CN107151696B - 一种穗菝葜的种质资源鉴定方法 - Google Patents

一种穗菝葜的种质资源鉴定方法 Download PDF

Info

Publication number
CN107151696B
CN107151696B CN201710106724.8A CN201710106724A CN107151696B CN 107151696 B CN107151696 B CN 107151696B CN 201710106724 A CN201710106724 A CN 201710106724A CN 107151696 B CN107151696 B CN 107151696B
Authority
CN
China
Prior art keywords
seq
ssr
smilax
primer
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710106724.8A
Other languages
English (en)
Other versions
CN107151696A (zh
Inventor
祁哲晨
王瑞红
沈超
李攀
邱英雄
赵云鹏
傅承新
梁宗锁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201710106724.8A priority Critical patent/CN107151696B/zh
Publication of CN107151696A publication Critical patent/CN107151696A/zh
Application granted granted Critical
Publication of CN107151696B publication Critical patent/CN107151696B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Evolutionary Computation (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种利用SSR分子标记快速鉴定穗菝葜种质资源的方法,包括以下步骤:(1)提取待测样品基因组DNA;(2)以步骤(1)提取的DNA为模板,用基于穗菝葜转录组序列的SSR引物组合进行PCR扩增;(3)对扩增产物进行测序分型和基因片段长度读取;(4)利用遗传学分析软件建立穗菝葜的SSR遗传信息特征库和种质资源鉴定框架并进行有效性验证。该方法能够对来自欧洲、非洲、亚洲的不同产地,及地区内不同自然群体来源的穗菝葜进行有效、快速的分类和鉴定,结果准确可靠,该方法简单易行,适用性高,可有效运用于穗菝葜的种质资源鉴定。

