CN107154763A - 永磁同步电机无差拍直接转矩控制系统及控制方法 - Google Patents

永磁同步电机无差拍直接转矩控制系统及控制方法 Download PDF

Info

Publication number
CN107154763A
CN107154763A CN201710390722.6A CN201710390722A CN107154763A CN 107154763 A CN107154763 A CN 107154763A CN 201710390722 A CN201710390722 A CN 201710390722A CN 107154763 A CN107154763 A CN 107154763A
Authority
CN
China
Prior art keywords
msub
msubsup
mrow
stator
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710390722.6A
Other languages
English (en)
Other versions
CN107154763B (zh
Inventor
樊英
王武森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710390722.6A priority Critical patent/CN107154763B/zh
Publication of CN107154763A publication Critical patent/CN107154763A/zh
Application granted granted Critical
Publication of CN107154763B publication Critical patent/CN107154763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种永磁同步电机无差拍直接转矩控制系统及控制方法,解决了永磁同步电机采用传统矢量控制或直接转矩控制分别带来的转矩响应较慢和转矩纹波较大的问题。本发明方法根据永磁同步电机电压、电流、磁链、电磁转矩的关系,在离散状态下利用数值积分原理构造了一种状态观测器,同时引入PI调节器消除观测误差,实现了对下一控制周期系统状态的准确预测,基于该观测器建立永磁同步电机无差拍直接转矩控制系统,在保持转矩响应快的同时减小了转矩纹波,提高了永磁同步电机运行性能。

Description

永磁同步电机无差拍直接转矩控制系统及控制方法
技术领域
本发明属于电机技术领域,尤其涉及一种永磁同步电机无差拍直接转矩控制系统及控制方法。
背景技术
本发明主要应用对象为电动汽车用永磁同步电机。电动汽车用永磁同步电机包括集中驱动式和轮毂驱动式两种。集中驱动式永磁同步电机体积小、重量轻、转矩密度大,轮毂驱动式场调制型永磁轮毂电机(本质也是永磁同步电机)基于磁场调制原理,具有输出低转速、大转矩的特性,它们在电动汽车驱动系统中都有很大的应用前景。目前,电动汽车用永磁同步电机常采用的控制策略为矢量控制,矢量控制算法简单、易于操作,但其转矩响应相对较慢。为了提高转矩响应,可采用直接转矩控制。直接转矩控制具有较快的转矩响应,但其采用滞环控制的方法带来了逆变器开关频率不固定、转矩纹波较大等问题。无差拍直接转矩控制是一种改进的控制策略,利用永磁同步电机的数学模型,在离散状态下根据转矩和磁链的给定值直接计算出参考电压矢量,在母线电压满足要求的情况下可以实现在一个控制周期内消除转矩和磁链误差。但是由于采样和计算时间的存在,当前控制周期产生的控制信号必需等到下一控制周期才能给到逆变器,这严重影响了系统的稳定性。
为了解决无差拍直接转矩控制一周期延迟的问题,使无差拍直接转矩控制能在永磁同步电机中有效应用,可以利用状态观测器在当前控制周期预测出下一控制周期系统的状态,并通过无差拍控制算法计算出下一控制周期应产生的控制信号,在下一控制周期开始时给到逆变器,消除延迟。
发明内容
发明目的:为了解决现有技术中永磁同步电机采用矢量控制或直接转矩控制分别带来的转矩响应较慢和转矩纹波较大的问题,本发明提出了一种永磁同步电机无差拍直接转矩控制系统及控制方法,基于离散状态观测器对定子电流进行预测,实现永磁同步电机无差拍直接转矩控制。
技术方案:为了实现上述目的,本发明中永磁同步电机无差拍直接转矩控制系统,包括:编码器、状态观测器、无差拍控制器、SVPWM调制模块、逆变器;对于某一控制周期k,
所述编码器用于获取电机旋转电角速度ωr和电机转速n;利用所述电机转速n与转速给定值nref的偏差通过PI调节器计算电磁转矩给定值Teref
所述状态观测器用于根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期定子磁链的预测值和电磁转矩的预测值Te*
所述无差拍控制器以电磁转矩给定值Teref与电磁转矩预测值Te*所求得的转矩偏差ΔTe以及定子磁链的预测值作为输入参数计算参考电压vd和vq
