CN107189090A - 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法 - Google Patents

海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法 Download PDF

Info

Publication number
CN107189090A
CN107189090A CN201710506021.4A CN201710506021A CN107189090A CN 107189090 A CN107189090 A CN 107189090A CN 201710506021 A CN201710506021 A CN 201710506021A CN 107189090 A CN107189090 A CN 107189090A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
alginate
network gel
gel
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710506021.4A
Other languages
English (en)
Inventor
庄媛
石宝友
孔岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201710506021.4A priority Critical patent/CN107189090A/zh
Publication of CN107189090A publication Critical patent/CN107189090A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法。该制备方法包括:(1)将聚乙烯醇、海藻酸钠和纳米材料溶解于水中,混合均匀得到混合溶液;(2)配制二价盐离子溶液,将混合溶液逐滴滴入二价盐离子溶液中,静置获得纳米复合海藻酸盐‑聚乙烯醇单网络凝胶;(3)将纳米复合海藻酸盐‑聚乙烯醇单网络凝胶进行冷冻,之后再进行解冻,反复多次进行冷冻‑解冻循环,使得聚乙烯醇交联形成凝胶,获得纳米复合海藻酸盐‑聚乙烯醇双网络凝胶。与现有技术相比,本发明的工艺简单、易于推广,制得的海藻酸盐‑聚乙烯醇纳米复合双网络凝胶具有更好的吸附能力和优良的机械性能。

Description

海藻酸盐-聚乙烯醇纳米复合双网络凝胶及其制备方法
技术领域
本发明属于凝胶研究技术领域,具体涉及一种海藻酸盐-聚乙烯醇纳米复合双网络凝胶及其制备方法。
背景技术
海藻酸钠是从褐藻类的海带或马尾藻中提取的一种天然多糖碳水化合物。海藻酸钠具有增稠性好、成膜性好、凝胶强度高、成丝性好等优点。聚乙烯醇一般由聚醋酸乙烯酯经醇解、水解或氨解而制得,无毒无味,具有良好的水溶性和成膜性。海藻酸钠和聚乙烯醇均具有良好的生物相容性,无毒、可降解,亲水性好,柔韧性好,有良好的成膜性能。近年来许多研究将两者进行复合,二者可通过氢键发生相互作用以增强机械性能。
许多研究将海藻酸盐与聚乙烯醇进行复合,例如,申请号为201610332640.1的中国发明专利公布了官能团修饰海藻酸盐-石墨烯双网络纳米复合凝胶球的制备方法,在酸性、碱性或中性水溶液中,加入氧化石墨烯、海藻酸钠和聚乙烯醇,通过超声和搅拌直至形成均匀溶液。将所述混合溶液滴入二价盐离子溶液中,获得羟基化单网络凝胶球,将凝胶球在含有还原剂的水溶液中水浴加热,使石墨烯自组装成为三维结构,获得羟基化双网络纳米复合凝胶球,在该专利中,海藻酸盐与石墨烯分别形成凝胶构建出双网络凝胶,聚乙烯醇未形成凝胶,仅作为材料的羟基修饰与该双网络凝胶进行复合。申请号为200510131146.0的中国发明专利公布了一种海藻酸盐/聚乙烯醇复合纤维及其制备方法,将海藻酸钠溶液与聚乙烯醇混合制成纺丝液,通过湿法纺丝机制备为复合纤维。该复合纤维具有较好的强力、弹性以及生物相容性,在该专利中利用纺丝使得海藻酸钠交联形成纤维,但未使得聚乙烯醇形成凝胶。
近年来,在凝胶研究领域,为提高凝胶的机械性能,已出现了双网络凝胶的概念,即两种凝胶通过非共价键复合,并能够在同一体系中独立存在,已有多项研究表明双网络凝胶的机械性能高于单网络,且高于其中任一组分的单一凝胶。但是,目前双网络凝胶的研究主要集中在少数合成高分子领域,如聚丙烯酰胺、聚丙烯酸、聚乙二醇酯等,有的需借助交联剂、引发剂,有的具有高度毒性,容易引起污染,也不利于应用于生物医药领域。
发明内容
有鉴于此,本发明的目的是提供一种海藻酸盐-聚乙烯醇纳米复合双网络凝胶及其制备方法,以期解决上述现有技术中存在的至少部分技术问题。
为实现上述目的,本发明一方面提供一种海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其包括步骤:
(1)将聚乙烯醇、海藻酸钠和纳米材料溶解于水中,混合均匀得到混合溶液;
(2)配制二价盐离子溶液,将步骤(1)制得的混合溶液逐滴滴入二价盐离子溶液中,静置,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得纳米复合海藻酸盐-聚乙烯醇单网络凝胶;
(3)将步骤(2)制得的纳米复合海藻酸盐-聚乙烯醇单网络凝胶进行冷冻,之后再进行解冻,解冻后再进行冷冻,反复多次进行冷冻-解冻循环,使得聚乙烯醇交联形成凝胶,获得纳米复合海藻酸盐-聚乙烯醇双网络凝胶。