Description

一种穗菝葜的种质资源鉴定方法
技术领域
本发明涉及分子标记技术领域,特别涉及植物种质资源鉴定中引物组的开发和应用,通过转录组测序的方法,高效开发了47对特异性强、灵敏度佳的SSR引物,以欧洲、亚洲、非洲产的穗菝葜植物资源为材料,覆盖其自然分布区,以此建立穗菝葜植物的SSR遗传信息特征库和种质资源鉴定框架,并进行快速种质资源鉴定的方法。
背景技术
穗菝葜(Smilax aspera Linnaeus,英文名Italian sarsaparilla、roughbindweed)为菝葜科菝葜属多年生攀援藤本或小灌木,广布于欧洲地中海地区、非洲东部、亚洲南部地区,我国产于云南(西南部)和西藏(聂拉木、吉隆等地)。经国内外学者研究发现穗菝葜植株各部位具有潜在药用及经济价值:其叶提取物富含维他命E族(α生育酚、β生育酚、γ生育酚)抗氧化物;其浆果提取物富含花青素(矢车菊素-3-O-芦丁糖甙、天竺葵素-3-O-芦丁糖苷),可作为天然色素良好来源;其根部提取物含有呋甾皂苷、甾体皂苷、菝葜皂苷、白藜芦醇、反式白藜芦醇等成分,有抗炎、抗真菌、抗麻风等活性,具有镇痛、利尿、发汗、滋补、净化等功效;穗菝葜的根部提取物也是生产沙士饮料的原料之一,该类型产品占台湾碳酸饮料市场三成以上。虽然在研究和应用领域越来越受到关注,但由于其分布范围广,横跨欧洲、非洲、亚洲三个大陆,不同地区种质资源在有效成分和遗传物质上存在差异,如能有效甄别穗菝葜的种质资源类型,将给后续植物资源的合理利用和开发带来便利。
SSR分子标记作为一项方法成熟、操作快捷、结果可靠的技术已广泛用于植物的种质资源鉴定。邱杨等(植物遗传资源学报2014,15(3):648-654)利用SSR分子标记技术对75份不同来源的萝卜样本进行了种质资源鉴定,并建立了分子身份证;王瑞等(中国农学通报2016,32(34):135-142)利用SSR分子标记技术对南瓜的不同品种进行了种质资源分析,将南瓜分为中国南瓜、印度南瓜及美洲南瓜3个类群。
目前虽然已有报道对穗菝葜进行分子标记开发的案例,但无论是实施方案和可行性方面,都存在不足。Xu等(American Journal of Botany:e64–e66.2011)通过双重抑制法开发了少量穗菝葜SSR引物,但该方法仅获得了两碱基重复单元或两碱基重复组合单元类型的SSR标记,遗传多样性不高,位点覆盖度不足,多态性丰富度低,且仅适用于希腊与意大利的穗菝葜植物群体,不能够有效地鉴定不同种源穗菝葜。此外,该方法开发周期长,一次开发获得引物通量低,单位标记成本相对较高。若通过DNA基因片段对穗菝葜进行鉴定,从其鉴别效率看,该方法不能有效甄别区域内群体间的种质资源,通常标记来自于叶绿体单倍型,只能检测单亲母系遗传的遗传信息,而且 如果对所有基因片段进行测序,其费用高昂,面对大批量样本可实施性不佳。因此,需要开发出一种成本相对低廉,且能快速高效鉴定穗菝葜种质资源的方法。利用转录组数据设计开发的简单重复序列(SSR)在技术和实施上都具有一定优势,相比于传统的SSR分子标记开发方法,借助高通量测序技术批量开发SSR引物,可以获得覆盖面更广、遗传多样性更高的位点,可更高效地鉴定物种种质资源,在已有的开发案例中,Wei et al.(BMC Genomics 2011,12:451)通过对芝麻花组织的转录组测序,批量开发SSR引物,有效用于油用经济作物芝麻的种质资源鉴定。本发明通过利用穗菝葜的转录组信息批量开发SSR引物,从欧洲、亚洲、非洲各地的大量穗菝葜野生群体获取丰富的SSR遗传多样性信息,并建立穗菝葜种质资源SSR遗传信息特征库库和种质资源鉴定框架,并进行快速鉴定,该方法技术成熟、实施流程便捷且鉴定效果明显,将为后续穗菝葜植物资源的科学利用和开发提供便利。
参考文献:
Xu,X.,Wan,Y.,Qi,Z.C.,Qiu,Y.,Fu,C.X.,2011.Isolation of compoundmicrosatellite markers for the common Mediterranean shrub Smilax aspera(Smilacaceae).Am.J.Bot.98,e64–e66.
Wei,W.,Qi,X.,Wang,L.,Zhang,Y.,Hua,W.,Li,D.,Lv,H.,Zhang,X.,2011.Characterization of the sesame(Sesamum indicum L.)global transcriptomeusing Illumina paired-end sequencing and development of EST-SSR markers.BMCGenomics 12,451.
邱杨,李锡香,李清霞,陈亦辰,沈镝,王海平,宋江萍,2014.利用SSR标记构建萝卜种质资源分子身份证.植物遗传资源学报15,648–654.
王瑞,吴廷全,钟玉娟,黄河勋,2016.95份南瓜种质资源亲缘关系的SSR分析.中国农学通报,135–142.
发明内容
基于此,本发明的目的是提供一种利用SSR标记鉴定穗菝葜种质资源的方法。
具体技术方案如下:
一种穗菝葜种质资源鉴定的方法,包括以下步骤:
(1)提取待测样品基因组DNA;
(2)以步骤(1)提取的DNA为模板,用基于穗菝葜转录组序列的SSR引物组合进行PCR扩增;
(3)对步骤(2)所得不同长度的扩增产物进行测序,通过GENEIOUS 9.0.2软件进行等位基因的读取,形成等位基因矩阵;
(4)对步骤(3)所得到的等位基因矩阵利用CERVUS 3.0软件计算等位基因数(A)、观察与期望杂合度(Ho、He)、多态性信息量(PIC);
(5)对步骤(3)所得到的等位基因矩阵利用GenAlEx 6.5软件进行SSR引物(位点)基于不同群体的等位基因的统计和列举,形成穗菝葜种质资源SSR遗传信息特征库,并选取随机样本进行验证;
(6)对步骤(3)所得到的等位基因矩阵利用GenAlEx 6.5软件生成遗传距离矩阵,并通过MEGA 6软件进行遗传距离聚类分析,构建UPGMA树,建立穗菝葜种质资源鉴定框架;
(7)随机盲选10份穗菝葜样本,利用相同47对SSR引物PCR扩增,得到等位基因数据,加入到上述构建穗菝葜种质资源鉴定的等位基因矩阵中,通过遗传距离聚类分析评估与鉴定10份样本种质资源状况与来源。
该方法能够对来自欧洲、非洲、亚洲的不同产地,及地区内不同自然群体来源的穗菝葜进行有效、快速的分类和鉴定,结果准确可靠,该方法简单易行,适用性高,可有效运用于穗菝葜的种质资源鉴定。
其中,步骤(2)所述引物组合包括下述47对SSR引物,每对SSR引物由上游引物和下游引物组成,每对引物的核苷酸序列分别为SEQ ID NO.1-SEQ ID NO.2、SEQ ID NO.3-SEQID NO.4、SEQ ID NO.5-SEQ ID NO.6、SEQ ID NO.7-SEQ ID NO.8、SEQ ID NO.9-SEQ IDNO.10、SEQ ID NO.11-SEQ ID NO.12、SEQ ID NO.13-SEQ ID NO.14、SEQ ID NO.15-SEQ IDNO.16、SEQ ID NO.17-SEQ ID NO.18、SEQ ID NO.19-SEQ ID NO.20、SEQ ID NO.21-SEQ IDNO.22、SEQ ID NO.23-SEQ ID NO.24、SEQ ID NO.25-SEQ ID NO.26、SEQ ID NO.27-SEQ IDNO.28、SEQ ID NO.29-SEQ ID NO.30、SEQ ID NO.31-SEQ ID NO.32、SEQ ID NO.33-SEQ IDNO.34、SEQ ID NO.35-SEQ ID NO.36、SEQ ID NO.37-SEQ ID NO.38、SEQ ID NO.39-SEQ IDNO.40、SEQ ID NO.41-SEQ ID