所述SVPWM调制模块根据所述参考电压vd和vq经Park逆变换所得到的两相电压生成逆变器的控制信号;
所述逆变器用于根据所述控制信号控制永磁同步电机的电压。
其中,所述状态观测器包括电流预测模块、磁链预测模块和转矩预测模块。
所述电流预测模块用于利用观测器方程根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期定子电流的初始预测值将上一控制周期对当前控制周期定子电流的预测值与当前控制周期定子电流的实际值之间的误差输入PI调节器,利用PI调节器根据该误差值计算并输出误差补偿值,将该误差补偿值与所述定子电流初始预测值相加进而得到最终的定子电流预测值
所述磁链预测模块用于利用磁链方程根据对下一控制周期定子电流的预测值计算下一控制周期定子磁链的预测值
所述转矩预测模块用于利用转矩方程根据对下一控制周期定子电流的预测值和定子磁链的预测值计算电磁转矩的预测值Te*
相应地,本发明还公开了一种永磁同步电机无差拍直接转矩控制方法,应用于上述控制系统,该方法包括以下步骤:
所述编码器获取电机旋转电角速度ωr和电机转速n;
所述电机转速n与转速给定值nref的偏差通过PI调节器计算电磁转矩给定值Teref
所述状态观测器根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期的定子磁链的预测值和电磁转矩的预测值Te*
所述无差拍控制器以电磁转矩给定值Teref与电磁转矩预测值Te*所求得的转矩偏差ΔTe以及定子磁链预测值作为输入参数计算参考电压vd和vq
所述SVPWM调制模块根据所述参考电压vd和vq经Park逆变换所得到的两相电压生成逆变器的控制信号;
所述逆变器根据所述控制信号控制永磁同步电机的电压。
其中,所述状态观测器计算下一控制周期的定子磁链的预测值和电磁转矩的预测值Te*,包括以下步骤:
利用观测器方程根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期定子电流的初始预测值
将上一控制周期对当前控制周期定子电流的预测值与当前控制周期定子电流的实际值之间的误差输入PI调节器,利用PI调节器根据该误差值计算并输出误差补偿值,将该误差补偿值与所述定子电流初始预测值相加进而得到最终的定子电流预测值
利用磁链方程根据对下一控制周期定子电流的预测值计算下一控制周期定子磁链的预测值
利用转矩方程根据下一控制周期定子电流的预测值和定子磁链的预测值计算电磁转矩的预测值Te*
有益效果:本发明中永磁同步电机无差拍直接转矩控制系统及控制方法,采用离散状态观测器,能够利用当前控制周期的定子电流、定子电压以及转速采样值准确地预测下一控制周期的定子电流,进而计算出下一控制周期永磁同步电机定子磁链和电磁转矩的预测值,利用无差拍控制器计算出下一控制周期的参考电压矢量,并通过SVPWM调制产生控制信号,并在下一控制周期开始时作用到逆变器,实现永磁同步电机的无差拍直接转矩控制。本发明解决了无差拍直接转矩控制存在一周期延迟的问题,使得无差拍直接转矩控制能够运用于永磁同步电机。整体控制系统的转矩脉动小、响应快,大大改善了永磁同步电机的运行性能。
附图说明
图1是本发明中永磁同步电机无差拍直接转矩控制系统的原理框图;
图2是本发明中利用观测器方程求解电流初始预测值的原理框图;
图3是本发明中电流观测器原理框图;
图4是本发明中用于永磁同步电机无差拍直接转矩控制的状态观测器原理框图;
图5是电流观测器MATLAB/Simulink仿真波形;
图6是电流观测器实验波形;
图7是永磁同步电机无差拍直接转矩控制系统实验波形。
具体实施方式
下面结合附图对本发明作更进一步的说明。
图1中的永磁同步电机无差拍直接转矩控制系统主要包括:编码器、状态观测器、无差拍控制器、SVPWM调制模块、逆变器,在一个控制周期内,利用电流传感器测得永磁同步电机a、b相电流ia(k)、ib(k),经Clarke和Park变换得到两相旋转坐标系下的定子电流同样的,将定子相电压做相同的处理得到以及经编码器采样计算得到的电机旋转电角速度ωr输入状态观测器计算下一控制周期定子磁链和电磁转矩的预测值和Te*。利用编码器测得的电机转速n与转速给定值nref的偏差通过PI调节器计算出电磁转矩给定值Teref,进而与电磁转矩预测值Te*求得转矩偏差ΔTe。将转矩偏差ΔTe以及定子磁链的预测值作为无差拍控制器的输入参数,利用无差拍直接转矩控制器计算参考电压vd和vq,并利用SVPWM调制策略得到逆变器的控制信号,控制逆变器运行,控制电机相电压。
在同步旋转dq坐标系中,假设(其中f可表示电压v、电流i、磁链λ等,j为虚数单位),则永磁同步电机定子电压、定子电流以及定子磁链的关系可表示为:
电压方程:
磁链方程:
其中,为定子电压,为定子电流,为直轴电流,为交轴电流,为定子磁链,Rs为定子电阻,L为直轴电感Ld或交轴电感Lq,ωr为电机旋转电角速度,λpm为永磁磁链。离散状态下,用向前差商近似代替导数将(1)和(2)离散化:
