,fk为广义S变换时频谱上频率区间的离散化频率样点,且Δfk=fk-fk-1
下面推导同步挤压广义S变换的逆变换表达式。式(4)两边同时对频率f积分,并进行变量替换,可以得到
由上式得
由于信号x(t)为实信号,因此,上式取实部得
把上式右端离散化,结合(9)式得到同步挤压广义S变换的逆变换表达式为
经误差分析表明x(b),x(t)两者的误差较小,所以可以认为x(b)=x(t),即该逆变换式可以由同步挤压广义S变换结果重构出原信号。
本发明具体思路为:首先对信号进行四参数广义S变换,通过调节广义S变换中4个参数(基本小波幅度、能量衰减率、能量延迟时间及基本小波视频率)调节基本小波函数的变化趋势,从而适应具体信号的分析与处理;其次,利用信号的四参数广义S变换结果求取瞬时频率;然后,以广义S变换后的频率集合为中心频率集合,将每一中心频率附近区间内的瞬时频率对应的每一时频点值挤压到该中心频率点上,得到同步挤压广义S变换值;最后,本发明推导了同步挤压广义S变换的逆变换表达式,利用该逆变换表达式可以对同步挤压广义S变换结果进行反变换,重构出信号,经过误差分析,重构出来的信号与原信号误差较小,因此可认为重构出的信号即为原信号。
与现有技术相比,本发明的优点:
(1)本发明给出了同步挤压广义S变换的基本理论,推导出同步挤压广义S变换及其逆变换的表达式,用该逆变换式可以由同步挤压广义S变换结果重构出原信号;
(2)同步挤压广义S变换是一种新的时频分析方法,它结合了同步挤压变换和广义S变换的优点,具有更高的时频分解精度与重构精度;
(3)同步挤压广义S变换结果在的时间和频率方向上都是线性分布,相应的时频图有利于人们理解和应用;
(4)同步挤压广义S变换有别于同步挤压小波变换,同步挤压小波变换的基本小波函数相对比较固定,而同步挤压广义S变换能根据实际的需要,通过调节四个不同参数灵活地调节同步挤压广义S变换基本小波函数的变化趋势,从而更加灵活地适应具体信号的分析和处理,而且同步挤压广义S变换有更好的抗噪性;
(5)同步挤压广义S变换相比于广义S变换,可以消除因基本小波视频率f0造成的广义S变换时频谱在频率方向呈现周期延拓的效应。
附图说明
图1是本发明流程图;
图2是参数为A=2,α=0.5,β=1时广义S变换窗函数;
图3是参数为A=2,α=2,β=1时广义S变换窗函数;
图4是参数为A=1,α=0.5,β=0时广义S变换窗函数;
图5是参数为A=1,α=0.5,β=1时广义S变换窗函数;
图6是参数为A=1,α=0.5,β=-1时广义S变换窗函数;
图7是参数为A=1,α=2,β=-1时广义S变换窗函数;
图8是参数为A=2,α=2,β=-1时广义S变换窗函数;
图9是调频信号1;
图10是调频信号2;
图11是信噪比为6dB的高斯白噪声信号;
图12是实施例3的合成信号;
图13是利用本发明方法的逆变换表达式对实施例3中合成信号进行反变换,重构得到的信号x(b);
图14是图13与图12的重构误差;
图15是实施例3中合成信号进行小波变换得到的时频谱;
图16是实施例3中合成信号进行广义S变换得到的时频谱;
图17是实施例3中合成信号进行同步挤压小波变换得到的时频谱;
图18是实施例3中合成信号进行同步挤压广义S变换得到的时频谱;
图19是实施例3中合成信号在基本小波视频率f0=2时广义S变换得到的时频谱;
图20是实施例3中合成信号在基本小波视频率f0=2时同步挤压广义S变换得到的时频谱。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1:参见图1,一种同步挤压广义S变换信号时频分解与重构方法,包括以下步骤:
(1)获取信号x(t);
(2)利用下式对信号x(t)进行四参数广义S变换,
其中,所述四参数分别为:基本小波幅度A,能量衰减率α(α>0),能量延迟时间β,基本小波视频率f0;f为四参数广义S变换的频率,b为四参数广义S变换时间轴位移参数;
(3)对四参数广义S变换结果GSTx(f,b)求模,得到每一时频点能量,从而得到广义S变换时频谱,
SGST=|GSTx(f,b)|;
(4)基于步骤(2)中得到的四参数广义S变换结果GSTx(f,b),利用下式估计信号x(t)的瞬时频率fx(f,b),
(5)以广义S变换后的频率f为中心频率集合,把每一中心频率fl附近区间内瞬时频率对应的每一时频点值挤压到中心频率点fl上,得到同步挤压广义S变换值SSGSTx(fl,b),即为
其中,Lf是在广义S变换时频谱上以fl为中心的频率区间半长度,fk为广义S变换时频谱上频率区间的离散化频率样点,且Δfk=fk-fk-1
(6)同步挤压广义S变换的逆变换公式为
用该逆变换公式对同步挤压广义S变换结果进行反变换,重构信号x(b)。
实施例2:参见图2—图8,同步挤压广义S变换能根据实际的需要,通过调节广义S变换中4个参数调节基本小波函数的变化趋势,从而适应具体信号的分析与处理。所述四个参数为基本小波幅度、能量衰减率、能量延迟时间及基本小波视频率。图2-图8,展示了参数A,α,β在不同的取值条件下的广义S变换窗函数,说明各个参数的具体作用。
图2选取的参数为A=2,α=0.5,β=1,图3选取的参数为A=2,α=2,β=1,比较两者可知,α值决定窗函数的窗口大小,窗口的大小与α值成反比,α值越小窗口就越大,α值越大窗口就越小。图4选取的参数为A=1,α=0.5,β=0,图5选取的参数为A=1,α=0.5,β=1,图6选取的参数为A=1,α=0.5,β=-1,比较三者可知,β决定窗函数的时频窗口在时间方向上的偏移程度,β=0时表示窗口不向任何方向偏移,β>0时表示时频窗口的方向向着时间轴正方向偏移,β<0表示时频窗口的方向向着时间轴负方向偏移,β的绝对值与窗口的偏移程度成正相关,随着频率的增大,偏移程度越小。图7选取的参数为A=1,α=2,β=-1,图8选取的参数为A=2,α=2,β=-1,比较两者可知,A值决定窗函数的高度,对同步挤压广义S变换结果的相对大小无影响。
总之,虽然参数具有改变时窗函数窗口大小、高度、窗函数的时频窗口在时间轴方向上的偏移程度,从图中展示效果可知,它们发挥的作用是不同的,因此,可以根据实际应用的需要,合理地选择参数调节同步挤压广义S变换窗函数的变化趋势。
实施例3:参见图9—图20。
调频信号是检验时频分布的时频聚集性能优劣的公认模型,图12所示的合成信号是由图9,图10所示的2个调频信号和图11所示的信噪比为6dB的高斯白噪声叠加而成,所以我们将图12中展示的合成信号作为步骤(1)中的信号x(t),具体实施方式如下:
(1)获取信号x(t),所述x(t)为合成信号,由图9,图10所示的2个调频信号和图11所示的信噪比为6dB的高斯白噪声叠加而成;
(2)利用下式对信号x(t)进行四参数广义S变换,
其中,所述四参数分别为:基本小波幅度A,能量衰减率α(α>0),能量延迟时间β,基本小波视频率f0,f为四参数广义S变换的频率,b为四参数广义S变换时间轴位移参数;
(3)对四参数广义S变换结果GSTx(f,b)求模,得到每一时频点能量,从而得到广义S变换时频谱,
SGST=|GSTx(f,b)|;
(4)基于步骤(2)中得到的四参数广义S变换结果GSTx(f,b),利用下式估计信号x(t)的瞬时频率fx(f,b),
(5)以广义S变换后的频率集合为中心频率集合,把每一中心频率fl附近区间内瞬时频率对应的每一时频点值挤压到中心频率点fl上,得到同步挤压广义S变换值SSGST(fl,b),即为
其中,Lf是在广义S变换时频谱上以fl为中心的频率区间半长度,fk为广义S变换时频谱上频率区间的离散化频率样点,且Δfk=fk-fk-1
(6)同步挤压广义S变换的逆变换公式为
用该逆变换公式对同步挤压广义S变换结果进行反变换,重构信号x(b),如图13所示。
图15是小波变换的时频谱,图16是广义S变换的时频谱,可以看出,在小波变换和广义S变换的时频图上,某一时刻的能量总是分布在以某个瞬时频率为中心的一定频率范围内,瞬时频率能量分布被模糊化了,使变换结果的时间分辨率和频率分辨率不能达到最优。图17是同步挤压小波变换的时频谱,图18是同步挤压广义S变换的时频谱,由于对小波变换和广义S变换的能量进行了“挤压”,把原本模糊化的信号能量重新归到了实际频率处,极大的提高了时频变换的频率分辨率。通过图17,图18对比可知,同步挤压广义S变换较同步挤压小波变换的频率分辨率的效果更好,对非平稳信号中不同信号分量具有更强的区分能力,而且受噪声的影响较小,说明本发明方法的抗噪性更好。通过图19,图20对比可知,在基本小波视频率f0=2时,广义S变换时频图中出现了周期循环现象,这说明同步挤压广义S变换相对于广义S变换,可以消除因基本小波视频率f0造成的广义S变换时频谱在频率方向呈现周期延拓的效应。通过六者时频谱对比可知,同步挤压广义S变换有利于提高时频分析的准确性。
图13给出了利用本发明的逆变换公式对同步挤压广义S变换结果(如图12所示)进行反变换,重构的信号,图14是重构的误差,通过图中的数据可以看出,在噪声存在的情况下,本发明的逆变换公式重构的精度较高。

Claims (2)

1.一种同步挤压广义S变换信号时频分解与重构方法,其特征在于:包括以下步骤:
(1)获取信号x(t);
(2)利用下式对信号x(t)进行四参数广义S变换,
<mrow> <msub> <mi>GST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>A</mi> <mo>|</mo> <mi>f</mi> <mo>|</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;beta;</mi> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>i</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mn>0</mn> </msub> <mi>f</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> </mrow>
其中,所述四参数分别为:基本小波幅度A,能量衰减率α(α>0),能量延迟时间β,基本小波视频率f0,f为四参数广义S变换的频率,b为四参数广义S变换时间轴位移参数;
(3)对四参数广义S变换结果GSTx(f,b)求模,得到每一时频点能量,从而得到广义S变换时频谱,
SGST=|GSTx(f,b)|;
(4)基于步骤(2)中得到的四参数广义S变换结果GSTx(f,b),利用下式估计信号x(t)的瞬时频率fx(f,b),
<mrow> <msub> <mi>f</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>f</mi> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>i</mi> <mn>2</mn> <msub> <mi>&amp;pi;GST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>GST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>b</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
(5)以广义S变换后的频率f为中心频率集合,把每一中心频率fl附近区间内瞬时频率对应的每一时频点值挤压到中心频率点fl上,得到同步挤压广义S变换值SSGSTx(fl,b),即为
<mrow> <msub> <mi>SSGST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>l</mi> </msub> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>L</mi> <mi>f</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <munder> <mi>&amp;Sigma;</mi> <mrow> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>:</mo> <mo>|</mo> <msub> <mi>f</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mo>|</mo> <mo>&amp;le;</mo> <mi>&amp;Delta;</mi> <mi>f</mi> <mo>/</mo> <mn>2</mn> </mrow> </munder> <msub> <mi>GST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mn>0</mn> </msub> <msub> <mi>f</mi> <mi>k</mi> </msub> <mi>b</mi> </mrow> </msup> <msubsup> <mi>f</mi> <mi>k</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;Delta;f</mi> <mi>k</mi> </msub> </mrow>
其中,Lf是在广义S变换时频谱上以fl为中心的频率区间半长度,fk为广义S变换时频谱上频率区间的离散化频率样点,且Δfk=fk-fk-1
2.根据权利要求1所述的同步挤压广义S变换信号时频分解与重构方法,其特征在于:还包括步骤(6),
(6)同步挤压广义S变换的逆变换公式为
<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Re</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>C</mi> <mi>&amp;psi;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <msub> <mi>SSGST</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>l</mi> </msub> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <msub> <mi>L</mi> <mi>f</mi> </msub> <mo>&amp;rsqb;</mo> </mrow>
用该逆变换公式对同步挤压广义S变换结果进行反变换,重构信号x(b)。
CN201710397687.0A 2017-05-31 2017-05-31 同步挤压广义s变换信号时频分解与重构方法 Pending CN107229597A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710397687.0A CN107229597A (zh) 2017-05-31 2017-05-31 同步挤压广义s变换信号时频分解与重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710397687.0A CN107229597A (zh) 2017-05-31 2017-05-31 同步挤压广义s变换信号时频分解与重构方法

Publications (1)

Publication Number Publication Date
CN107229597A true CN107229597A (zh) 2017-10-03

Family

ID=59934252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710397687.0A Pending CN107229597A (zh) 2017-05-31 2017-05-31 同步挤压广义s变换信号时频分解与重构方法

Country Status (1)

Country Link
CN (1) CN107229597A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009347A (zh) * 2017-11-30 2018-05-08 南京理工大学 基于同步压缩联合改进广义s变换的时频分析方法
CN108491354A (zh) * 2018-02-01 2018-09-04 四川大学 一种通用的离散信号分解和重建方法
CN108694392A (zh) * 2018-05-22 2018-10-23 成都理工大学 一种高精度同步提取广义s变换时频分析方法
CN109709448A (zh) * 2019-03-06 2019-05-03 南京工程学院 一种基于同步挤压小波变换的配电网单相高阻接地故障选线方法
CN109884694A (zh) * 2019-02-19 2019-06-14 西安交通大学 一种基于挤压加窗傅里叶变换的高铁震源地震信号时频分析方法
CN111241902A (zh) * 2019-07-24 2020-06-05 成都理工大学 一种高精度多重同步压缩广义s变换时频分析方法
CN111289795A (zh) * 2020-02-12 2020-06-16 成都理工大学 高精度高阶时间重排同步挤压变换时频分析方法
CN113589208A (zh) * 2021-07-23 2021-11-02 深圳市联影高端医疗装备创新研究院 射频系统的频率确定方法、装置、磁共振设备及存储介质
CN116679165A (zh) * 2023-07-03 2023-09-01 国网四川省电力公司成都供电公司 基于同步挤压广义s变换的频域反射电缆缺陷定位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065157A2 (en) * 2001-02-14 2002-08-22 The United States Of America, As Represented By The Aministrator Of The National Aeronautics And Space Administration (Nasa) Empirical mode decomposition for analyzing acoustical signals
US6448909B1 (en) * 2000-01-28 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Analog continuous wavelet transform circuit
CN104144339A (zh) * 2014-06-13 2014-11-12 宁波大学 一种基于人眼感知的质降参考立体图像质量客观评价方法
CN104820786A (zh) * 2015-05-13 2015-08-05 西安交通大学 一种瞬时加权同步挤压小波双谱分析方法
CN105373708A (zh) * 2015-12-11 2016-03-02 中国地质大学(武汉) 一种基于参数优化的改进广义s变换的时频分析方法
CN106019374A (zh) * 2016-07-04 2016-10-12 中煤科工集团西安研究院有限公司 基于反射槽波频散相似度的断层成像方法
CN106546818A (zh) * 2016-10-20 2017-03-29 南京航空航天大学 一种基于差分非线性模式分解的谐波信号检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448909B1 (en) * 2000-01-28 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Analog continuous wavelet transform circuit
WO2002065157A2 (en) * 2001-02-14 2002-08-22 The United States Of America, As Represented By The Aministrator Of The National Aeronautics And Space Administration (Nasa) Empirical mode decomposition for analyzing acoustical signals
CN104144339A (zh) * 2014-06-13 2014-11-12 宁波大学 一种基于人眼感知的质降参考立体图像质量客观评价方法
CN104820786A (zh) * 2015-05-13 2015-08-05 西安交通大学 一种瞬时加权同步挤压小波双谱分析方法
CN105373708A (zh) * 2015-12-11 2016-03-02 中国地质大学(武汉) 一种基于参数优化的改进广义s变换的时频分析方法
CN106019374A (zh) * 2016-07-04 2016-10-12 中煤科工集团西安研究院有限公司 基于反射槽波频散相似度的断层成像方法
CN106546818A (zh) * 2016-10-20 2017-03-29 南京航空航天大学 一种基于差分非线性模式分解的谐波信号检测方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009347B (zh) * 2017-11-30 2021-06-22 南京理工大学 基于同步压缩联合改进广义s变换的时频分析方法
CN108009347A (zh) * 2017-11-30 2018-05-08 南京理工大学 基于同步压缩联合改进广义s变换的时频分析方法
CN108491354B (zh) * 2018-02-01 2021-04-13 四川大学 一种通用的离散信号分解和重建方法
CN108491354A (zh) * 2018-02-01 2018-09-04 四川大学 一种通用的离散信号分解和重建方法
CN108694392A (zh) * 2018-05-22 2018-10-23 成都理工大学 一种高精度同步提取广义s变换时频分析方法
CN109884694A (zh) * 2019-02-19 2019-06-14 西安交通大学 一种基于挤压加窗傅里叶变换的高铁震源地震信号时频分析方法
CN109884694B (zh) * 2019-02-19 2020-06-19 西安交通大学 一种基于挤压加窗傅里叶变换的高铁震源地震信号时频分析方法
CN109709448A (zh) * 2019-03-06 2019-05-03 南京工程学院 一种基于同步挤压小波变换的配电网单相高阻接地故障选线方法
CN111241902A (zh) * 2019-07-24 2020-06-05 成都理工大学 一种高精度多重同步压缩广义s变换时频分析方法
CN111241902B (zh) * 2019-07-24 2023-07-25 成都理工大学 一种高精度多重同步压缩广义s变换时频分析方法
CN111289795A (zh) * 2020-02-12 2020-06-16 成都理工大学 高精度高阶时间重排同步挤压变换时频分析方法
CN111289795B (zh) * 2020-02-12 2021-10-08 成都理工大学 高精度高阶时间重排同步挤压变换时频分析方法
CN113589208A (zh) * 2021-07-23 2021-11-02 深圳市联影高端医疗装备创新研究院 射频系统的频率确定方法、装置、磁共振设备及存储介质
CN113589208B (zh) * 2021-07-23 2024-05-31 深圳市联影高端医疗装备创新研究院 射频系统的频率确定方法、装置、磁共振设备及存储介质
CN116679165A (zh) * 2023-07-03 2023-09-01 国网四川省电力公司成都供电公司 基于同步挤压广义s变换的频域反射电缆缺陷定位方法
CN116679165B (zh) * 2023-07-03 2024-04-26 国网四川省电力公司成都供电公司 基于同步挤压广义s变换的频域反射电缆缺陷定位方法

Similar Documents

Publication Publication Date Title
CN107229597A (zh) 同步挤压广义s变换信号时频分解与重构方法
CN102721545B (zh) 一种基于多特征参量的滚动轴承故障诊断方法
CN104706349A (zh) 一种基于脉搏波信号的心电信号构建方法
CN102519725B (zh) 通过非线性冗余提升小波包处理轴承设备振动信号的方法
CN102801665B (zh) 一种带通信号调制宽带转换器采样的重构方法
DE102012217582A1 (de) Kalibrierung eines rekonstruierten Signals unter Anwendung eines Mehrton-Kalibriersignals
CN111856562B (zh) 一种广义高阶同步挤压地震信号时频分解与重构方法
CN113310684B (zh) 基于尺度空间和改进稀疏表示的齿轮箱故障特征提取方法
CN109100687B (zh) 一种雷达设备lfm脉冲信号pslr参数确定方法
CN112002341B (zh) 语音信号的参数化表达、加密传输和重构的方法
CN104463197B (zh) 基于频谱校正与逆向组合的欠定盲信号分离方法及其装置
CN111289795A (zh) 高精度高阶时间重排同步挤压变换时频分析方法
CN105044769B (zh) 提高地震信号的分辨率的方法
CN112115842A (zh) 一种基于改进提升小波变换和高次自相关处理的微弱电信号检测系统及其方法
CN112926555B (zh) 一种基于自编码器数据增强的小样本无源行为感知方法
CN104852744B (zh) 调制宽带转换器系统下基于正弦信号获取感知矩阵的信号重构方法
CN109460614B (zh) 基于瞬时带宽的信号时间-频率分解方法
CN105910701B (zh) 基于短样本频谱校正旋转机械振动信号盲分离方法及装置
CN108983321B (zh) 一种基于同步压缩小波变换的提取太阳黑子数和地磁Ap指数的周期分量的方法
CN110808929A (zh) 相减策略的实复转换式信噪比估计算法
Faisal et al. Suppression of false-terms in wigner-ville distribution using time and frequency windowing
CN103312337B (zh) 一种振动信号的稀疏矩阵的自适应获取方法
CN104218954A (zh) 一种宽带阵列天线压缩采样方法及装置
CN114993671A (zh) 一种基于q因子小波变换的振动故障诊断方法及其系统
CN104065359A (zh) 一种快速收敛的二维自适应滤波方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171003