NO.42、SEQ ID NO.43-SEQ ID NO.44、SEQ ID NO.45-SEQ IDNO.46、SEQ ID NO.47-SEQ ID NO.48、SEQ ID NO.49-SEQ ID NO.50、SEQ ID NO.51-SEQ IDNO.52、SEQ ID NO.53-SEQ ID NO.54、SEQ ID NO.55-SEQ ID NO.56、SEQ ID NO.57-SEQ IDNO.58、SEQ ID NO.59-SEQ ID NO.60、SEQ ID NO.61-SEQ ID NO.62、SEQ ID NO.63-SEQ IDNO.64、SEQ ID NO.65-SEQ ID NO.66、SEQ ID NO.67-SEQ ID NO.68、SEQ ID NO.69-SEQ IDNO.70、SEQ ID NO.71-SEQ ID NO.72、SEQ ID NO.73-SEQ ID NO.74、SEQ ID NO.75-SEQ IDNO.76、SEQ ID NO.77-SEQ ID NO.78、SEQ ID NO.79-SEQ ID NO.80、SEQ ID NO.81-SEQ IDNO.82、SEQ ID NO.83-SEQ ID NO.84、SEQ ID NO.85-SEQ ID NO.86、SEQ ID NO.87-SEQ IDNO.88、SEQ ID NO.89-SEQ ID NO.90、SEQ ID NO.91-SEQ ID NO.92、SEQ ID NO.93-SEQ IDNO.94,所述引物编号为奇数的核苷酸序列为上游引物,引物编号为偶数的核苷酸序列为下游引物;所述PCR扩增所用到的引物还包括一个5’端用荧光标记的通用引物,所述通用引物的序列为SEQ ID NO.95;
其中,步骤(2)中所述基于转录组序列的SSR引物组合是由以下方法筛选得到:搜索转录组数据中的SSR位点,针对SSR位点设计、开发并且合成目标引物,对所合成的引物进行最适退火温度的筛选和通用性检测,对筛选得到的引物进行PCR扩增,再对扩增产物通过毛细管电泳与GENEIOUS 9.0.2软件进行等位基因的读取,确定用于穗菝葜种质资源鉴定的引物组合。
其中,SSR位点的搜索限制条件为:单碱基、二碱基、三碱基、四碱基、五碱基、六碱基重复单元的SSR区域,筛选相应重复次数至少为10次、6次、5次、4次、3次、3次,若两个相邻SSR之间的碱基距离小于100bp则视为复合型SSR。
其中,设计目标引物的参数为:产物长度18-27bp,退火温度(Tm)50-65℃,GC含量为50%-60%,产物长度100-500bp。
本发明的发明人通过大量的创造性试验,开发出一套利用基于转录组的SSR标记鉴定穗菝葜种质资源的数据库与方法,上述引物具有扩增稳定、遗传多态性高的优点,能准确鉴定来自欧洲、非洲以及亚洲不同来源穗菝葜,将为后续穗菝葜植物资源合理开发利用奠定基础。
本发明提供的利用SSR标记鉴定穗菝葜种质资源的方法,结果准确、可靠;可直接以植物新鲜或干燥组织为检测样品,快捷方便;通过遗传聚类分析进行判断,结果较为直观。本发明的方法鉴定易行、适用于穗菝葜种质资源鉴定。
一般性定义
术语“SSR”即简单重复序列,是一类由几个核苷酸(一般为1~6个)为重复单位组成的长达几十个核苷酸的串联重复序列,其广泛且均匀分布于真核生物染色体中,因其重复单元的数目存在高度变异,且SSR的侧翼序列相对保守,是一种理想的分子标记技术。
术语“转录组”是指在某一生理条件下,某一组织细胞内所有转录产物的集合,对于同一个体,其不同生长时期、不同组织部位的转录组往往是不同的。
术语“引物”是指一小段单链的核苷酸序列,与目标片段侧翼互补,用于PCR扩增时作为多核苷酸延伸的出发点。
术语“测序分型”是指通过测序仪,借助产物中的荧光信号来读取一对等位基因的碱基长度。
术语“基因矩阵”是指个体相对于SSR引物(位点)的等位基因长度的阵列集合,用于遗传参数的计算。
术语“种质资源”又称遗传资源,是指亲代传递给子代的遗传信息,对于同一物种来讲,由于不同的生态环境影响,在长期的演化进程中,来自不同地理分布的该物种在相应的基因座上存在遗传差异,通过分子标记技术能够检测到该差异,并对不同来源个体进行鉴定。
术语“种质资源鉴定框架”是指由MEGA6软件生成的基于测试穗菝葜样本的基因矩阵的UPGMA遗传聚类树,用于后续样本的种质资源鉴定。
术语“穗菝葜SSR遗传信息特征库”是指SSR引物(位点)在所有测试穗菝葜样本的等位基因长度的集合。
附图说明
图1为穗菝葜种质资源鉴定遗传聚类框架图;
图2为10份穗菝葜样本鉴定鉴定效果图(用方框标注的分支表示盲选的穗菝葜样本)。
具体实施方式
以下将结合具体实施例对本发明做进一步的阐述。
实施例中所用到的穗菝葜材料如下:
(1)用于构建穗菝葜种质资源鉴定框架的穗菝葜样本:共12个群体,每个群体6个个体,总计72份植物材料,具体样品信息见表1。
表1穗菝葜样本信息一览
Figure BDA0001233275140000051
(2)用于验证的穗菝葜样本:在上述群体中,随机挑选10份穗菝葜样本。
实施例1.构建穗菝葜转录组数据库
(1)使用RNAprep Pure Plant Kit(北京天根)试剂盒进行穗菝葜新鲜叶片总RNA提取,送测序公司进行转录组测序。
(2)利用GENEIOUS 9.0.2的De novo assembly功能将短读长序列拼接成转录组框架数据,取每条基因中最长的转录本作为Unigene,建立能够进行微卫星位点检索的转录组数据库。
实施例2.微卫星SSR引物的开发
(1)利用MISA(http://pgrc.ipk-gatersleben.de/misa/misa.html)软件对上述Unigene进行不同类型微卫星扫描,以识别和定位SSR位点,参数设置(misa.ini配置文件)如下:识别单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸的重复次数至少为10次、6次、5次、4次、3次、3次,若两个相邻SSR之间的碱基距离小于100bp则视为复合型SSR。
(2)将*.fasta、misa.pl和misa.ini都复制到同一文件夹目录下,在Perl环境下运行命令>misa.pl*.fasta,运行后得到*.fasta.misa和*.fasta.statistics两个文件,其中*.fasta.misa用于后续的引物设计。
(3)在Perl环境下利用Primer 3模块批量设计SSR引物,引物设计参数为引物长度18-27bp,Tm设置为50-65℃,GC含量为50%-60%,产物长度100-500bp。将p3_in.pl和p3_out.pl以及primer3_core复制到同一目录下。
(4)运行p3_in.pl,命令为>p3_in.pl C.fasta.misa,得到文件名为*.fasta.p3in的输入文件;Perl环境下运行primer3_core,命令为>primer3_core<*.fasta.p3in>*.fasta.p3out,产生文件*.fasta.p3out;最后运行p3_out.pl,命令为>p3_out.pl*.fasta.p3out*.fasta.misa,运行后得到*.fasta.results文件,获得符合标准批量引物信息。
(5)根据不同的SSR重复,从穗菝葜SSR引物库中随机挑选153对引物(SSR重复单元涵盖单碱基、二碱基、三碱基、四碱基、五碱基、六碱基和复合型型SSR),上游引物5’端拼接M13序列,下游引物不变,共合成153对SSR引物。
实施例3.基因组DNA提取
使用PlantZol(杭州莱枫)试剂,采取改良的CTAB法,提取上述72份穗菝葜材料的基因组DNA,用NanoDrop 2000(Thermo Fisher Scientific,USA)定量后,稀释到20ng/μl,4℃或-20℃保存待用。
实施例.SSR引物筛选和通用性检测
(1)以上述穗菝葜样本中群体编号为IL的一个个体DNA为模板,对合成的SSR引物进行最适退火温度的筛选。
PCR反应体系为:模板DNA 20ng,上下游引物各0.2μM,2×Master Mix(杭州擎科,下同)5μL,反应体积为10μL,用ddH2O补足体积。
PCR反应为:94℃预变性5min,紧接着35个循环的94℃变性45s,50-65℃(温度梯度)退火45s,72℃延伸1min,最后保持72℃延伸5min。产物用2%的琼脂糖进行电泳检测,挑选有扩增条带并且条带单一的引物,确定该引物扩增条带最亮时的退火温度为其最适退火温度。
(2)从上述穗菝葜样本中每个群体挑选一个个体,共12个个体,对上述步骤中筛选到的SSR引物进行通用性检测。
PCR反应体系为:模板DNA 20ng,上下游引物各0.2μM,2×Master Mix 5μL,反应体积为10μL,用ddH2O补足体积。
PCR反应程序为:94℃预变性5min,紧接着35个循环的94℃变性45s,Tm(见表2)退火45s,72℃延伸1min,最后保持72℃延伸5min。产物用2%的琼脂糖进行电泳检测,挑选至少在75%的个体中都有单一明亮条带的引物,作为穗菝葜种质资源鉴定的候选引物。
(3)综合以上2步,从合成的153对SSR引物中筛选得到64对候选SSR引物。
实施例5.SSR引物的群体扩增
(1)以全部72份穗菝葜样本DNA为模板,采用“三引物”、“两步走”的扩增策略进行PCR扩增,“三引物”包括一个上游引物、一个下游引物和一个5’端用荧光标记(FAM、HEX、TAMRA或ROX)的通用M13引物,所述上游引物为在步骤2合成的5’端拼接有5’-CACGACGTTGTAAAACGAC-3’(M13)序列的上游引物,所述下游引物为步骤2合成的下游引物。拼接有“M13”的上游引物扩增后,为通用M13引物提供了反向互补序列,M13引导的PCR扩增产生带有荧光的PCR产物。“两步走”即PCR反应过程采取前后两步不同条件的程序,使荧光PCR产物更有效地扩增。整个PCR扩增反应过程的引物用量比例为SSR上游引物:SSR下游引物:M13通用荧光引物=1:4:4。
(2)第一步扩增:DNA模板20ng,上游引物0.1μM,下游引物0.4μM,2×Master Mix 5μL,反应体积为10μL,用ddH2O补足体积。反应程序为:94℃预变性5min,紧接着35个循环的94℃变性45s,Tm(见表2)退火45s,72℃延伸1min,最后保持72℃延伸5min。
(3)第二步扩增:以第一步的扩增产物为模板,继续加入0.8μL(5μM)的M13通用荧光引物,5μL的2×Master Mix,反应体积20μL,用ddH2O补足体积。反应程序为94℃预变性3min,紧接着20个循环的94℃变性30s,53℃退火30s,72℃延伸45s,最后保持72℃延伸10min。得到带有荧光信号的PCR扩增产物。
实施例6.穗菝葜种质资源鉴定框架和SSR遗传信息特征库的构建
(1)按照不同长度和不同荧光的PCR反应产物等比例混合,用3730xl DNA测序仪(ABI,USA)进行毛细管电泳,用GENEIOUS 9.0.2软件进行等位基因分型的判别和读取,形成等位基因矩阵。选择峰型较好,峰高大于200,且条带长度较好的,在所设计引物的扩增产物大小区间的作为有效引物。
(2)将上述步骤得到的等位基因矩阵利用CERVUS 3.0软件计算等位基因数(A)、观察与期望杂合度(Ho、He)、多态性信息量(PIC),见表2;选择PIC值大于0.2的引物,用于构建穗菝葜种质资源鉴定框架和SSR遗传信息特征库,共有47对引物符合条件,每对引物由上游引物和下游引物组成,见表3。
表2基于穗菝葜转录组的SSR引物的最适退火温度及遗传参数
Figure BDA0001233275140000081
Figure BDA0001233275140000091
表3基于穗菝葜转录组开发的47对SSR引物及M13通用引物序列
Figure BDA0001233275140000092
Figure BDA0001233275140000101
Figure BDA0001233275140000111
(3)利用GenAlEx 6.5软件对等位基因矩阵进行SSR引物(位点)基于12个穗菝葜自然群体的等位基因片段长度的统计和列举,形成穗菝葜种质资源SSR遗传信息特征库,见表4。
表4穗菝葜种质资源SSR遗传信息特征库(单位:bp,0表示缺失)
Figure BDA0001233275140000112
Figure BDA0001233275140000121
Figure BDA0001233275140000131
Figure BDA0001233275140000141
Figure BDA0001233275140000151
Figure BDA0001233275140000161
Figure BDA0001233275140000171
(4)利用GenAlEx 6.5软件对等位基因矩阵生成遗传距离矩阵,并通过MEGA 6软件进行遗传距离聚类分析,构建UPGMA树,建立穗菝葜种质资源鉴定框架,见附图1。
附图1清晰地展示了72个不同穗菝葜样本的遗传聚类关系,来自同一群体的6个个体能够聚类到一个分支(SM-6、GC-2聚类到相邻群体内)。不同地理分布的群体能够清晰地分辨,UPGMA树分为2大支,一支为欧洲地中海支系,另一支为东非-南亚支系;同时2大支系内的穗菝葜群体也都按照不同的地理分布清晰地聚类,2大支系内的穗菝葜的遗传距离与地理距离一致,穗菝葜种质资源遗传距离鉴定框架可靠。
实施例7.穗菝葜种质资源鉴定的验证
(1)通过SSR遗传信息特征库进行鉴定
随机盲选穗菝葜样本10份(除去构建穗菝葜种质资源鉴定框架的个体),分别标记为X-1~X-10,按照步骤3提取基因组DNA,按照步骤5的PCR过程进行产物扩增,用GENEIOUS9.0.2软件进行等位基因分型的判别和读取,具体信息见表6。
表6验证样本基于47对SSR引物的等位基因分型表(单位:bp,0表示缺失)
Figure BDA0001233275140000191
Figure BDA0001233275140000201
Figure BDA0001233275140000211
将验证样本的等位基因分型逐一与穗菝葜种质资源SSR遗传信息特征库进行比对,通过少于47对引物的组合,可以将验证样本定位到某一群体。通过该方法对10个随机抽样个体进行检测,对其群体尺度进行定位,鉴定效果见表7。
表7验证样本基于穗菝葜种质资源SSR遗传信息特征库的群体定位效果
Figure BDA0001233275140000212
通过对10个验证样本进行群体定位,其中5个样本完全符合其真实群体信息,成功率为50%,另5个样本定位到包含其真实群体和邻近群体的两个群体中,这可能是相邻地理距离的群体间遗传差异较小造成的,通过此法能够对穗菝葜样本进行初步鉴定。
(2)通过穗菝葜种质资源鉴定框架进行鉴定
对上述的10个穗菝葜样本,用47对SSR引物按照步骤5和步骤6进行等位基因分型。将等位基因矩阵加入到步骤6中的穗菝葜种质资源鉴定框架中,利用MEGA 6软件进行聚类,构建UPGMA遗传距离树(见附图2),分析鉴定效果。
鉴定效果分析,查找X-1~X-10的来源信息,具体信息见表8。
表8验证样本信息及验证效果统计表
Figure BDA0001233275140000222
经过鉴定效果统计,10份样本中,有7份样本是能够准确鉴定其群体来源,成功率为70%;另外3份样本也未远离其真实群体,其遗传距离聚类与其真实群体靠近。
综上所述,采用上述(1)(2)两种鉴定方法组合的方式,被鉴定样本准确率将提升至70%,同时未能确定具体群体来源的样本也被鉴定到与其真实群体地理相邻的群体。说明本发明基于穗菝葜转录组开发的47对SSR引物组合、SSR遗传信息特征库、种质资源鉴定框架及两种鉴定方式能够有效确定穗菝葜样本的种质资源来源,将能有效地应用于未知样本的鉴定,同时本发明的方法快捷,结果准确、可靠,可为将来穗菝葜植物的种质资源鉴定带来便利。
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
TCCCCATTTCTCCTCACTTG
<210> 2
<211> 26
<212> DNA
<213> 人工序列
<400> 2
GCCACTACAACAACTTAGTGATTTTG
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
GCCCACTTTCATTGCCTTTA
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
AATGTGGGCGTGGTAAAAAG
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<400> 5
AAAGGGGATGAGGAGAAGGA
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<400> 6
AAACCACCATGACTCCTCCA
<210> 7
<211> 20
<212> DNA
<213> 人工序列
<400> 7
CTGCTTCCAGACAGAGGAGG
<210> 8
<211> 20
<212> DNA
<213> 人工序列
<400> 8
ACACTTCTTGGGTTGGCATC
<210> 9
<211> 20
<212> DNA
<213> 人工序列
<400> 9
GAGTGAGGAGGGAGGAGCTT
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<400> 10
CCGGAGAACCAGATGAAGAC
<210> 11
<211> 20
<212> DNA
<213> 人工序列
<400> 11
AGAACTTGAGGGTGTGTGGG
<210> 12
<211> 20
<212> DNA
<213> 人工序列
<400> 12
TTCATGCATACTTTTGCCGA
<210> 13
<211> 20
<212> DNA
<213> 人工序列
<400> 13
TAATCCCTCGCGAAATCAAG
<210> 14
<211> 20
<212> DNA
<213> 人工序列
<400> 14
CCCAAAATCGATCGAGAAAA
<210> 15
<211> 20
<212> DNA
<213> 人工序列
<400> 15
AAGCCAAGCAAACCCATTTA
<210> 16
<211> 20
<212> DNA
<213> 人工序列
<400> 16
CACCCTCTGACTCCGAAGAG
<210> 17
<211> 20
<212> DNA
<213> 人工序列
<400> 17
CAGGGAGTTGGTCCTCAAAA
<210> 18
<211> 20
<212> DNA
<213> 人工序列
<400> 18
ATGGTTGCAAAGAAACACCC
<210> 19
<211> 20
<212> DNA
<213> 人工序列
<400> 19
CTAAGGCGATATCCTCAGCG
<210> 20
<211> 20
<212> DNA
<213> 人工序列
<400> 20
CAGCCACTTGGTATCCACCT
<210> 21
<211> 20
<212> DNA
<213> 人工序列
<400> 21
AAGGGACATTTTTGTTCCCC
<210> 22
<211> 24
<212> DNA
<213> 人工序列
<400> 22
GCAAGTTAAGCAACACAGTTAAGG
<210> 23
<211> 20
<212> DNA
<213> 人工序列
<400> 23
AGATCCACAGTTCCACCTGC
<210> 24
<211> 20
<212> DNA
<213> 人工序列
<400> 24
GCGCTTGATGTGCTCAAATA
<210> 25
<211> 20
<212> DNA
<213> 人工序列
<400> 25
GATCTGGGTTTCTCGTTGGA
<210> 26
<211> 20
<212> DNA
<213> 人工序列
<400> 26
GGCCATTTGGAAGAGACTGA
<210> 27
<211> 20
<212> DNA
<213> 人工序列
<400> 27
GAGATTTCCAGCAAAACCCA
<210> 28
<211> 20
<212> DNA
<213> 人工序列
<400> 28
AGTTTCTGGGCCCTCTGTCT
<210> 29
<211> 20
<212> DNA
<213> 人工序列
<400> 29
CCATGGTGGACGACTTTCTT
<210> 30
<211> 20
<212> DNA
<213> 人工序列
<400> 30
GCATGGAAACGCCTATGATT
<210> 31
<211> 20
<212> DNA
<213> 人工序列
<400> 31
CTTGGCAACACCAATCAATG
<210> 32
<211> 20
<212> DNA
<213> 人工序列
<400> 32
TGCACGTGATCACTGGATCT
<210> 33
<211> 20
<212> DNA
<213> 人工序列
<400> 33
CATTTCGATGAATCGTGTGG
<210> 34
<211> 20
<212> DNA
<213> 人工序列
<400> 34
GTAGGGTTCGGTGCTGATGT
<210> 35
<211> 20
<212> DNA
<213> 人工序列
<400> 35
TCGATTTCCACCCATTTCTC
<210> 36
<211> 20
<212> DNA
<213> 人工序列
<400> 36
GCTGAGTACTTGAGGGCGTC
<210> 37
<211> 20
<212> DNA
<213> 人工序列
<400> 37
CAGTGCCTCTTCCTTGCTTC
<210> 38
<211> 20
<212> DNA
<213> 人工序列
<400> 38
TATACCCAGGTCTCCGAACG
<210> 39
<211> 20
<212> DNA
<213> 人工序列
<400> 39
ATTTCGCCACTACCTTGCAC
<210> 40
<211> 20
<212> DNA
<213> 人工序列
<400> 40
ATCCTTCATTCAATGCCGAG
<210> 41
<211> 20
<212> DNA
<213> 人工序列
<400> 41
GGACTGGATTCCGTTTTGCT
<210> 42
<211> 20
<212> DNA
<213> 人工序列
<400> 42
AGCCAGGACATTGCCTTTAC
<210> 43
<211> 20
<212> DNA
<213> 人工序列
<400> 43
TGTTGGGTGAGCAAAACAAA
<210> 44
<211> 20
<212> DNA
<213> 人工序列
<400> 44
ACCTTTCTCCCCACTTGCTT
<210> 45
<211> 20
<212> DNA
<213> 人工序列
<400> 45
TAATTGGCTTCGGATTGACC
<210> 46
<211> 20
<212> DNA
<213> 人工序列
<400> 46
GGAATTCGTTCTTCCCCATT
<210> 47
<211> 20
<212> DNA
<213> 人工序列
<400> 47
GGACTTGGTCATCAGGTCGT
<210> 48
<211> 20
<212> DNA
<213> 人工序列
<400> 48
TTGTGCAACCAAACTCCAGA
<210> 49
<211> 20
<212> DNA
<213> 人工序列
<400> 49
CACAAGCTTGATGAGGTCCA
<210> 50
<211> 20
<212> DNA
<213> 人工序列
<400> 50
AAGGACACGGACCATGAAAG
<210> 51
<211> 20
<212> DNA
<213> 人工序列
<400> 51
AGCAGCCTTGGGCTTATTTT
<210> 52
<211> 20
<212> DNA
<213> 人工序列
<400> 52
TTCTGTTGTGCGGATATTGG
<210> 53
<211> 20
<212> DNA
<213> 人工序列
<400> 53
GAAGGGAGGGAGGAGAAGTG
<210> 54
<211> 20
<212> DNA
<213> 人工序列
<400> 54
CCGTTTAAAGATCCCGTCAA
<210> 55
<211> 20
<212> DNA
<213> 人工序列
<400> 55
TGCTGGAAGAACAACGACTG
<210> 56
<211> 20
<212> DNA
<213> 人工序列
<400> 56
GTTACCGTTGGTCACCTGCT
<210> 57
<211> 20
<212> DNA
<213> 人工序列
<400> 57
TGGATTCATGTGTTTGGCTG
<210> 58
<211> 22
<212> DNA
<213> 人工序列
<400> 58
AAATCAGGCCTCCTCATTGTAA
<210> 59
<211> 20
<212> DNA
<213> 人工序列
<400> 59
CACCTTCTCCTCCTCTTCCC
<210> 60
<211> 20
<212> DNA
<213> 人工序列
<400> 60
TCATCTCCCCTCTTCTTCCC
<210> 61
<211> 20
<212> DNA
<213> 人工序列
<400> 61
CTGGAGATCTCACCCTCTCG
<210> 62
<211> 20
<212> DNA
<213> 人工序列
<400> 62
CAATGAGACAGTCCGGATCA
<210> 63
<211> 20
<212> DNA
<213> 人工序列
<400> 63
AATTGGGATTTGATGATCGC
<210> 64
<211> 20
<212> DNA
<213> 人工序列
<400> 64
CCAAAAACCCACGAGAGAAA
<210> 65
<211> 20
<212> DNA
<213> 人工序列
<400> 65
GCTGGTACTTCTTCTTGCCG
<210> 66
<211> 20
<212> DNA
<213> 人工序列
<400> 66
ACTTCGAGAACAGCCTCCAA
<210> 67
<211> 20
<212> DNA
<213> 人工序列
<400> 67
CCCTTCTCTCCTCCCATTTC
<210> 68
<211> 20
<212> DNA
<213> 人工序列
<400> 68
ACGCTGATGACCTGCTTCTT
<210> 69
<211> 20
<212> DNA
<213> 人工序列
<400> 69
TCACGTGTGAGGTTCTAGCG
<210> 70
<211> 18
<212> DNA
<213> 人工序列
<400> 70
TGGCGTCCCAGTGAGTGT
<210> 71
<211> 20
<212> DNA
<213> 人工序列
<400> 71
ACGTAACTCTCGGTGCCATC
<210> 72
<211> 20
<212> DNA
<213> 人工序列
<400> 72
CGTGTGGAAGGGAGGTAAAA
<210> 73
<211> 20
<212> DNA
<213> 人工序列
<400> 73
ATGACATCCCCTCCCTCTCT
<210> 74
<211> 20
<212> DNA
<213> 人工序列
<400> 74
CCCCACCATTGTCTTGAAGT
<210> 75
<211> 20
<212> DNA
<213> 人工序列
<400> 75
AGGCCAAGACTATCAGCGAA
<210> 76
<211> 20
<212> DNA
<213> 人工序列
<400> 76
TCTTTCTTGCTCCAGGCATT
<210> 77
<211> 20
<212> DNA
<213> 人工序列
<400> 77
GGGAACACTACCTTCTGCCA
<210> 78
<211> 20
<212> DNA
<213> 人工序列
<400> 78
TTGAGATCTGGGGAGGTTTG
<210> 79
<211> 20
<212> DNA
<213> 人工序列
<400> 79
TGTGGTGCTTGATGAGCTTC
<210> 80
<211> 20
<212> DNA
<213> 人工序列
<400> 80
CGTTGCACAGAGCGAATAAA
<210> 81
<211> 20
<212> DNA
<213> 人工序列
<400> 81
CTTCTCCGCATACCACCTGT
<210> 82
<211> 20
<212> DNA
<213> 人工序列
<400> 82
GCTCTGCGTCTGTTCCATTT
<210> 83
<211> 20
<212> DNA
<213> 人工序列
<400> 83
ATGCTTGACACGCTTGATTG
<210> 84
<211> 20
<212> DNA
<213> 人工序列
<400> 84
AGCTGCTTGGACAGCAAAAT
<210> 85
<211> 20
<212> DNA
<213> 人工序列
<400> 85
ACGGTCTCTTTCAAGAAGGG
<210> 86
<211> 20
<212> DNA
<213> 人工序列
<400> 86
GATGAAGGAGAACGCAAAGC
<210> 87
<211> 20
<212> DNA
<213> 人工序列
<400> 87
GAGAGCCCACGTGAAGTGAT
<210> 88
<211> 20
<212> DNA
<213> 人工序列
<400> 88
CCCCATAAATGTGGGAGATG
<210> 89
<211> 20
<212> DNA
<213> 人工序列
<400> 89
GCAAAGCTCTTCTCCTCCCT
<210> 90
<211> 20
<212> DNA
<213> 人工序列
<400> 90
CTGGATGGCTTTGGATAGGA
<210> 91
<211> 20
<212> DNA
<213> 人工序列
<400> 91
GACCCCATGGATACGAGAAC
<210> 92
<211> 20
<212> DNA
<213> 人工序列
<400> 92
CTAAACCCGACTCCCCAAAT
<210> 93
<211> 20
<212> DNA
<213> 人工序列
<400> 93
AGAACCAGCAGAGCGACATT
<210> 94
<211> 20
<212> DNA
<213> 人工序列
<400> 94
TTGCGTCAGCTTACCCTTCT
<210> 95
<211> 19
<212> DNA
<213> 人工序列
<400> 95
CACGACGTTGTAAAACGAC

Claims (5)

1.一种利用SSR标记鉴定穗菝葜种质资源的方法,其特征在于,包括以下步骤:
(1)提取待测样品的基因组DNA;
(2)以步骤(1)提取的DNA为模板,用基于穗菝葜转录组序列的SSR引物组合进行PCR扩增,得到不同长度的扩增产物;
(3)对步骤(2)所得不同长度的扩增产物进行测序分型和基因片段长度读取;
(4)对步骤(3)所得的等位基因矩阵通过GenAlEx 6.5、CERVUS 3.0和MEGA6软件进行遗传学相关分析,建立穗菝葜种质资源鉴定框架和穗菝葜种质资源SSR遗传信息特征库;
(5)对步骤(4)的穗菝葜种质资源鉴定框架和穗菝葜种质资源SSR遗传信息特征库进行有效性验证;
其中步骤(2)所述的SSR引物由上游引物和下游引物组成,每对引物的核苷酸序列为:SEQ ID NO.1-SEQ ID NO.2、SEQ ID NO.3-SEQ ID NO.4、SEQ ID NO.5-SEQ ID NO.6、SEQID NO.7-SEQ ID NO.8、SEQ ID NO.9-SEQ ID NO.10、SEQ ID NO.11-SEQ ID NO.12、SEQ IDNO.13-SEQ ID NO.14、SEQ ID NO.15-SEQ ID NO.16、SEQ ID NO.17-SEQ ID NO.18、SEQ IDNO.19-SEQ ID NO.20、SEQ ID NO.21-SEQ ID NO.22、SEQ ID NO.23-SEQ ID NO.24、SEQ IDNO.25-SEQ ID NO.26、SEQ ID NO.27-SEQ ID NO.28、SEQ ID NO.29-SEQ ID NO.30、SEQ IDNO.31-SEQ ID NO.32、SEQ ID NO.33-SEQ ID NO.34、SEQ ID NO.35-SEQ ID NO.36、SEQ IDNO.37-SEQ ID NO.38、SEQ ID NO.39-SEQ ID NO.40、SEQ ID NO.41-SEQ ID NO.42、SEQ IDNO.43-SEQ ID NO.44、SEQ ID NO.45-SEQ ID NO.46、SEQ ID NO.47-SEQ ID NO.48、SEQ IDNO.49-SEQ ID NO.50、SEQ ID NO.51-SEQ ID NO.52、SEQ ID NO.53-SEQ ID NO.54、SEQ IDNO.55-SEQ ID NO.56、SEQ ID NO.57-SEQ ID NO.58、SEQ ID NO.59-SEQ ID NO.60、SEQ IDNO.61-SEQ ID NO.62、SEQ ID NO.63-SEQ ID NO.64、SEQ ID NO.65-SEQ ID NO.66、SEQ IDNO.67-SEQ ID NO.68、SEQ ID NO.69-SEQ ID NO.70、SEQ ID NO.71-SEQ ID NO.72、SEQ IDNO.73-SEQ ID NO.74、SEQ ID NO.75-SEQ ID NO.76、SEQ ID NO.77-SEQ ID NO.78、SEQ IDNO.79-SEQ ID NO.80、SEQ ID NO.81-SEQ ID NO.82、SEQ ID NO.83-SEQ ID NO.84、SEQ IDNO.85-SEQ ID NO.86、SEQ ID NO.87-SEQ ID NO.88、SEQ ID NO.89-SEQ ID NO.90、SEQ IDNO.91-SEQ ID NO.92、SEQ ID NO.93-SEQ ID NO.94,其中所述引物编号为奇数的核苷酸序列为上游引物,引物编号为偶数的核苷酸序列为下游引物;所述PCR扩增所用到的引物还包括一个5’端用荧光标记的通用引物,所述通用引物的序列为SEQ ID NO.95。
2.根据权利要求1所述的利用SSR标记鉴定穗菝葜种质资源的方法,其特征在于,步骤(4)所述的穗菝葜种质资源鉴定框架和穗菝葜种质资源SSR遗传信息特征库分别是穗菝葜样本基于47对SSR引物的遗传距离UPGMA聚类树和47对SSR引物基于不同种质来源的穗菝葜群体SSR等位基因特征长度集合。
3.一种基于穗菝葜转录组序列的SSR引物集合,其特征在于,所述引物集合由下述47对引物组成,每对引物由上游引物和下游引物组成,每对引物的核酸序列为:SEQ ID NO.1-SEQ ID NO.2、SEQ ID NO.3-SEQ ID NO.4、SEQ ID NO.5-SEQ ID NO.6、SEQ ID NO.7-SEQID NO.8、SEQ ID NO.9-SEQ ID NO.10、SEQ ID NO.11-SEQ ID NO.12、SEQ ID NO.13-SEQID NO.14、SEQ ID NO.15-SEQ ID NO.16、SEQ ID NO.17-SEQ ID NO.18、SEQ ID NO.19-SEQID NO.20、SEQ ID NO.21-SEQ ID NO.22、SEQ ID NO.23-SEQ ID NO.24、SEQ ID NO.25-SEQID NO.26、SEQ ID NO.27-SEQ ID NO.28、SEQ ID NO.29-SEQ ID NO.30、SEQ ID NO.31-SEQID NO.32、SEQ ID NO.33-SEQ ID NO.34、SEQ ID NO.35-SEQ ID NO.36、SEQ ID NO.37-SEQID NO.38、SEQ ID NO.39-SEQ ID NO.40、SEQ ID NO.41-SEQ ID NO.42、SEQ ID NO.43-SEQID NO.44、SEQ ID NO.45-SEQ ID NO.46、SEQ ID NO.47-SEQ ID NO.48、SEQ ID NO.49-SEQID NO.50、SEQ ID NO.51-SEQ ID NO.52、SEQ ID NO.53-SEQ ID NO.54、SEQ ID NO.55-SEQID NO.56、SEQ ID NO.57-SEQ ID NO.58、SEQ ID NO.59-SEQ ID NO.60、SEQ ID NO.61-SEQID NO.62、SEQ ID NO.63-SEQ ID NO.64、SEQ ID NO.65-SEQ ID NO.66、SEQ ID NO.67-SEQID NO.68、SEQ ID NO.69-SEQ ID NO.70、SEQ ID NO.71-SEQ ID NO.72、SEQ ID NO.73-SEQID NO.74、SEQ ID NO.75-SEQ ID NO.76、SEQ ID NO.77-SEQ ID NO.78、SEQ ID NO.79-SEQID NO.80、SEQ ID NO.81-SEQ ID NO.82、SEQ ID NO.83-SEQ ID NO.84、SEQ ID NO.85-SEQID NO.86、SEQ ID NO.87-SEQ ID NO.88、SEQ ID NO.89-SEQ ID NO.90、SEQ ID NO.91-SEQID NO.92、SEQ ID NO.93-SEQ ID NO.94,其中所述引物编号为奇数的核苷酸序列为上游引物,引物编号为偶数的核苷酸序列为下游引物。
4.根据权利要求3所述的基于穗菝葜转录组序列的SSR引物组合物在穗菝葜种质资源鉴定中的应用。
5.穗菝葜种质资源鉴定框架和穗菝葜种质资源SSR遗传信息特征库在穗菝葜种质资源鉴定中的应用,该穗菝葜种质资源鉴定框架和穗菝葜种质资源SSR遗传信息特征库分别是穗菝葜样本基于权利要求3所述47对SSR引物的遗传距离UPGMA聚类树和权利要求3所述47对SSR引物基于不同种质来源的穗菝葜群体SSR等位基因特征长度集合。
CN201710106724.8A 2017-02-27 2017-02-27 一种穗菝葜的种质资源鉴定方法 Expired - Fee Related CN107151696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710106724.8A CN107151696B (zh) 2017-02-27 2017-02-27 一种穗菝葜的种质资源鉴定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710106724.8A CN107151696B (zh) 2017-02-27 2017-02-27 一种穗菝葜的种质资源鉴定方法

Publications (2)

Publication Number Publication Date
CN107151696A CN107151696A (zh) 2017-09-12
CN107151696B true CN107151696B (zh) 2020-06-05

Family

ID=59791498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710106724.8A Expired - Fee Related CN107151696B (zh) 2017-02-27 2017-02-27 一种穗菝葜的种质资源鉴定方法

Country Status (1)

Country Link
CN (1) CN107151696B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220402B (zh) * 2017-12-25 2020-07-07 山东省农业科学院蔬菜花卉研究所 一种大白菜种质和品种系谱关系的鉴定方法
CN109609681B (zh) * 2019-01-18 2021-09-24 华南农业大学 一种基于叶绿体基因组序列的火炬松个体鉴定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173562A (zh) * 2013-04-12 2013-06-26 北京林业大学 一种枣树ssr标记分子遗传图谱的构建方法
CN104017859A (zh) * 2014-03-13 2014-09-03 南宁泰格瑞农业科技有限公司 一种基于ssr与毛细管电泳技术鉴定甘蔗种质资源的方法
CN105316329A (zh) * 2015-11-20 2016-02-10 中国科学院昆明植物研究所 金针菇ssr分子标记及其对应引物与应用
CN105349651A (zh) * 2015-11-18 2016-02-24 广东省中药研究所 Est-ssr标记鉴定中药溪黄草品种的方法和引物
CN105586338A (zh) * 2016-01-21 2016-05-18 四川农业大学 基于扁穗牛鞭草与高牛鞭草转录组序列开发的est-ssr引物组及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173562A (zh) * 2013-04-12 2013-06-26 北京林业大学 一种枣树ssr标记分子遗传图谱的构建方法
CN104017859A (zh) * 2014-03-13 2014-09-03 南宁泰格瑞农业科技有限公司 一种基于ssr与毛细管电泳技术鉴定甘蔗种质资源的方法
CN105349651A (zh) * 2015-11-18 2016-02-24 广东省中药研究所 Est-ssr标记鉴定中药溪黄草品种的方法和引物
CN105316329A (zh) * 2015-11-20 2016-02-10 中国科学院昆明植物研究所 金针菇ssr分子标记及其对应引物与应用
CN105586338A (zh) * 2016-01-21 2016-05-18 四川农业大学 基于扁穗牛鞭草与高牛鞭草转录组序列开发的est-ssr引物组及其应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers;Wenliang Wei等;《BMC Genomics》;20110919;第12卷;第1-13页 *
Isolation of compound microsatellite markers for the common Mediterranean shrub Smilax aspera(Smilacaceae);Xi-hui Xu等;《American Journal of Botany》;20110301;第98卷(第3期);第e64右栏第3段-第e66页左栏第1段 *
东亚-北美间断分布的针刺类菝葜(Smilax hispida group)的比较亲缘地理学研究;赵云鹏等;《生态文明建设中的植物学:现在与未来-中国植物学会第十五届会员代表大会暨八十周年学术年会论文集-第1分会场:系统与进化植物学》;20170109;第1页 *
四种水生蔬菜的转录组学研究及EST-SSR标记的开发;游永宁;《中国博士学位论文全文数据库农业科技辑》;20160715(第07(2016年)期);D048-2 *
基于SSR标记的枇杷遗传多样性分析与品种鉴别;何桥;《中国博士学位论文全文数据库农业科技辑》;20110515(第05(2011年)期);D048-16 *
恩施地区濒危野生竹节参生态环境及伴生植物群落特征研究;涂星;《中国中药杂志》;20160531;第1596-1601页 *
洲际间断分布的菝葜科基部类群穗菝葜的亲缘地理学研究;陈晨;《中国博士学位论文全文数据库基础科学辑》;20140215(第02(2014年)期);A006-56 *
菝葜属菝葜复合种和草本菝葜组的系统发育研究;孔航辉;《万方中国学位论文全文数据库》;20071014;第1-145页 *

Also Published As

Publication number Publication date
CN107151696A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
CN107058508B (zh) 一种丹参种质资源鉴定方法
CN106636393B (zh) 与南瓜皮色基因连锁的snp分子标记及其应用
CN109337997B (zh) 一种山茶属多态性叶绿体基因组微卫星分子标记引物及筛选和甄别近缘种的方法
CN110951911B (zh) 基于转录组的椴树属est-ssr引物及其筛选方法和应用
CN104293778A (zh) 兰属微卫星标记的建立方法、核心指纹标记库与试剂盒
CN107151696B (zh) 一种穗菝葜的种质资源鉴定方法
CN111471791A (zh) 一种大豆dna指纹图谱构建方法及其应用
Zhou et al. EST-SSR marker development based on transcriptome sequencing and genetic analyses of Phoebe bournei (Lauraceae)
CN111808983B (zh) 橡胶树品种标准dna指纹图谱库及其构建方法与专用引物
CN104293887B (zh) 杨属派间不同种亲缘关系的鉴定方法及鉴定试剂盒
CN113930535B (zh) 一种梅片树ssr分子标记、引物、试剂盒及开发方法与应用
CN107354222A (zh) 用于鉴定桉树无性系的str引物、pcr试剂盒及方法
CN107385052A (zh) 用于鉴定桉树无性系的str引物及其应用
Huang et al. Development and characterization of genomic microsatellite markers in the tree species, Rhodoleia championii, R. parvipetala, and R. forrestii (Hamamelidaceae)
Liu et al. Yang Ni
Chen et al. Development of EST-SSR markers based on transcriptome sequencing for germplasm evaluation of 65 lilies (Lilium)
Cui et al. An efficient method for developing polymorphic microsatellite markers from high-throughput transcriptome sequencing: a case study of hexaploid oil-tea camellia (Camellia oleifera)
Melo et al. Development of microsatellite markers in Pterodon pubescens and transferability to Pterodon emarginatus, two Brazilian plant species with medicinal potential
CN113151493B (zh) 一种长白山东方蜜蜂ssr标记引物组、pcr鉴定方法以及应用
CN116121437B (zh) 一种杧果品种的snp标记组合及杧果育种中的应用
CN115198030B (zh) 用于朱顶红杂交后代鉴定的ssr分子标记组合、ssr引物组合及其应用
CN107130034A (zh) 一种利用ssr标记鉴定平欧杂种榛品种的方法
CN113151558B (zh) 一种基于八爪金龙转录组的ssr分子标记及其鉴定方法与应用
Soares Priscila Zei Melo1, 2, 4, Adriana Maria Antunes1, 2, 5, Jordana Gontijo Fernandes1, 6, Cíntia Pelegrineti Targueta1, 3, Rejane Araújo Guimarães1, 2, 7, Carolina Ribeiro Diniz Boaventura-Novaes2, 8
Tay et al. Alternative DNA Markers to Detect Guam-Specific CRB-G (Clade I) Oryctes rhinoceros (Coleoptera: Scarabaeidae) Indicate That the Beetle Did Not Disperse from Guam to the Solomon Islands or Palau.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200605

Termination date: 20210227

CF01 Termination of patent right due to non-payment of annual fee