其中,优选地,步骤(1)所述混合的方法采用机械搅拌和/或超声。
其中,优选地,步骤(1)所述的混合溶液中,聚乙烯醇的浓度为0.1~200mg/mL,更优选20~80mg/mL;海藻酸钠的浓度为0.1~200mg/mL,更优选20~80mg/mL;纳米材料的浓度为0.01~100mg/mL,更优选5~20mg/mL。
其中,步骤(2)所述的二价盐离子溶液,由于Mg2+不能使海藻酸钠发生交联反应,所以所述的二价盐离子溶液可以是除了Mg2+以外的所有二价盐离子溶液。优选地,所述静置的时间不少于24h。所述的二价盐离子溶液优选CaCl2溶液或BaCl2溶液。所述二价盐离子溶液的浓度可以为0.1mg/mL~饱和浓度,更优选10mg/mL。
其中,优选地,步骤(3)所述的循环中,冷冻温度为-10~-80℃,更优选-20~-60℃;解冻温度为1~80℃,更优选在室温下进行;循环次数大于1,更优选3~8次。
本发明的另一方面还提供由上述制备方法制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
本发明的再一方面还提供一种吸附剂,其包括上述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
与现有技术相比,本发明具有下述积极进步效果:
1)本发明的工艺简单、易于推广,制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶,比传统研究中单网络凝胶及其纳米复合材料具有更好的吸附能力。
2)本发明制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶中,纳米材料与双网络相互支撑,具有优良的机械性能。
附图说明
图1为实施例1中制得的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶(即碳纳米管支撑是海藻酸钙-聚乙烯醇单、双网络凝胶)球的光学照片。
图2为实施例1中制得的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶球对亚甲基蓝的去除率,其中,横坐标表示碳纳米管的添加量,纵坐标表示对亚甲基蓝的吸附率。
图3为实施例1中制得的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶的压缩弹性模量。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
实施例1
本实施例中,一种海藻酸盐-聚乙烯醇纳米复合双网络凝胶采用以下步骤制备而成:
取4个烧杯,分别依次编号1、2、3和4号,向各个烧杯中均加入聚乙烯醇2g和海藻酸钠2g,再向1~4号烧杯中分别依次加入碳纳米管0g、0.5g、1g和2g,均加入去离子水100mL。机械搅拌和超声12h,制得均匀的混合溶液。
配制10mg/mL的CaCl2溶液,将步骤(1)制得的混合溶液逐滴滴入CaCl2溶液中,浸泡24h,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得海藻酸盐/聚乙烯醇纳米复合单网络凝胶。
将海藻酸盐/聚乙烯醇纳米复合单网络凝胶在-20℃冷冻22h后,取出在室温下解冻2h,解冻后再进行冷冻,反复3次循环,使得聚乙烯醇交联形成凝胶,获得海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
以碳纳米管添加量1g(浓度10mg/mL)制备得到的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶球的光学照片如图1所示,由图1中可以看出,双网络凝胶比单网络凝胶表面更为粗糙,粗糙的表面将更加有利于凝胶球在吸附中与污染物的接触。
以碳纳米管添加量为0g和10g制备的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶球对亚甲基蓝的去除率如图2所示(亚甲基蓝初始浓度为500mg/mL,溶液体积40mL,投加量凝胶干重0.05g)。由图2中可以看出,添加碳纳米管的凝胶比未添加碳纳米管的凝胶吸附量更大,双网络凝胶的吸附量大于相同制备浓度的单网络凝胶,可见碳纳米管的添加提高了双网络凝胶体系的吸附性能,且双网络凝胶能够比单网络凝胶更好地与碳纳米管起到相互支撑的作用。
不同碳纳米管浓度下的海藻酸盐-聚乙烯醇纳米复合单、双网络凝胶的压缩弹性模量如图3所示,可见凝胶的压缩弹性模量随着碳纳米管的添加量增大而增大,且双网络凝胶的模量高于单网络凝胶,可见碳纳米管的添加增强了凝胶的机械性能,进一步表明了双网络凝胶能够比单网络凝胶更好地与碳纳米管起到相互支撑的作用,使得凝胶的机械性能更强。
实施例2
取4个烧杯,分别依次编号5、6、7和8号,向各个烧杯中均加入聚乙烯醇2g和海藻酸钠8g,再向5~8号烧杯中分别依次加入碳纳米管0g、0.5g、1g和2g,均加入去离子水100mL。机械搅拌和超声12h,制得均匀的混合溶液。
配制10mg/mL的CaCl2溶液,将混合溶液逐滴滴入CaCl2溶液中,浸泡一定时间,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得海藻酸盐-聚乙烯醇纳米复合单网络凝胶。