由于定子绕组电感的存在,在永磁同步电机运行过程中,定子电流不能突变,而定子电压可以突变。因此离散状态下,可近似认为在一个控制周期内,定子电压是保持不变的,而定子电流线性变化,磁链与电流呈线性关系,定子磁链也线性变化。在一个控制周期内对(3)进行数值积分,其中电压采用向前欧拉法,电流采用梯形法,得到
式中Ts为控制周期时长,在(4)和(5)中,当前控制周期(k)的定子电压定子电流以及电角速度采样值ωr均为已知量,联立方程组可解出计算下一控制周期(k+1)定子电流的初始预测值的观测器方程,见式(6)和(7),式中,为直轴电流的初始预测值,为交轴电流的初始预测值,为直轴电流,为交轴电流,为直轴电压,为交轴电压,其原理框图如图2所示。
为了消除预测误差,在观测器中引入比例积分调节器(PI调节器)构造电流观测器,如图3所示,将上一控制周期(k-1)的定子电流预测值利用离散状态下的延时函数(1/z模块)延时一个控制周期,将该预测值与当前控制周期(k)的定子电流实际采样值之间的误差输入PI调节器,利用PI调节器根据该误差值计算并输出误差补偿值,将该误差补偿值与观测器方程计算出的定子电流初始预测值相加得到最终的定子电流预测值
图4给出了用于永磁同步电机无差拍直接转矩控制的离散状态观测器的原理框图,在上述基础上,根据磁链方程(2),利用定子电流预测值可以预测下一控制周期的定子磁链根据转矩方程(其中p为永磁同步电机的极对数)
可以进一步预测下一控制周期的电磁转矩Te*
上述无差拍控制器数学模型由永磁同步电机模型逆向推导而来,具体表达式为:
式中,
ΔTe为预测电磁转矩与给定电磁转矩的差值,为定子直轴磁链,为定子交轴磁链,λref为定子磁链给定值。
图5给出了电流观测器预测结果的MATLAB/Simulink仿真波形,仿真中控制周期为2kHz,从图中可以看出当前控制周期对下一控制周期定子电流的预测值与下一控制周期的定子电流的采样值基本相等。图6给出了电流观测器预测结果的实验波形,实验中控制周期为5kHz,从图中可以看出当前控制周期对下一控制周期定子电流的预测值与下一控制周期的定子电流采样值基本相同。图7给出了永磁同步电机无差拍直接转矩控制系统实验波形,可见转速、转矩波形较平稳,电流波形THD达到了3.40%。
以上仅是本发明的优选实施方式,应当指出以上实施列对本发明不构成限定,相关工作人员在不偏离本发明技术思想的范围内,所进行的多样变化和修改,均落在本发明的保护范围内。

Claims (6)

1.一种永磁同步电机无差拍直接转矩控制系统,其特征在于,该系统包括:编码器、状态观测器、无差拍控制器、SVPWM调制模块、逆变器,对于某一控制周期k,
所述编码器用于获取电机旋转电角速度ωr和电机转速n;利用所述电机转速n与转速给定值nref的偏差通过PI调节器计算电磁转矩给定值Teref
所述状态观测器用于根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期的定子磁链的预测值和电磁转矩的预测值Te*
所述无差拍控制器以电磁转矩给定值Teref与电磁转矩预测值Te*所求得的转矩偏差ΔTe以及定子磁链预测值作为输入参数计算参考电压vd和vq
所述SVPWM调制模块根据所述参考电压vd和vq经Park逆变换所得到的两相电压生成逆变器的控制信号;
所述逆变器用于根据所述控制信号控制永磁同步电机的定子电压。
2.根据权利要求1所述的永磁同步电机无差拍直接转矩控制系统,其特征在于,所述状态观测器包括电流预测模块、磁链预测模块和转矩预测模块,
所述电流预测模块用于利用观测器方程根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期定子电流的初始预测值将上一控制周期对当前控制周期定子电流的预测值与当前控制周期的定子电流之间的误差输入PI调节器,利用PI调节器根据该误差值计算并输出误差补偿值,将该误差补偿值与所述定子电流的初始预测值相加进而得到最终的定子电流预测值
所述磁链预测模块用于利用磁链方程根据对下一控制周期定子电流的预测值计算下一控制周期的定子磁链预测值
所述转矩预测模块用于利用转矩方程根据对下一控制周期定子电流的预测值和定子磁链的预测值计算电磁转矩的预测值Te*
3.根据权利要求2所述的永磁同步电机无差拍直接转矩控制系统,其特征在于,所述观测器方程为:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <msubsup> <mi>i</mi> <mi>d</mi> <mrow> <mi>r</mi> <mo>*</mo> </mrow> </msubsup> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msubsup> <mi>L</mi> <mi>q</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <msubsup> <mi>i</mi> <mi>q</mi> <mrow> <mi>r</mi> <mo>*</mo> </mrow> </msubsup> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msubsup> <mi>L</mi> <mi>d</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> 1
