CN102519725B - 通过非线性冗余提升小波包处理轴承设备振动信号的方法 - Google Patents

通过非线性冗余提升小波包处理轴承设备振动信号的方法 Download PDF

Info

Publication number
CN102519725B
CN102519725B CN201110424825.2A CN201110424825A CN102519725B CN 102519725 B CN102519725 B CN 102519725B CN 201110424825 A CN201110424825 A CN 201110424825A CN 102519725 B CN102519725 B CN 102519725B
Authority
CN
China
Prior art keywords
operator
wavelet packet
node
signal
predictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110424825.2A
Other languages
English (en)
Other versions
CN102519725A (zh
Inventor
叶辉
阳子婧
高立新
汪建民
蒋卓惟
钱国义
朱立中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN HAOHAI LIDE TECHNOLOGY Co Ltd
Original Assignee
WUHAN HAOHAI LIDE TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN HAOHAI LIDE TECHNOLOGY Co Ltd filed Critical WUHAN HAOHAI LIDE TECHNOLOGY Co Ltd
Priority to CN201110424825.2A priority Critical patent/CN102519725B/zh
Publication of CN102519725A publication Critical patent/CN102519725A/zh
Application granted granted Critical
Publication of CN102519725B publication Critical patent/CN102519725B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及通过非线性冗余提升小波包处理轴承设备振动信号的方法,它包括以下步骤:步骤(1)、采用六组预测算子和更新算子对轴承设备振动原始信号进行小波包逐层分解的步骤;步骤(2)、对步骤(1)得到的最后一层的各个节点求取归一化能量,选取能量最大的节点;步骤(3)、对步骤(2)选取的节点进行单支小波包逆向重构,得到轴承设备振动重构信号。通过本发明处理方法得到的信号,可以更有效地突出节点中的微弱故障信息,降低故障特征频率识别的难度,有利于提高轴承早期故障诊断的成功率。

Description

通过非线性冗余提升小波包处理轴承设备振动信号的方法
技术领域
本发明涉及一种轴承的故障诊断技术领域,特别是处理轴承设备振动信号的方法。
背景技术
现代科学技术的日新月异,加速了机械设备大型化、精密化、高速化和自动化的发展趋势。但设备长时间运行,加上生产环境十分恶劣,必将引起部件的损耗直至最终发生故障。为避免设备因故障而造成的巨大经济损失和不良社会影响,运用行之有效的方法对设备状态进行实施监测具有十分重要的现实意义。
轴承作为应用最为广泛也是最易发生故障的部件,是状态监测的重中之重,对其振动信号进行时域和频域的分析是最为常用亦是最为基本的方法。但设备故障的早期振动信号往往非常微弱,并被强大的背景噪声所淹没,同时还呈现出非线性特性。因此,应用非线性冗余提升小波包分析和节点的非线性单支重构算法,可以自适应地匹配信号中的丰富信息,结合基于小波包能量分析和解调的特征提取算法,可以有效识别信号中的微弱故障信息,实现设备的早期故障诊断,为预知维修提供可能性和可行性。
发明内容
本发明所要解决的技术问题是:提供一种通过非线性冗余提升小波包处理轴承设备振动信号的方法,通过该处理方法得到的信号,可以更有效地突出节点中的微弱故障信息,降低故障特征频率识别的难度,有利于提高轴承早期故障诊断的成功率。
本发明为解决上述提出的问题所采用解决方案为:
通过非线性冗余提升小波包处理轴承设备振动信号的方法,它包括以下步骤:
步骤(1)、采用六组预测算子和更新算子对轴承设备振动原始信号进行小波包逐层分解的步骤;
所述六组预测算子和更新算子通过以下方式获得:
选取N=4,12,20和
N、分别表示预测算子和更新算子的长度,其组合表示为(N和),以此组合一共得到(4,4)、(12,4)、(12,12)、(20,4)、(20,12)和(20,20)六种组合;
将上述六种组合分别带入系数的计算公式中,计算公式为:
p i = Π i = 1 N i ≠ j ( N + 1 ) / 2 - i j - i
得到六组系数,再用多孔算法对上述六组系数进行插值补零处理,得到六组预测算子和更新算子;
所述小波包逐层分解过程中,均计算每一层小波包分解结果的lp范数,以lp范数取值最小值时对应的预测算子和更新算子为该层的最优预测算子和更新算子;
步骤(2)、对步骤(1)得到的最后一层的各个节点求取归一化能量,选取能量最大的节点;
步骤(3)、对步骤(2)选取的节点进行单支小波包逆向重构,得到轴承设备振动重构信号;
所述小波包逆向重构采用的预测算子和更新算子选用各层的最优预测算子和更新算子。
上述步骤(1)中,所述小波包逐层分解过程中,对各层的高频节点进行小波包分解时,将所得的高、低频两个节点信息进行互换;
步骤(3)中,所述小波包逆向重构过程中,将所得的高、低频两个节点信息进行互换。
上述步骤(1)中,所述小波包逐层分解过程中,对小波包分解得到的各个节点信号进行FFT变换,再将各节点所在频带范围以外的频率成分置零,再对经过处理的信号进行IFFT变换。
本发明为了有效提取轴承的早期微弱故障信息,提高部件故障诊断的成功率,减轻甚至避免钢铁企业因设备故障造成的严重后果,提出通过非线性冗余提升小波包分析进行轴承故障诊断的方法,为轴承振动信号的特征提取提供了重要的理论基础和实现方法。
本发明根据各个节点的特征信息来选取最优预测算子和提升算子对其进行冗余提升小波包分解,可以更有效地突出节点中的微弱故障信息。结合特征提取算法对节点信号进行非线性单支重构,能进一步提高信噪比,更有利于微弱特征的提取,从而提高轴承早期故障诊断的成功率。
本发明还具有以下优点:
1、通过分析可得:剖分引起的降采样以及由此导致的频率关于对称中心的对折并非引起频带交错的根本原因,其根本原因在于提升小波包算法本身。为解决频带交错问题,本发明每次对各层的高频节点进行小波包分解时,将所得的高、低频两个节点信息进行互换。逐层依次进行,以得到理论上的节点依顺序排列的最终结果。
2、对提升算法中由于剖分降采样环节导致的因不满足奈奎斯特采样定理而产生的频率混叠现象,分别采用冗余提升小波包分解算法和节点信号单支重构算法予以解决;对提升算法中由于滤波器非理想截止特性引起的频率混叠现象,本发明具体解决方法为:先对小波包分解得到的各个节点信号进行FFT变换,再将各节点所在频带范围以外的频率成分置零,最后对经过处理的信号进行IFFT变换,以解决频率混叠问题。
附图说明
图1是本发明的总体流程图。
图2是改进的非线性冗余提升小波包算法示意图。
图3是节点信号单支重构示意图。
图4为测点振动加速度信号的(a)时域图和(b)频谱图。
图5为非线性冗余提升小波包逐层分解示意图。
图6为非线性冗余提升小波包分解第三层示意图。
图7为小波包能量分析示意图。
图8为小波包逆向重构示意图。
图9为解调分析对比:(a)信号的局部频谱图,(b)本发明方法通过节点单支重构后得到的解调谱图。
具体实施方式
下面结合附图对本发明进行详细说明。
如图1、2、3所示,本发明通过非线性冗余提升小波包处理轴承设备振动信号的方法,它包括以下步骤:
步骤(1)、采用六组预测算子和更新算子对轴承设备振动原始信号(如图4所示)进行小波包逐层分解的步骤;
所述六组预测算子和更新算子通过以下方式获得:
选取N=4,12,20和
N、分别表示预测算子和更新算子的长度,其组合表示为(N和),以此组合一共得到(4,4)、(12,4)、(12,12)、(20,4)、(20,12)和(20,20)六种组合;
将上述六种组合分别带入系数的计算公式中,计算公式为:
p i = Π i = 1 N i ≠ j ( N + 1 ) / 2 - i j - i
得到六组系数:
(预测算子)系数:-0.0625,0.5625,0.5625,-0.0625(长度为4)
(更新算子)系数:-0.0313,0.2813,0.2813,-0.0313(长度为4)
再用多孔算法对上述系数进行插值补零处理,处理后的结果为:得到六组预测算子和更新算子:
预测算子系数:-0.0625,0,0.5625,0,0.5625,0,-0.0625
更新算子系数:-0.0313,0,0.2813,0,0.2813,0,-0.0313
这样可以去掉剖分步骤,实现冗余算法。
先后应用上述六组经多孔算法处理后的预测算子和更新算子,按照预测和更新的步骤,对节点信号进行提升小波包变换。每分解一次,均得到六组不同的低频近似信号和高频细节信号;
依次计算六组低频近似信号和六组高频细节信号的lp范数,再将同一预测算子和更新算子分解得到的低频近似信号和高频细节信号的lp范数相加求和,作为该组算子最终的lp范数。以lp范数取值最小时对应的预测算子和更新算子为该节点信号的最优预测算子和更新算子;
以最优算子分解得到的低频近似信号和高频细节信号作为新的节点信号,继续进行下一次非线性冗余提升小波包变换;
如图5所示,所述小波包逐层分解过程中,均计算每一层小波包分解结果的lp范数,以lp范数取值最小值时对应的预测算子和更新算子为该层的最优预测算子和更新算子;
信号经冗余提升小波包算法分解之后,可由一系列逼近系数和小波系数来表征。在小波应用的诸多领域如故障信号分析、信号降噪和图像压缩等,往往希望不为零的小波系数越少越好。由于小波变换具有选基灵活性,而基于提升算法的小波时域构造特点则使得对预测算子和更新算子的选取更具自由性,则哪一种小波基才是最匹配于信号特征并满足于分析要求的最优小波基?由于小波变换是信号与小波函数之间的内积运算,而信号的自相关函数和互相关函数也可表示成内积的形式,因而小波变换可以视为小波函数与信号相关性或相似性的度量。若所选的小波函数与信号中感兴趣的特征越相似,则小波系数将越大,就越能突出这一特征而抑制信号中的其他成分。因此,与信号特征具有最大相似性可作为最优小波基的选取标准。但由此引出问题:如何度量信号与小波基之间的相似性?由于小波变换的目的在于用少数的小波系数来表征原始信号,因而可将“稀疏性”作为相似性的评价标准之一。
稀疏性的评估参数诸多。对于不含噪声的情形,通常采用l0范数(即数据向量中非零元素的个数)或Shannon熵标准来衡量样本的稀疏性;而对于含有噪声的情形,由于较弱噪声的加入很可能使得原本稀疏的样本变成完全非稀疏的样本,因此需要选取其他参数。常用的方法是应用lp范数来代替l0范数。lp定义如下:
| | x | | p = ( Σ k | x k | p ) 1 / p , p ≤ 1
l0范数是lp范数在p→0时的极限,为了使lp范数尽可能逼近l0范数,通常对p取很小的值,因此本文中取p=0.1。同时,本文采用不同长度的预测算子和更新算子对信号进行冗余提升小波包分解,若信号中感兴趣成分与其中一组预测算子和更新算子对应的小波函数越相似,则得到的小波系数将越大。而根据能量守恒定理,信号中其他成分的小波系数将越小甚至趋近于零。此时,小波系数中的非零元素个数将减少,系数变得更为稀疏,对应的lp范数也将越小。因此,本文取分解所得系数的lp范数最小者对应的预测算子和更新算子为最优算子。
为了简化计算和便于比较,对由小波包分解得到的系数作归一化处理并求lp范数。设第j-1层待分解的小波包节点信号为xj-1,m(m=1,2,Λ2j-1)。则经过分解,可得第j层的小波包系数为xj,n(n=1,2,Λ2j)。对xj,n求归一化lp范数,即:
| | x j , n | | p = ( Σ k | x j , n , k / Σ k x j , n , k | p ) 1 / p , p ≤ 1 ; n = 1,2 , Λ 2 j
式中,xj,n,k第j层的第n个小波包系数中的第k个元素。由于小波包分解同时进行低频和高频的分解,因此取:
||xj-1,m||p=||xj,2m-1||p+||xj,2m||p,p≤1;m=1,2,Λ2j-1
式中,||xj-1,n||p为被分解的第j-1层的第n个小波包节点信号的归一化lp范数。由于本文选用六组小波函数对xj-1,m进行分解,因此各xj-1,m均可得到六个||xj-1,n||p,选其中取值最小者对应的那组预测算子和更新算子为最优算子。
如图5所示,小波包分解第一层中比较得到最小的S1范数值。
例如:若②最小,则对于节点信号S0来说,(12,4)为最优算子,保留(12,4)分解得到的S1低频信号和S1高频信号作为下一层的分解。
小波包分解第二层中比较得到最小的S2范数值(S1低频信号分解得到)。
例如:若④最小,则取(20,4)对S1低频进行分解,并保留分解的信号作为继续一层的分解。
同理,小波包分解第三层中取(4,4)。
各层各个节点算得的lp范数如下表所示:
表1:各个节点的lp范数(×1029)
根据表1可得各个节点作进一步小波包分解时选用的最优预测算子和更新算子分别为:
表2:各个节点的最优预测算子和更新算子
节点 (0,1) (1,1) (1,2) (2,1) (2,2) (2,3) (2,4)
算子 (20,12) (20,12) (4,4) (20,20) (20,4) (4,4) (20,4)
根据表2应用最优预测算子和更新算子进行非线性冗余提升小波包分解,得到各个节点的时域图如图6所示。
综上可知,非线性冗余提升小波包算法可分为如下五个步骤:
(1)确定分解层数i;
(2)选取具有不同消失矩的一共六组小波函数对xj-1,m(1≤j≤i)进行小波包分解;
(3)对分解得到的xj,n求归一化lp范数;
(4)取最小的||xj-1,n||p对应的预测算子和更新算子为xj-1,m的最优算子;
(5)重复上述步骤(2)-(4),直到i层分解全部完成。
解决频带交错运算。所述小波包逐层分解过程中,对各层的高频节点进行小波包分解时,将所得的高、低频两个节点信息进行互换。
消除频率混叠的运算。小波包逐层分解过程中,对小波包分解得到的各个节点信号进行FFT变换,再将各节点所在频带范围以外的频率成分置零,再对经过处理的信号进行IFFT变换。
步骤(2)、对步骤(1)得到的最后一层的各个节点求取归一化能量,选取能量最大的节点;
从图7中的小波包能量图上可以看出最后一层八个节点的能量分布及对比情况,其中以节点(3,2)对应的能量最大,因此对(3,2)作单支重构及希尔伯特解调处理。
步骤(3)、对步骤(2)选取的节点进行单支小波包逆向重构,得到轴承设备振动重构信号;
所述小波包逆向重构采用的预测算子和更新算子选用各层的最优预测算子和更新算子。
步骤(3)中,所述小波包逆向重构过程中,将所得的高、低频两个节点信息进行互换。
例如:若P(3,2)能量最大,则对P(3,2)逐层单支重构,将(3,1)(3,3)……(3,8)全部置零。
如图8所示重构的路径为(3,2)→(2,1)→(1,1)最终的重构信号。
根据分解过程选取的最优算子,确定(2,1)、(1,1)、(0,1)分别所用的算子。
例如:分解是(0,1)(既原始信号)的最优算子为(12,4),(1,1)最优算子(20,4),(2,1)最优算子(4,4)。则重构时第三层分解(3,2)用(4,4)为算子→第二层分解(2,1)用(20,4)算子→第一层(1,1)用(12,4)算子→最终单支重构信号。
为了验证本发明方法的优越性,取信号的局部频谱图,将两者结果加以比较,如图9所示,比较的结果进行分析可得:
(1)从图9(b)中可以发现117.2Hz的频率成分,以及其二倍频234.4Hz和三倍频351.6Hz,并且二倍频成分较为突出;
(2)从图9(a)中无法找出上述频率;
(3)根据上述比较情况可知,本发明方法更具有优越性;
(4)图中117.2Hz这一基频与计算得到的精轧机增速箱南输出端水平方向轴承的外圈故障特征频率119.5253Hz十分接近,在频率分辨率的范围之内。因此,判断该轴承发生外圈故障,该分析结果与2009年3月中旬拆箱检修的结果完全一致。

Claims (3)

1.通过非线性冗余提升小波包处理轴承设备振动信号的方法,其特征在于:它包括以下步骤:
步骤(1)、采用六组预测算子和更新算子对轴承设备振动原始信号进行小波包逐层分解的步骤;
所述六组预测算子和更新算子通过以下方式获得:
选取N=4,12,20和
N、分别表示预测算子和更新算子的长度,其组合表示为(N和),以此组合一共得到(4,4)、(12,4)、(12,12)、(20,4)、(20,12)和(20,20)六种组合;
将上述六种组合分别带入系数的计算公式中,计算公式为:
p i = Π i = 1 N i ≠ j ( N + 1 ) / 2 - i j - i
得到六组系数,再用多孔算法对上述六组系数进行插值补零处理,得到六组预测算子和更新算子;
所述小波包逐层分解过程中,均计算每一层小波包分解结果的lp范数,以lp范数取值最小值时对应的预测算子和更新算子为该层的最优预测算子和更新算子;
步骤(2)、对步骤(1)得到的最后一层的各个节点求取归一化能量,选取能量最大的节点;
步骤(3)、对步骤(2)选取的节点进行单支小波包逆向重构,得到轴承设备振动重构信号;
所述小波包逆向重构采用的预测算子和更新算子选用各层的最优预测算子和更新算子。
2.如权利要求1所述的方法,其特征在于:步骤(1)中,所述小波包逐层分解过程中,对各层的高频节点进行小波包分解时,将所得的高、低频两个节点信息进行互换;
步骤(3)中,所述小波包逆向重构过程中,将所得的高、低频两个节点信息进行互换。
3.如权利要求1或2所述的方法,其特征在于:步骤(1)中,所述小波包逐层分解过程中,对小波包分解得到的各个节点信号进行FFT变换,再将各节点所在频带范围以外的频率成分置零,再对经过处理的信号进行IFFT变换。
CN201110424825.2A 2010-12-16 2011-12-16 通过非线性冗余提升小波包处理轴承设备振动信号的方法 Expired - Fee Related CN102519725B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110424825.2A CN102519725B (zh) 2010-12-16 2011-12-16 通过非线性冗余提升小波包处理轴承设备振动信号的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010592144.2 2010-12-16
CN201010592144 2010-12-16
CN201110424825.2A CN102519725B (zh) 2010-12-16 2011-12-16 通过非线性冗余提升小波包处理轴承设备振动信号的方法

Publications (2)

Publication Number Publication Date
CN102519725A CN102519725A (zh) 2012-06-27
CN102519725B true CN102519725B (zh) 2014-08-20

Family

ID=46290721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110424825.2A Expired - Fee Related CN102519725B (zh) 2010-12-16 2011-12-16 通过非线性冗余提升小波包处理轴承设备振动信号的方法

Country Status (1)

Country Link
CN (1) CN102519725B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831325B (zh) * 2012-09-04 2016-03-30 北京航空航天大学 一种基于高斯过程回归的轴承故障预测方法
CN102901630A (zh) * 2012-10-29 2013-01-30 宣化钢铁集团有限责任公司 基于自适应冗余提升小波降噪分析的轴承故障识别方法
CN104655423B (zh) * 2013-11-19 2017-09-15 北京交通大学 一种基于时频域多维振动特征融合的滚动轴承故障诊断方法
CN103728132A (zh) * 2013-12-19 2014-04-16 杭州嘉诚机械有限公司 减速机传动效率/故障检测系统及方法
CN103926075B (zh) * 2014-03-28 2017-01-18 中能电力科技开发有限公司 一种提高风电机组齿轮箱故障分析精度的方法
CN103926097B (zh) * 2014-04-03 2017-01-18 北京工业大学 一种用于采集和提取低速重载设备故障特征信息的方法
CN104713712B (zh) * 2015-01-27 2017-04-19 西安交通大学 一种基于匹配解调变换的转子碰摩故障检测方法及系统
CN105509876B (zh) * 2015-12-04 2018-08-28 中国人民解放军国防科学技术大学 欠采样叶端定时振动信号重构方法及其装置
CN105466550B (zh) * 2015-12-04 2018-08-28 中国人民解放军国防科学技术大学 非均匀欠采样叶端定时振动信号重构方法及其装置
CN106404399B (zh) * 2016-11-03 2019-03-26 北京印刷学院 基于自适应冗余提升小波包分解树的轴承故障诊断方法
CN110057583A (zh) * 2019-03-01 2019-07-26 西人马(西安)测控科技有限公司 一种轴承故障识别方法、装置及计算机设备
CN111079591B (zh) * 2019-12-04 2024-01-02 国网天津市电力公司电力科学研究院 基于改进多尺度主成分分析的不良数据修复方法及系统
CN111843615B (zh) * 2020-06-29 2021-07-20 中南大学 一种超声振动辅助加工中材料的断裂韧性的快速识别方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634589A (zh) * 2009-08-21 2010-01-27 武汉钢铁(集团)公司 一种设备振动信号的处理方法
CN101794116A (zh) * 2010-02-09 2010-08-04 西安交通大学 一种火炮间隙特征的检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315970B2 (en) * 2008-10-20 2012-11-20 Neurochip Corporation Method and rhythm extractor for detecting and isolating rhythmic signal features from an input signal using the wavelet packet transform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634589A (zh) * 2009-08-21 2010-01-27 武汉钢铁(集团)公司 一种设备振动信号的处理方法
CN101794116A (zh) * 2010-02-09 2010-08-04 西安交通大学 一种火炮间隙特征的检测方法

Also Published As

Publication number Publication date
CN102519725A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN102519725B (zh) 通过非线性冗余提升小波包处理轴承设备振动信号的方法
Wang et al. Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings
Ding et al. Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
CN104881567A (zh) 一种基于统计模型的桥梁健康监测数据小波降噪方法
CN101930598B (zh) 基于shearlet域非局部均值的自然图像去噪方法
CN108731945B (zh) 一种航空发动机转子系统故障信号特征信息的提取方法
CN101404084A (zh) 基于Wavelet和Curvelet变换的红外图像背景抑制方法
WO2015172661A1 (zh) 一种适用于微网谐波监测的压缩感知重构方法
CN101949895B (zh) 一种金属拉深件微小裂纹冲击性信号的识别方法
CN102866027A (zh) 基于lmd和局域时频熵的旋转机械故障特征提取方法
Wang et al. Application of the dual-tree complex wavelet transform in biomedical signal denoising
CN111275244B (zh) 一种车速时间序列分频预测方法
CN104020402A (zh) 一种脉冲触发采集的变电站局部放电脉冲信号降噪方法
CN112002341B (zh) 语音信号的参数化表达、加密传输和重构的方法
CN105426822A (zh) 基于双树复小波变换的非平稳信号多重分形特征提取方法
Lin et al. Application of the EEMD method to multiple faults diagnosis of gearbox
CN115730199B (zh) 一种滚动轴承振动信号降噪和故障特征提取方法和系统
CN104052494A (zh) 面向频域稀疏信号的信号重构方法
CN110398364A (zh) 基于共振稀疏分解和FastICA算法的行星齿轮箱故障诊断方法
CN101634589A (zh) 一种设备振动信号的处理方法
CN113268924B (zh) 基于时频特征的变压器有载分接开关故障识别方法
CN103926097B (zh) 一种用于采集和提取低速重载设备故障特征信息的方法
CN107340133A (zh) 一种基于拟合提升小波和高阶累积分析的轴承状态监测方法
CN104502820A (zh) 基于二维小波变换的变压器局部放电图谱去噪方法
CN101527036A (zh) 基于邻域加窗的提升小波图像去噪方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140820

Termination date: 20161216