将聚乙烯醇-海藻酸盐纳米复合单网络凝胶在-20℃冷冻22h后,取出在室温下解冻2h,解冻后再进行冷冻,反复3次循环,使得聚乙烯醇交联形成凝胶,获得海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
测试制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的吸附能力、机械强度以及压缩弹性模量。结果表明,编号6样品所得海藻酸盐-聚乙烯醇纳米复合单网络凝胶的弹性模量为0.06MPa、对亚甲基蓝的去除率为68.2%,所得海藻酸盐-聚乙烯醇纳米复合双网络凝胶的弹性模量为0.11MPa、对Cu2+的吸附性能为73.4%。
实施例3
取4个烧杯,分别依次编号9、10、11和12号,向各个烧杯中均加入聚乙烯醇8g和海藻酸钠8g,再向9~12号烧杯中分别依次加入碳纳米管0g、0.5g、1g和2g,均加入去离子水100mL。机械搅拌和超声12h,制得均匀的混合溶液。
配制10mg/mL的BaCl2溶液,将混合溶液逐滴滴入BaCl2溶液中,浸泡一定时间,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得海藻酸盐-聚乙烯醇纳米复合单网络凝胶。
将聚乙烯醇-海藻酸盐纳米复合单网络凝胶在-20℃冷冻22h后,取出在室温下解冻2h,解冻后再进行冷冻,反复3次循环,使得聚乙烯醇交联形成凝胶,获得海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
测试制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的吸附能力、机械强度以及压缩弹性模量。结果表明,编号10样品所得海藻酸盐-聚乙烯醇纳米复合单网络凝胶的弹性模量为0.05MPa、对亚甲基蓝的去除率为61.1%,所得海藻酸盐-聚乙烯醇纳米复合双网络凝胶的弹性模量为0.10MPa、对Cu2+的吸附性能为69.7%。
实施例4
取4个烧杯,分别依次编号13、14、15和16号,向各个烧杯中均加入聚乙烯醇8g和海藻酸钠8g,再向13~16号烧杯中分别依次加入二氧化钛0g、0.5g、1g和2g,均加入去离子水100mL。机械搅拌和超声12h,制得均匀的混合溶液。
配制10mg/mL的CaCl2溶液,将混合溶液逐滴滴入CaCl2溶液中,浸泡一定时间,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得海藻酸盐-聚乙烯醇纳米复合单网络凝胶。
将聚乙烯醇-海藻酸盐纳米复合单网络凝胶在-20℃冷冻22h后,取出在室温下解冻2h,解冻后再进行冷冻,反复3次循环,使得聚乙烯醇交联形成凝胶,获得海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
测试制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的吸附能力、机械强度以及压缩弹性模量。结果表明,编号14样品所得海藻酸盐-聚乙烯醇纳米复合单网络凝胶的弹性模量为0.08MPa、对亚甲基蓝的去除率为68.5%,所得海藻酸盐-聚乙烯醇纳米复合双网络凝胶的弹性模量为0.15MPa、对Cu2+的吸附性能为75.8%。
实施例5
取4个烧杯,分别依次编号17、18、19和20号,向各个烧杯中均加入聚乙烯醇8g和海藻酸钠8g,再向17~20号烧杯中分别依次加入碳纳米管0g、0.5g、1g和2g,均加入去离子水100mL。机械搅拌和超声12h,制得均匀的混合溶液。
配制10mg/mL的CaCl2溶液,将混合溶液逐滴滴入CaCl2溶液中,浸泡一定时间,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得海藻酸盐-聚乙烯醇纳米复合单网络凝胶。
将聚乙烯醇-海藻酸盐纳米复合单网络凝胶在-20℃冷冻22h后,取出在室温下解冻2h,解冻后再进行冷冻,反复3次循环,使得聚乙烯醇交联形成凝胶,获得海藻酸盐-聚乙烯醇纳米复合单网络凝胶。
测试制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的吸附能力、机械强度以及压缩弹性模量。结果表明,编号18样品所得海藻酸盐-聚乙烯醇纳米复合单网络凝胶的弹性模量为0.06MPa、对亚甲基蓝的去除率为64.9%,所得海藻酸盐-聚乙烯醇纳米复合双网络凝胶的弹性模量为0.12MPa、对Cu2+的吸附性能为72.3%。
从上述各实施例可以看出,本发明的工艺简单,制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶具有很强的吸附能力和优良的机械性能。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其包括步骤:
(1)将聚乙烯醇、海藻酸钠和纳米材料溶解于水中,混合均匀得到混合溶液;
(2)配制二价盐离子溶液,将步骤(1)制得的混合溶液逐滴滴入二价盐离子溶液中,静置,使得海藻酸钠与二价金属交联形成海藻酸盐凝胶,获得纳米复合海藻酸盐-聚乙烯醇单网络凝胶;
(3)将步骤(2)制得的纳米复合海藻酸盐-聚乙烯醇单网络凝胶进行冷冻,之后再进行解冻,解冻后再进行冷冻,反复多次进行冷冻-解冻循环,使得聚乙烯醇交联形成凝胶,获得纳米复合海藻酸盐-聚乙烯醇双网络凝胶。
2.根据权利要求1所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其中,步骤(1)所述混合的方法采用机械搅拌和/或超声。