所述磁链方程为:
<mrow> <msubsup> <mi>&amp;lambda;</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> <mi>r</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
所述转矩方程为:
<mrow> <mi>T</mi> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> <mi>p</mi> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <msubsup> <mi>&amp;lambda;</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mo>-</mo> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <msubsup> <mi>&amp;lambda;</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
式中,为直轴电流的初始预测值,为交轴电流的初始预测值,Ld为直轴电感,Lq为交轴电感,为直轴电流,为交轴电流,Rs为定子电阻,Ts为控制周期时长,为直轴电压,为交轴电压,λpm为永磁磁链,ωr为电机旋转电角速度,为定子磁链,Te为电磁转矩,p为电机极对数,为定子直轴磁链,为定子交轴磁链。
4.一种永磁同步电机无差拍直接转矩控制方法,应用于权利要求1所述的控制系统,其特征在于,该方法包括以下步骤:
所述编码器获取电机旋转电角速度ωr和电机转速n;
利用所述电机转速n与转速给定值nref的偏差通过PI调节器计算电磁转矩给定值Teref
所述状态观测器根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期的定子磁链的预测值和电磁转矩的预测值Te*
所述无差拍控制器以电磁转矩给定值Teref与电磁转矩预测值Te*所求得的转矩偏差ΔTe以及定子磁链预测值作为输入参数计算参考电压vd和vq
所述SVPWM调制模块根据所述参考电压vd和vq经Park变换所得到的两相电压生成逆变器的控制信号;
所述逆变器根据所述控制信号控制永磁同步电机的定子电压。
5.根据权利要求4所述的永磁同步电机无差拍直接转矩控制方法,其特征在于,所述状态观测器计算下一控制周期的定子磁链的预测值和电磁转矩的预测值Te*,包括以下步骤:
利用观测器方程根据当前控制周期永磁同步电机的定子电流和定子电压以及电机旋转电角速度ωr计算下一控制周期定子电流的初始预测值将上一控制周期对当前控制周期定子电流的预测值与当前控制周期的定子电流实际值之间的误差输入PI调节器,利用PI调节器根据该误差值计算并输出误差补偿值,将该误差补偿值与所述定子电流初始预测值相加进而得到最终的定子电流预测值
利用磁链方程根据对下一控制周期定子电流的预测值计算下一控制周期定子磁链的预测值
利用转矩方程根据对下一控制周期定子电流的预测值和定子磁链的预测值计算电磁转矩的预测值Te*
6.根据权利要求5所述的永磁同步电机无差拍直接转矩控制方法,其特征在于,所述观测器方程为:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <msubsup> <mi>i</mi> <mi>d</mi> <mrow> <mi>r</mi> <mo>*</mo> </mrow> </msubsup> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msubsup> <mi>L</mi> <mi>q</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <msubsup> <mi>i</mi> <mi>q</mi> <mrow> <mi>r</mi> <mo>*</mo> </mrow> </msubsup> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>v</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msubsup> <mi>L</mi> <mi>d</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>v</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>4</mn> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msubsup> <mi>T</mi> <mi>s</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