3.根据权利要求1所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其中,步骤(1)所述的混合溶液中,聚乙烯醇的浓度为0.1~200mg/mL,更优选20~80mg/mL;海藻酸钠的浓度为0.1~200mg/mL,更优选20~80mg/mL;纳米材料的浓度为0.01~100mg/mL,更优选5~20mg/mL。
4.根据权利要求1所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其中,步骤(2)所述静置的时间不少于24h。
5.根据权利要求1所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,步骤(2)所述的二价盐离子溶液为CaCl2溶液或BaCl2溶液。
6.根据权利要求5所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,所述二价盐离子溶液的浓度为10mg/mL。
7.根据权利要求1所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶的制备方法,其中,优选地,步骤(3)所述的循环中,冷冻温度为-10~-80℃,更优选-20~-60℃;解冻温度为1~80℃,更优选在室温下进行;循环次数大于1,更优选3~8次。
8.由权利要求1~7任一项所述的制备方法制得的海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
9.一种吸附剂,其包括权利要求8所述的海藻酸盐-聚乙烯醇纳米复合双网络凝胶。
CN201710506021.4A 2017-06-28 2017-06-28 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法 Pending CN107189090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710506021.4A CN107189090A (zh) 2017-06-28 2017-06-28 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710506021.4A CN107189090A (zh) 2017-06-28 2017-06-28 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN107189090A true CN107189090A (zh) 2017-09-22

Family

ID=59881581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710506021.4A Pending CN107189090A (zh) 2017-06-28 2017-06-28 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN107189090A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057422A (zh) * 2017-12-14 2018-05-22 中国科学院生态环境研究中心 一种醇桥联增强多孔羟基氧化铁-石墨烯纳米复合水凝胶及其制备方法与应用
CN108439478A (zh) * 2018-04-16 2018-08-24 中国科学院生态环境研究中心 三维纳米铁氧化物、其凝胶原位制备方法及其应用
CN108479714A (zh) * 2018-04-16 2018-09-04 中国科学院生态环境研究中心 具有吸附-催化双功能的磁性生物大分子多孔水凝胶及其制备方法
CN109433154A (zh) * 2018-11-26 2019-03-08 中国科学院生态环境研究中心 三维网状石墨烯气凝胶、其制备方法及其应用
CN109535619A (zh) * 2018-09-29 2019-03-29 浙江工业大学 海藻酸钠/聚乙烯醇复合水凝胶及其制备方法与应用
CN109603750A (zh) * 2018-12-27 2019-04-12 曲阜师范大学 一种包含Fe3O4-GQDs的复合凝胶吸附膜的制备方法
CN110639483A (zh) * 2019-10-24 2020-01-03 国网安徽省电力有限公司电力科学研究院 一种氧化半交联凝胶原位高效处理脱硫废水的方法
CN112774649A (zh) * 2021-01-12 2021-05-11 陕西科技大学 一种碳纳米管型吸附材料及其制备方法及应用
CN114011391A (zh) * 2021-12-23 2022-02-08 重庆大学 用于吸附废水中有机物双网络凝胶的制备方法
CN115386144A (zh) * 2022-04-14 2022-11-25 河北科技大学 一种抗氧化保鲜膜及其制备方法
CN116120619A (zh) * 2023-01-06 2023-05-16 浙江大学杭州国际科创中心 一种超大孔水凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YA PANG ET AL.: ""Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes"", 《BIORESOURCE TECHNOLOGY》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057422A (zh) * 2017-12-14 2018-05-22 中国科学院生态环境研究中心 一种醇桥联增强多孔羟基氧化铁-石墨烯纳米复合水凝胶及其制备方法与应用
CN108439478A (zh) * 2018-04-16 2018-08-24 中国科学院生态环境研究中心 三维纳米铁氧化物、其凝胶原位制备方法及其应用
CN108479714A (zh) * 2018-04-16 2018-09-04 中国科学院生态环境研究中心 具有吸附-催化双功能的磁性生物大分子多孔水凝胶及其制备方法
CN109535619A (zh) * 2018-09-29 2019-03-29 浙江工业大学 海藻酸钠/聚乙烯醇复合水凝胶及其制备方法与应用
CN109433154A (zh) * 2018-11-26 2019-03-08 中国科学院生态环境研究中心 三维网状石墨烯气凝胶、其制备方法及其应用
CN109603750B (zh) * 2018-12-27 2021-11-16 曲阜师范大学 一种包含Fe3O4-GQDs的复合凝胶吸附膜的制备方法
CN109603750A (zh) * 2018-12-27 2019-04-12 曲阜师范大学 一种包含Fe3O4-GQDs的复合凝胶吸附膜的制备方法
CN110639483A (zh) * 2019-10-24 2020-01-03 国网安徽省电力有限公司电力科学研究院 一种氧化半交联凝胶原位高效处理脱硫废水的方法
CN112774649A (zh) * 2021-01-12 2021-05-11 陕西科技大学 一种碳纳米管型吸附材料及其制备方法及应用
CN114011391A (zh) * 2021-12-23 2022-02-08 重庆大学 用于吸附废水中有机物双网络凝胶的制备方法
CN114011391B (zh) * 2021-12-23 2022-11-15 重庆大学 用于吸附废水中有机物双网络凝胶的制备方法
CN115386144A (zh) * 2022-04-14 2022-11-25 河北科技大学 一种抗氧化保鲜膜及其制备方法
CN115386144B (zh) * 2022-04-14 2023-09-19 河北科技大学 一种抗氧化保鲜膜及其制备方法
CN116120619A (zh) * 2023-01-06 2023-05-16 浙江大学杭州国际科创中心 一种超大孔水凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107189090A (zh) 海藻酸盐‑聚乙烯醇纳米复合双网络凝胶及其制备方法
CN107254056A (zh) 一种自愈合聚乙烯醇‑海藻酸盐双网络凝胶及其制备方法
Yue et al. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization
CN104785177B (zh) 一种海藻酸盐‑石墨烯复合双网络凝胶球的制备方法
CN111518309B (zh) 一种生物质纳米纤维素/聚吡咯复合气凝胶及其制备方法和应用
CN110204898A (zh) 一种MXene-凯夫拉微纤复合薄膜的制备方法
CN105713106B (zh) 一种海藻酸钠双交联水凝胶及其制备方法与应用
CN107447517B (zh) 一种快速吸附重金属离子的涤纶非织造布制备方法
CN113234256B (zh) 一种双交联阻燃型复合气凝胶的制备方法
CN110088187A (zh) 多糖气凝胶
CN104558677A (zh) 一种纳米纤维素/壳聚糖复合泡沫的制备方法
CN102031590A (zh) 新型海藻酸钠/羟丙基壳聚糖抗菌共混纤维的制备方法
CN102995401A (zh) 一种壳聚糖改性液预处理桑蚕丝的方法
CN113638078B (zh) 一种聚电解质复合物水凝胶纤维及其制备方法
CN103302708B (zh) 一种新型疏水性木材的制备方法
CN107118361B (zh) 一种丝素蛋白/羧甲基壳聚糖复合凝胶及其制备方法
CN104711702A (zh) 具有抗菌/抑菌功能的胶原集合体复合型医用纤维
CN113577368A (zh) 羧基化壳聚糖医用海绵及其制备方法
Xu et al. Enhanced swelling, mechanical and thermal properties of cellulose nanofibrils (CNF)/poly (vinyl alcohol)(PVA) hydrogels with controlled porous structure
CN104740674A (zh) 一种具有致密-疏松双层结构的壳聚糖基敷料的制备方法
CN115094621A (zh) 一种皮芯型MXene纤维气凝胶及其制备方法
CN114316375A (zh) 一种多级孔结构复合气凝胶及其制备方法
CN103266474B (zh) 一种聚天冬氨酸纳米水凝胶毡的制备方法
CN104606710B (zh) 一种高抗菌性藻酸盐敷料的制备方法
CN103751831A (zh) 一种含改性壳聚糖的活性炭纤维医用敷料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170922