所述磁链方程为:
<mrow> <msubsup> <mi>&amp;lambda;</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> <mi>r</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <msub> <mi>L</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <msub> <mi>L</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
所述转矩方程为:
<mrow> <mi>T</mi> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> <mi>p</mi> <mrow> <mo>(</mo> <msubsup> <mi>i</mi> <mi>q</mi> <mi>r</mi> </msubsup> <msubsup> <mi>&amp;lambda;</mi> <mi>d</mi> <mi>r</mi> </msubsup> <mo>-</mo> <msubsup> <mi>i</mi> <mi>d</mi> <mi>r</mi> </msubsup> <msubsup> <mi>&amp;lambda;</mi> <mi>q</mi> <mi>r</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
式中,为直轴电流的初始预测值,为交轴电流的初始预测值,Ld为直轴电感,Lq为交轴电感,为直轴电流,为交轴电流,Rs为定子电阻,Ts为控制周期时长,为直轴电压,为交轴电压,λpm为永磁磁链,ωr为电机旋转电角速度,为定子磁链,Te为电磁转矩,p为电机极对数,为定子直轴磁链,为定子交轴磁链。
CN201710390722.6A 2017-05-27 2017-05-27 永磁同步电机无差拍直接转矩控制系统及控制方法 Active CN107154763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710390722.6A CN107154763B (zh) 2017-05-27 2017-05-27 永磁同步电机无差拍直接转矩控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710390722.6A CN107154763B (zh) 2017-05-27 2017-05-27 永磁同步电机无差拍直接转矩控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN107154763A true CN107154763A (zh) 2017-09-12
CN107154763B CN107154763B (zh) 2019-04-30

Family

ID=59793828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710390722.6A Active CN107154763B (zh) 2017-05-27 2017-05-27 永磁同步电机无差拍直接转矩控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN107154763B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418486A (zh) * 2018-05-14 2018-08-17 滨州学院 一种高强度永磁材料制成的永磁控制电机
CN108448982A (zh) * 2018-04-08 2018-08-24 天津工业大学 一种基于空间电压矢量预测的直接转矩控制方法
CN108768233A (zh) * 2018-06-28 2018-11-06 中车株洲电力机车有限公司 离散域复矢量建模的永磁同步电机无差拍控制系统及方法
CN109861605A (zh) * 2019-01-29 2019-06-07 东南大学 一种永磁同步电机无差拍转矩预测控制方法
CN110323988A (zh) * 2019-07-30 2019-10-11 中国矿业大学 永磁同步电机低载波比无差拍控制系统及方法
CN111200382A (zh) * 2020-01-10 2020-05-26 西安理工大学 一种非级联的永磁同步电动机无差拍预测控制方法
CN111756307A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具
CN111756280A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 骑乘式割草机
CN111969914A (zh) * 2020-07-21 2020-11-20 北方工业大学 永磁同步电机无差拍电流预测控制方法及设备、存储介质
CN112234894A (zh) * 2020-09-30 2021-01-15 东南大学 可变磁通记忆电机无差拍直接转矩-磁链控制系统及方法
CN112491318A (zh) * 2020-11-20 2021-03-12 天津大学 一种永磁同步电机系统预测转矩控制方法
CN114884419A (zh) * 2022-05-30 2022-08-09 清华大学 一种同步电机的控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904520A (zh) * 2012-10-09 2013-01-30 华东建筑设计研究院有限公司 一种永磁同步电机电流预测控制方法
JP2013062900A (ja) * 2011-09-12 2013-04-04 Denso Corp 回転機の制御装置
KR20130118170A (ko) * 2012-04-19 2013-10-29 삼성테크윈 주식회사 교류 전동기의 구동-전류 값을 예측하는 방법, 및 교류 전동기의 제어 시스템
CN103762926A (zh) * 2014-01-21 2014-04-30 华中科技大学 基于模型预测的开关磁链永磁同步电机的转矩控制方法
CN105490605A (zh) * 2015-12-16 2016-04-13 上海新时达电气股份有限公司 感应电机预测控制模型参数在线调整方法
CN105915135A (zh) * 2016-05-16 2016-08-31 北方工业大学 基于无差拍优化与双矢量模型预测的电机控制方法
CN106059432A (zh) * 2016-08-15 2016-10-26 大连海事大学 一种开关磁阻电机磁链无差拍直接转矩控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062900A (ja) * 2011-09-12 2013-04-04 Denso Corp 回転機の制御装置
KR20130118170A (ko) * 2012-04-19 2013-10-29 삼성테크윈 주식회사 교류 전동기의 구동-전류 값을 예측하는 방법, 및 교류 전동기의 제어 시스템
CN102904520A (zh) * 2012-10-09 2013-01-30 华东建筑设计研究院有限公司 一种永磁同步电机电流预测控制方法
CN103762926A (zh) * 2014-01-21 2014-04-30 华中科技大学 基于模型预测的开关磁链永磁同步电机的转矩控制方法
CN105490605A (zh) * 2015-12-16 2016-04-13 上海新时达电气股份有限公司 感应电机预测控制模型参数在线调整方法
CN105915135A (zh) * 2016-05-16 2016-08-31 北方工业大学 基于无差拍优化与双矢量模型预测的电机控制方法
CN106059432A (zh) * 2016-08-15 2016-10-26 大连海事大学 一种开关磁阻电机磁链无差拍直接转矩控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈殷 等: "永磁同步电机无差拍直接转矩控制系统研究", 《机电工程》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448982A (zh) * 2018-04-08 2018-08-24 天津工业大学 一种基于空间电压矢量预测的直接转矩控制方法
CN108418486A (zh) * 2018-05-14 2018-08-17 滨州学院 一种高强度永磁材料制成的永磁控制电机
CN108768233A (zh) * 2018-06-28 2018-11-06 中车株洲电力机车有限公司 离散域复矢量建模的永磁同步电机无差拍控制系统及方法
CN108768233B (zh) * 2018-06-28 2021-08-06 中车株洲电力机车有限公司 离散域复矢量建模的永磁同步电机无差拍控制系统及方法
CN109861605A (zh) * 2019-01-29 2019-06-07 东南大学 一种永磁同步电机无差拍转矩预测控制方法
CN111835249A (zh) * 2019-03-28 2020-10-27 南京德朔实业有限公司 电动工具
CN111756307A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具
CN111756280A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 骑乘式割草机
CN111756285A (zh) * 2019-03-28 2020-10-09 南京德朔实业有限公司 电动工具
CN111835248A (zh) * 2019-03-28 2020-10-27 南京德朔实业有限公司 电动工具
CN111756285B (zh) * 2019-03-28 2024-06-18 南京泉峰科技有限公司 电动工具
CN111835249B (zh) * 2019-03-28 2023-08-04 南京泉峰科技有限公司 电动工具
CN110323988A (zh) * 2019-07-30 2019-10-11 中国矿业大学 永磁同步电机低载波比无差拍控制系统及方法
WO2021017237A1 (zh) * 2019-07-30 2021-02-04 中国矿业大学 永磁同步电机低载波比无差拍控制系统及方法
CN111200382B (zh) * 2020-01-10 2023-06-30 西安理工大学 一种非级联的永磁同步电动机无差拍预测控制方法
CN111200382A (zh) * 2020-01-10 2020-05-26 西安理工大学 一种非级联的永磁同步电动机无差拍预测控制方法
CN111969914A (zh) * 2020-07-21 2020-11-20 北方工业大学 永磁同步电机无差拍电流预测控制方法及设备、存储介质
CN112234894A (zh) * 2020-09-30 2021-01-15 东南大学 可变磁通记忆电机无差拍直接转矩-磁链控制系统及方法
CN112491318A (zh) * 2020-11-20 2021-03-12 天津大学 一种永磁同步电机系统预测转矩控制方法
CN114884419A (zh) * 2022-05-30 2022-08-09 清华大学 一种同步电机的控制方法、装置及电子设备
CN114884419B (zh) * 2022-05-30 2024-04-30 清华大学 一种同步电机的控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN107154763B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
CN107154763B (zh) 永磁同步电机无差拍直接转矩控制系统及控制方法
CN109660170B (zh) 一种永磁同步电机高可靠性电流预测控制方法及其系统
CN107317532B (zh) 基于滑模的永磁同步电机预测电流控制方法和系统
CN109951128B (zh) 逆变器参考电压矢量在线优化的smpmsm驱动系统无模型电流预测控制方法及控制系统
CN103931096B (zh) 用温度补偿控制电动机的方法和系统
CN108092567B (zh) 一种永磁同步电动机转速控制系统及方法
Xu et al. Very-low speed control of PMSM based on EKF estimation with closed loop optimized parameters
CN111555680B (zh) 一种永磁同步电机无差拍预测电流控制方法
CN106788045B (zh) 一种永磁同步电机模型预测pi动态权重并行控制方法
CN110190795B (zh) 一种永磁同步电机级联式鲁棒预测电流控制方法
CN109039167B (zh) 一种内置式永磁同步电机控制方法及系统
CN112701968B (zh) 一种永磁同步电机模型预测控制鲁棒性能提升方法
CN104579083A (zh) 永磁同步电机矢量控制方法及系统
CN108054972B (zh) 一种提高永磁同步直线电机动态控制性能的方法
CN108377117B (zh) 基于预测控制的永磁同步电机复合电流控制系统及方法
CN112422014B (zh) 基于高阶滑模补偿的永磁同步电机转速预测方法
CN105340173A (zh) 电机控制装置
TWI533591B (zh) 一種適用於內嵌式永磁同步馬達及同步磁阻馬達以延伸型反電動勢估測為基礎的預測電流控制方法
CN116526919A (zh) 一种永磁同步电机伺服系统及其电流预测控制方法、装置
CN111106771A (zh) 基于无模型控制器的永磁同步电机控制方法及装置
CN106712629B (zh) 一种永磁同步电机的电流控制方法
KR101878090B1 (ko) 모터 제어 시스템 및 방법
CN113644852A (zh) 用于永磁同步电动机的鲁棒三矢量模型预测磁链控制方法
Zhu et al. The research of sensorless vector control for permanent magnet linear synchronous motor.
CN110601629B (zh) 一种提高pmsm伺服系统电流环响应速度并且减小震荡的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant