CN107132759A - 一种直线电机驱动fts基于eso滑模改进重复控制方法 - Google Patents

一种直线电机驱动fts基于eso滑模改进重复控制方法 Download PDF

Info

Publication number
CN107132759A
CN107132759A CN201710102512.2A CN201710102512A CN107132759A CN 107132759 A CN107132759 A CN 107132759A CN 201710102512 A CN201710102512 A CN 201710102512A CN 107132759 A CN107132759 A CN 107132759A
Authority
CN
China
Prior art keywords
mrow
msub
mover
mfrac
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710102512.2A
Other languages
English (en)
Other versions
CN107132759B (zh
Inventor
孙宜标
张戟
刘春芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU XIONGFENG MOTOR Co.,Ltd.
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201710102512.2A priority Critical patent/CN107132759B/zh
Publication of CN107132759A publication Critical patent/CN107132759A/zh
Application granted granted Critical
Publication of CN107132759B publication Critical patent/CN107132759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Endoscopes (AREA)
  • External Artificial Organs (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种直线电机驱动FTS基于ESO滑模改进重复控制方法,包括基于改进插入式重复控制和一种基于扩张状态观测器的滑模控制,其特征在于插入式结构可以使重复控制器设计与其他控制器具有独立性,同时重复控制利用内模原理将系统外部信号的数学模型嵌入到内部控制环节中可以实现对外部周期性信号和干扰进行高精度跟踪及抑制,并且为了减小因低通滤波器引起的相位延迟加入一个超前模块。针对快速刀具伺服系统在高频输入给定时,由于惯性等因素造成的相位滞后问题,采用改进重复控制和ESO滑模控制结合的方式,能够得到很好解决。基于内模原理的重复控制能有效提高系统的跟踪精度,插入式结构可以使系统获得较宽的控制带宽,及较强的鲁棒性。

Description

一种直线电机驱动FTS基于ESO滑模改进重复控制方法
●技术领域
本发明属于数控技术加工领域,特别涉及一种直线电机驱动FTS(Fast ToolServo,FTS快速刀具伺服系统)基于ESO(Extended State Observer,ESO,扩张状态观测器)滑模改进重复控制方法的设计与实现。
背景技术
近年来,非圆截面零件和非轴对称(即非旋转对称)光学元件分别在机械工业和光电产业中得到了广泛应用。这些零件表面轮廓非对称、形状复杂,精度要求高,传统加工方法如靠模仿形加工、研磨抛光、电化学腐蚀、光刻等的加工效率较低,加工精度一致性差,达不到所需的要求,因此实现高速超精密加工具有非常重要的现实意义。而实现高速超精密加工的关键是开发出具有高速超精密能力的数控机床,由直线电机直接驱动的快速刀具伺服系统具有高响应、高精度的优势,可重复加工具有复杂形状的各种异形元件,一次加工即可获得很高的零件尺寸形状精度和很低的表面粗糙度且可以增加工件的切除效率,因此逐渐被人们所关注。
快速刀具伺服系统(Fast Tool Servo,FTS),它驱动刀具完成与工件回转运动相协调的,沿工件轴向的高速高精度往复运动。快速刀具伺服有两个关键技术;一是高响应直线执行机构的优化设计,二是高速高精度的运动控制算法。从控制的角度看,快速刀具伺服是一个闭环位置随动系统,它一方面要驱动刀具沿指定轨迹做精密跟踪运动,同时应能抑制时变切削力对刀具运动的负作用,并克服执行机构中的非线性摩擦和磨损的影响。因此,提高快速刀具伺服控制器性能对于提高微结构表面加工精度和表面质量至关重要。
一些研究者采取了各自控制算法,零相位误差跟踪控制,其算法取得很好的跟踪控制性能,有效控制相位滞后,但依赖系统模型,对参数变化敏感。自抗扰控制器算法简单、易于实现、精度高、速度快、抗扰能力强,但参数调整较难。重复控制能很好提高控制的跟踪精度,但其鲁棒性较低,而滑模控制具有强鲁棒性,实现简单的优点,然而由于其控制作用的不连续性会导致抖振现象。
发明内容
发明目的
针对现有控制技术的不足,本发明提出一种直线电机驱动FTS基于ESO滑模改进重复控制方法。其目的是解决以往所存在的问题,其将ESO滑模控制和重复控制结合起来,重复控制可以实现对周期性信号的高精度跟踪以及对周期性扰动的良好抑制;而滑模控制的鲁棒性可以抑制切削过程中切削力的扰动作用,并且扩张状态观测器还能将获得的对象模型中内扰和外扰的实时控制量加入控制率中,提高控制精度。最终实现本发明的目的:高频响输入时,在保证系统强鲁棒性和高频响应速度的同时提高了系统的跟踪精度。
技术方案
一种直线电机驱动FTS基于ESO滑模改进重复控制方法,包括基于改进插入式重复控制和一种基于扩张状态观测器的滑模控制,其特征在于插入式结构可以使重复控制器设计与其他控制器具有独立性,同时重复控制利用内模原理将系统外部信号的数学模型嵌入到内部控制环节中可以实现对外部周期性信号和干扰进行高精度跟踪及抑制,并且为了减小因低通滤波器引起的相位延迟加入一个超前模块。而ESO滑模控制以扩张状态观测器观测的系统状态构建滑模面并且将观测到的模型内外扰动的实时控制量加入到控制率中,增强了滑模控制的精确性,同时,为了削弱滑模控制固有的抖振本文采用一种逼近函数替代符号函数。
本发明技术的实现——基于ESO滑模重复控制的快速刀具伺服装置包括;
ESO滑模控制器:根据扩张状态观测器观测的系统状态与给定信号之间的误差可计算得滑模控制器的输出控制量,使直线电机响应具有快速性,提高系统的鲁棒性;同时将观测器观测到的内外扰动加入到控制量中提高了系统的控制精度;
重复控制器:通过把上一次运行时的偏差反映到现在,和“现在的偏差”一起加到被控对象进行控制,以此减小甚至消除稳态误差,提高高频输入信号的跟踪精度;
1.ESO滑模控制器设计:
①滑模面设计:
其中,为扩张状态观测器观测到位置量与速度量,为位置误差,为速度误差。xd为参考输入信号,为参考信号的一阶微分信号,λ>0为正常数。
②控制律设计:
其中,λ>0,η为常数且η>0,为观测器观测到的内外扰动,sgn()为符号函数。
③ESO滑模控制器的软件实现;
通过编写程序并嵌入DSP实现快速刀具伺服系统的ESO滑模控制策略的控制律输出。
2.改进插入式重复控制器设计:
二阶低通滤波器Q(s)为:
其中,ωq为截止频率;ξ为阻尼系数,s为控制信号由时域经拉斯变换到复数域时引入的复参数。
由于低通滤波器带来的相位延迟,使系统无法跟随给定信号,为了进行相位补偿在控制率中增加超前相位补偿环节eτs,其中τ=2ξ/ωq
重复控制的补偿环节采用PD控制。
将上述控制方法嵌入DSP控制电路中实现对直线电机的控制。按以下步骤执行:
步骤1系统初始化;
步骤2允许TN1、TN2中断;
步骤3启动T1下溢中断;
步骤4程序数据初始化;
步骤5开总中断;
步骤6中断等待;
步骤7TN1中断处理子控制程序;
步骤8结束;
上述TN1中断处理子控制程序步骤如下:
步骤1T1中断子控制程序;
步骤2保护现场;
步骤3电流采样,CLARK变换,PARK变换;
步骤4判断是否需要位置调节;否则进入步骤7;
步骤5调用位置调节中断处理子程序;
步骤6dq轴电流调节;
步骤7PARK逆变换;
步骤8计算CMPPx及PWM输出;
步骤9位置采样;
步骤10初始位置程序;
步骤11恢复现场;
步骤12中断返回。
上述步骤5所述的位置调节中断处理子控制程序步骤如下:
ESO滑模控制律实现的子程序执行步骤如下:
步骤1读取初始时刻位置、控制器输出采样值(测量值);
步骤2由初始位置和初始控制量计算系统状态值及系统的内外扰动量,
步骤3由参考输入和状态器输出计算位置反馈误差及其导数,
步骤4设定ESO滑模初始参数;
步骤5计算切换控制;
步骤6判断是否已在预设滑模面上。如果是则进行下一步,如果否则返回步骤5;
步骤7由ESO滑模控制算法计算位置指令;
步骤8ESO滑模控制律产生控制量
步骤9回调用程序。
重复控制中断子程序按如下步骤执行:
步骤1读取初始时刻位置采样值(测量值);
步骤2计算位置反馈误差;
步骤3误差送入延迟环节和低通滤波器计算;
步骤4重复控制器输出送与补偿环节PD进行计算;
步骤5输出重复控制器整体控制量;
步骤6返回调用程序。
优点效果:
本发明涉及一种直线电机驱动FTS基于ESO滑模改进重复控制方法,具有以下优点:针对快速刀具伺服系统在高频输入给定时,由于惯性等因素造成的相位滞后问题,采用改进重复控制和ESO滑模控制结合的方式,能够得到很好解决。基于内模原理的重复控制能有效提高系统的跟踪精度,插入式结构可以使系统获得较宽的控制带宽,及较强的鲁棒性。而在ESO滑模控制中采用扩张状态观测器对系统状态进行观测,由观测状态设计滑模面,可以将观测到的系统内外扰动引入控制率中,提高了控制精度。同时,采用一种逼近函数来取代符号函数以削弱滑模控制固有的抖振。最终实现本发明的目的即高频响输入时提高系统的鲁棒性和跟踪精度。
附图说明
图1为本发明ESO滑模重复控制器系统框图。
图2主控制系统程序。
图3 T1中断处理子控制程序流程图。
图4位置调节中断处理子控制程序流程图。
图5为实现本发明的硬件控制系统原理图。
图6为实现本发明的硬件控制系统原理图。
(a)电机控制主电路原理图。
(b)A、B相电流采样电路原理图。
(c)光栅尺信号采样电路原理图。
图7 ESOSMC+RC输入输出曲线。
图8阶跃扰动下RC和ESOSMC+RC的误差曲线。
图9 RC和MRC的稳态误差曲线。
具体实施方式
下面结合附图对本发明做进一步说明:
附图1为快速刀具伺服系统基于ESO滑模改进重复控制。
永磁直线同步电机数学模型如下:
永磁直线同步电机电磁推力表达式为:
式中,pn为极对数;τ为极距;Ld为直轴电感;Lq为交轴电感;id为直轴电流;iq为交轴电流;ψf为永磁体磁链。当只考虑基波分量时,电流内环采用id=0的控制策略,此时产生电磁推力为:
PMLSM的机械运动方程为:
其中,v为动子速度;M为动子及其所带负载总质量;F为总扰动力FΣ=Frip+Ffric(Frip为端部效应产生的等效阻力;Ffric为总摩擦力);
为了便于描述,令x=[x1,x2]T为系统的状态变量,x1为位置,x2为速度,输入控制量为u=iq,则系统的状态方程形式为:
其中C=[1 0],f(·)导数存在并且是有限即
实验实例选用的是无铁心永磁直线同步电机,具体参数为:动子质量M=0.32kg,粘滞摩擦系数Bv=0.001N·s/m,电磁推力系数Kf=28.5N/A,动子电阻Rs=8.6Ω。为了符合高频加工的要求,参考输入选为幅值为0.01mm,频率为100Hz正弦波信号。端部效应等效阻力:Frip=2cos(392l);摩擦力:
1.扩张状态观测器(ESO)设计:
第一步:扩张观测器的设计;
当时间t→∞时,其中,为扩张状态观测器观测到系统状态及内外干扰总和,Δ为常数且Δ>0,k1、k2和k3均为正常数。t为控制时间。
第二步:观测器参数设计;
1)如果扩张状态观测器的初始值和直线电机的初始值不同,Δ取值很小的话就会产生峰值现象,这对于观测器的收敛影响很大,为了避免峰值现象的出现可以将Δ设计为如下形式:
由上式可以看出观测器误差的收敛与Δ有关,如果Δ取值为很小的正数,观测器误差将收敛到0。
2)k1、k2、k3取值可由多项式得到:
则k1=3a+3,k2=a(a+1)+(2a+1)(a+2),k3=a(a+1)(a+2),a为任意正整数。
2.基于ESO滑模控制器设计:
第一步:系统状态方程的建立;
二阶系统可以由如下状态方程表示:
令x3=f(t),则有
误差系统如下所示:
其中,xd为期望参考输入,为参考输入信号的二阶导数,e1=x1-xd
第二步:滑模面的设计;
必须设计滑模面σ使系统状态在滑动条件下且在有效时间内到达平衡点,则系统的滑模面设计为:
σ=e2+λe1 (11)
则由观测到状态设计的滑模面为:
其中为扩张状态观测器观测到位置量与速度量,为位置误差,为速度误差。xd为参考输入信号,为参考信号的微分信号,λ>0为正常数。
第三步:滑模控制率的设计;
可得等效控制律为:
切换控制为:
其中,η>0。则控制律设计为:
第四步:选择合适的函数消除抖振;
本专利采用一种逼近函数替代控制率中的符号函数来削弱滑模控制固有的抖振,逼近函数为:
其中,本专利φ取0.01。
本专利的ESO滑模控制其他仿真参数取值如下:λ=40,η=50,k1=603,k2=121202,k3=8120400。
3.改进重复控制器设计
第一步:插入式重复控制器设计;
低通滤波器Q(s)为:
其中,ωq为截止频率;ξ为阻尼系数,本发明中取
由于低通滤波器带来的相位延迟,使系统无法跟随给定信号,为了进行相位补偿在控制率中增加超前相位补偿环节eτs,其中τ=2ξ/ωq
则重复控制器设计为:
第二步:重复控制器稳定条件及参数设计原则;
对于单输入单输出系统来说,重复控制系统的稳定条件是:
其中,G(s)=C(s)·P(s),C(s)为重复控制补偿器,P(s)为被控对象。
原系统灵敏度函数为:
令||S0||=Ms,|S(jωs)|=1,当||Q(s)||=1要满足式(20),则||Q(jωs)||<1/Ms,即:
重复控制的补偿器采用PD控制。将(18)代入(22)可得截止频率ωq的取值范围:
其中,ωs和Ms可以通过S0的幅值图得到。
本专利的改进重复控制参数取值如下:ωq=600πrad/s,kp=-200000,kd=-30
图2为控制系统程序最终由DSP处理器实现,主控程序步骤如下:
步骤1系统初始化;
步骤2允许TN1、TN2中断;
步骤3启动T1下溢中断;
步骤4程序数据初始化;
步骤5开总中断;
步骤6中断等待;
步骤7TN1中断处理子控制程序即;
步骤8结束。
上述TN1中断处理子控制程序流程图如图3所示,步骤如下:
步骤1T1中断子控制程序;
步骤2保护现场;
步骤3电流采样,CLARK变换,PARK变换;
步骤4判断是否需要位置调节;否则进入步骤7;
步骤5位置调节中断处理子控制程序;
步骤6dq轴电流调节;
步骤7PARK逆变换;
步骤8计算CMPPx及PWM输出;
步骤9位置采样;
步骤10初始位置程序;
步骤11恢复现场;
步骤12中断返回。
上述步骤5所述的位置调节中断处理子控制程序即ESO滑模控制律实现的子程序流程图如图4所示,其执行步如下:
步骤1:读取初始时刻位置、控制器输出采样值(测量值);
步骤2:由初始位置和初始控制量计算系统状态值及系统的内外扰动量,
根据设计的扩张状态观测器,选择适当的k1,k2,k3的值(由式(7)的原则选取三个值)及根据式(6)设计Δ,由系统输出和控制量来计算出系统的状态x1和x2,及系统的内外扰动x3
步骤3:由参考输入和状态器输出计算位置反馈误差及其导数,
步骤4:设定ESO滑模控制初始参数;
步骤5:计算切换控制;
步骤:6:判断是否已在预设滑模面上。如果是则进行下一步,如果否则返回步骤5;
步骤7:由ESO滑模控制算法计算位置指令,Γ(σ(t))函数用以削弱滑模的抖振;
步骤8:ESO滑模控制律产生控制量
步骤9:返回调用程序。
重复控制中断子程序按如下步骤执行:
步骤1:读取初始时刻位置采样值(测量值);
步骤2:计算位置反馈误差;
步骤3:误差送入延迟环节和低通滤波器中计算,
H(s)输出值与误差值相加后再次送入H(s)中计算,最后将计算结果再次与误差值相加后送入PD补偿器中;
步骤4:重复控制器输出送与补偿环节PD进行计算;
步骤5:输出重复控制器整体控制量;
步骤6:返回调用程序。
硬件设计:
图5为实现本发明的硬件控制系统原理图。该系统包括主电路、控制电路和控制对象三部分;控制电路由DSP、位置检测和速度检测电路、电流检测电路、光耦隔离电路、驱动电路及故障检测和保护电路构成;DSP的QEP端口连接位置和速度检测电路,ADC端口连接电流检测电路,PWM端口和PDPINT端口连接光耦隔离电路,光耦隔离电路分别驱动电路和故障检测及保护电路相连;主电路包括调压电路、整流滤波单元和IPM逆变单元;控制对象为三相永磁直线同步电机,机身装有光栅尺;调压电路连接整流滤波单元,整流滤波单元连接IPM逆变单元,IPM逆变单元连接三相永磁同步直线同步电机。DSP的SCI端口连接上位机,DSP的SPI端口连接显示电路,DSP的GPIO端口连接I/O接口电路;故障检测和保护电路连接控制电源。
实现本发明的控制系统主电路如图6(a)所示,调压电路采用反向调压模块EUV-25A-II,可实现0~220V隔离调压。整流滤波单元采用桥式不可控整流,大电容滤波,配合适当的阻容吸收电路,可以获得IPM工作所需的恒定直流电压。IPM采用富士公司6MBP50RA060智能功率模块,耐压600V,最大电流50A,最高工作频率20kHz。IPM用四组独立的15V驱动电源供电。主电源输入端子(P,N),输出端子(U,V,W),主端子用自带的螺钉固定,可实现电流传输。P、N为变频器的整流变换平滑滤波后的主电源输入端子,P为正端,N为负端,逆变器输出的三相交流电通过输出端子U、V、W接至电机。
本发明的控制电路的核心为TMS320F28335处理器,其配套的开发板包括目标只读存储器、模拟接口、eCAN接口、串行引导ROM、用户指示灯、复位电路、可配置为RS232/RS422/RS485的异步串口、SPI同步串口和片外256K*16位RAM。
实际控制系统中电流采样采用LEM公司霍尔电流传感器LT58-S7。由两个霍尔电流传感器检测A、B相电流,得到电流信号,经过电流采样电路,转换成0~3.3V的电压信号,最后由TMS320LF28335的A/D转换模块转换成12位精度的二进制数,并保存在数值寄存器中。A、B相的电流采样电路如图6(b)所示。可调电阻VR2调节信号幅值,可调电阻VR1调节信号偏移量,通过对这两个电阻的调节,可以将信号调整到0~3.3V,再将其送入DSP 的AD0、AD1管脚。图中的稳压管是为了防止送入DSP的信号超过3.3V,导致DSP被高压损坏。运算放大器采用OP27,电源接正负15V电压,在电压和地间接去耦电容。电路输入端接电容滤波,以去除高频信号干扰,提高采样精度。
光栅尺输出的A相和B相脉冲信号要通过快速光耦6N137对信号进行隔离,然后经过分压电路将信号电平由5V转换为3.3V,最后连接到DSP的两路正交编码脉冲接口QEP1和QEP2。电路原理如图6(c)所示。
本发明的一个实例
所选用的电机是无铁心永磁直线同步电机,具体参数为:动子质量M=0.32kg,粘滞摩擦系数Bv=0.001N·s/m,电磁推力系数KF=28.5N/A,动子电阻Rs=8.6Ω。为了符合高频加工的要求,参考输入选为幅值为0.01mm,频率为100Hz正弦波信号。摩擦力:
ESO滑模控制参数:λ=40,α=50,k1=603,k2=121202,k3=8120400
改进重复控制参数:ωq=600πrad/s,kp=-200000,kd=-30
基于上述的一系列参数,当给定的参考信号幅值为0.01mm,频率响应为100Hz时,其输入输出信号如图7所示,图中曲线反应了所设计的控制算法具有良好的跟踪性能,输出能够高精度复现输入。系统运行过程中在0.5s时,加入一个50N的阶跃扰动,图8显示的是此时的稳态误差,可以看到增加ESO滑模控制的重复控制比但有重复控制具有更好的鲁棒性,ESO滑模重复控制比重复控制下降幅度约小0.1×10-6mm。图9同时也给出传统重复控制与改进插入式重复控制的对比曲线,曲线表明改进插入式重复控制的稳态误差要比传统重复控制的稳态误差小0.3×10-6mm。综上曲线和分析,说明所设计的控制方法能够实现对高频信号的良好跟踪,同时也能对干扰有良好的抑制,继而可完成高精度的切削加工。

Claims (10)

1.一种直线电机驱动FTS基于ESO滑模改进重复控制方法,包括基于扩张状态观测器的滑模控制和一种改进重复控制,其特征在于:该方法用扩张状态观测器观测出系统的状态及系统的内外扰动,根据系统状态设计滑模面,并且将观测到的扰动加入到控制率中,使滑模控制不但具有强鲁棒性,也提高控制的精度,并且在控制系统中加入重复控制,实现对周期性信号的良好跟踪以及对周期性扰动的有效抑制的设计,本发明的整个控制系统硬件包括主电路、控制电路和控制对象三部分,控制电路包括DSP处理器、电流采样电路、动子位置采样电路、IPM隔离驱动电路和IPM保护电路,主电路包括调压电路、整流滤波单元和IPM逆变单元,被控对象为三相永磁直线同步电机,机身装有光栅尺。
2.根据权利要求1所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:根据快速刀具伺服系统给定位置信号和扩张状态观测器观测的系统状态相减得到误差量,以这个误差量设计滑模面:
滑模面设计:
<mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>=</mo> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mi>&amp;lambda;</mi> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,为扩张状态观测器观测到位置量与速度量,为位置误差,为速度误差;xd为参考输入信号,为参考信号的微分信号,λ>0为正常数。
3.根据权利要求2所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <mi>&amp;Delta;</mi> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>b</mi> <mi>u</mi> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>k</mi> <mn>2</mn> </msub> <msup> <mi>&amp;Delta;</mi> <mn>2</mn> </msup> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>k</mi> <mn>3</mn> </msub> <msup> <mi>&amp;Delta;</mi> <mn>3</mn> </msup> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
根据设计的扩张状态观测器,观测出系统的状态及内外扰动k1、k2和k3均为正常数。
4.根据权利要求1所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:在滑模控制率中加入了扩张状态观测器观测到的系统内外总扰动,提高了控制的精度;
控制律设计:
<mrow> <mi>u</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mi>&amp;lambda;</mi> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mi>&amp;Gamma;</mi> <mo>(</mo> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
其中,λ>0,η为常数且η>0,为观测器观测到的内外扰动;为参考输入信号的二阶导数;
滑模控制率中使用一种逼近函数来替代符号函数以削弱滑模固有的抖振;
<mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>&amp;sigma;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;phi;</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;phi;</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>/</mo> <mi>&amp;pi;</mi> <mo>.</mo> </mrow>
5.根据权利要求1所述的快速刀具伺服系统基于ESO滑模改进重复控制系统的控制方法,其特征在于:重复控制利用内模原理将系统外部信号的数学模型嵌入到内部控制环节中实现对外部周期性信号和干扰进行高精度跟踪及抑制;
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>-</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> <mo>;</mo> </mrow>
其中,Q(s)为二阶低通滤波器;为加入补偿项的延迟环节,Td为参考输入信号的周期,τ为超前补偿周期;s为控制信号由时域经拉斯变换到复数域时引入的复参数。
6.根据权利要求5所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:插入式结构使重复控制器设计与其他控制器具有独立性。
7.根据权利要求5所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:为了改善并保证闭环系统的稳定性,重复控制器引入二阶低通器:
<mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;&amp;omega;</mi> <mi>q</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow>
其中,ωq为截止频率,ξ为阻尼系数;s为控制信号由时域经拉斯变换到复数域时引入的复参数。
8.根据权利要求5所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:引入一个超前补偿因子eτs(τ=2ξ/ωq),以补偿因引入低通滤波器带来的相位延迟。
9.根据权利要求5所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:
该方法的步骤如下:
(1).扩张状态观测器(ESO)设计:
第一步:扩张观测器的设计;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <mi>&amp;Delta;</mi> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>b</mi> <mi>u</mi> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>k</mi> <mn>2</mn> </msub> <msup> <mi>&amp;Delta;</mi> <mn>2</mn> </msup> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>k</mi> <mn>3</mn> </msub> <msup> <mi>&amp;Delta;</mi> <mn>3</mn> </msup> </mfrac> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
当时间t→∞时,其中,为扩张状态观测器观测到系统状态及内外干扰总和,Δ为常数且Δ>0,k1、k2和k3均为正常数;
第二步:观测器参数设计;
1)如果扩张状态观测器的初始值和直线电机的初始值不同,Δ取值很小的话就会产生峰值现象,这对于观测器的收敛影响很大,为了避免峰值现象的出现将Δ设计为如下形式:
<mrow> <mfrac> <mn>1</mn> <mi>&amp;Delta;</mi> </mfrac> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>100</mn> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>100</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
由上式看出观测器误差的收敛与Δ有关,如果Δ取值为很小的正数,观测器误差将收敛到0;t为控制器执行的时间;
2)k1、k2、k3取值由多项式得到:
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>a</mi> <mo>)</mo> <mo>&amp;lsqb;</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>&amp;lsqb;</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>=</mo> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> <mo>+</mo> <mo>(</mo> <mn>3</mn> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>a</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>a</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
则k1=3a+3,k2=a(a+1)+(2a+1)(a+2),k3=a(a+1)(a+2),a为任意正整数;
(2).基于ESO滑模控制器设计:
第一步:系统状态方程的建立;
二阶系统由如下状态方程表示:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
令x3=f(t),则有
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>b</mi> <mi>u</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
误差系统如下所示:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>b</mi> <mi>u</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
其中,xd为期望参考输入,为参考输入信号的二阶导数,e1=x1-xd
第二步:滑模面的设计;
必须设计滑模面σ使系统状态在滑动条件下且在有效时间内到达平衡点,则系统的滑模面设计为:
σ=e2+λe1 (11)
则由观测到状态设计的滑模面为:
<mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>=</mo> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mi>&amp;lambda;</mi> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
其中 为扩张状态观测器观测到位置量与速度量,为位置误差,为速度误差;xd为参考输入信号,λ>0为正常数;
第三步:滑模控制率的设计;
得等效控制律为:
<mrow> <msub> <mi>u</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mi>&amp;lambda;</mi> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
切换控制为:
<mrow> <msub> <mi>u</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>&amp;eta;</mi> <mi>sgn</mi> <mrow> <mo>(</mo> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中,η>0;则控制律设计为:
<mrow> <mi>u</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mi>&amp;lambda;</mi> <msub> <mover> <mi>e</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mi>sgn</mi> <mo>(</mo> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
第四步:选择合适的函数消除抖振;
本专利采用一种逼近函数替代控制率中的符号函数来削弱滑模控制固有的抖振,逼近函数为:
<mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>&amp;sigma;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;phi;</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>&amp;phi;</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>/</mo> <mi>&amp;pi;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
其中,本专利φ取0.01;
(3).改进重复控制器设计
第一步:插入式重复控制器设计;
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>-</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
低通滤波器Q(s)为:
<mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;&amp;omega;</mi> <mi>q</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
其中,ωq为截止频率;ξ为阻尼系数,本发明中取
由于低通滤波器带来的相位延迟,使系统无法跟随给定信号,为了进行相位补偿在控制率中增加超前相位补偿环节eτs,其中τ=2ξ/ωq
则重复控制器设计为:
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>-</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
第二步:重复控制器稳定条件及参数设计原则;
对于单输入单输出系统来说,重复控制系统的稳定条件是:
其中,G(s)=C(s)·P(s),C(s)为重复控制补偿器,P(s)为被控对象;
原系统灵敏度函数为:
<mrow> <msub> <mi>S</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
令||S0||=Ms,|S(jωs)|=1,当||Q(s)||=1要满足式(20),则||Q(jωs)||<1/Ms,即:
<mrow> <mo>|</mo> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mo>&lt;</mo> <mfrac> <mn>1</mn> <msub> <mi>M</mi> <mi>s</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
重复控制的补偿器采用PD控制;将(18)代入(22)得截止频率ωq的取值范围:
<mrow> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> <mo>&lt;</mo> <msqrt> <mrow> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;omega;</mi> <mi>s</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <msubsup> <mi>M</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msubsup> <mi>&amp;omega;</mi> <mi>s</mi> <mn>4</mn> </msubsup> <mrow> <msubsup> <mi>M</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msqrt> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;omega;</mi> <mi>s</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <msubsup> <mi>M</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msqrt> <mo>=</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msqrt> <mrow> <msubsup> <mi>M</mi> <mi>s</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
其中,ωs和Ms通过S0的幅值图得到。
10.根据权利要求1-9任意一项所述的一种直线电机驱动FTS基于ESO滑模改进重复控制方法,其特征在于:
将上述控制方法嵌入DSP控制电路中实现对直线电机的控制;按以下步骤执行:
步骤1 系统初始化;
步骤2 允许TN1、TN2中断;
步骤3 启动T1下溢中断;
步骤4 程序数据初始化;
步骤5 开总中断;
步骤6 中断等待;
步骤7 TN1中断处理子控制程序;
步骤8 结束;
上述TN1中断处理子控制程序步骤如下:
步骤1 T1中断子控制程序;
步骤2 保护现场;
步骤3 电流采样,CLARK变换,PARK变换;
步骤4 判断是否需要位置调节;否则进入步骤7;
步骤5 调用位置调节中断处理子程序;
步骤6 dq轴电流调节;
步骤7 PARK逆变换;
步骤8 计算CMPPx及PWM输出;
步骤9 位置采样;
步骤10 初始位置程序;
步骤11 恢复现场;
步骤12 中断返回;
上述步骤5所述的位置调节中断处理子控制程序步骤如下:
ESO滑模控制律实现的子程序执行步骤如下:
步骤1:读取初始时刻位置、控制器输出采样值(测量值);
步骤2:由初始位置和初始控制量计算系统状态值及系统的内外扰动量,
步骤3:由参考输入和状态器输出计算位置反馈误差及其导数,
步骤4:设定ESO滑模初始参数;
步骤5:计算切换控制;
步骤6:判断是否已在预设滑模面上;如果是则进行下一步,如果否则返回步骤5;
步骤7:由ESO滑模控制算法计算位置指令;
步骤8:ESO滑模控制律产生控制量
步骤9:返回调用程序;
重复控制中断子程序按如下步骤执行:
步骤1:读取初始时刻位置采样值(测量值);
步骤2:计算位置反馈误差;
步骤3:误差送入延迟环节和低通滤波器计算;
步骤4:重复控制器输出送与补偿环节PD进行计算;
步骤5:输出重复控制器整体控制量;
步骤6:返回调用程序。
CN201710102512.2A 2017-02-24 2017-02-24 一种直线电机驱动fts基于eso滑模改进重复控制方法 Active CN107132759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710102512.2A CN107132759B (zh) 2017-02-24 2017-02-24 一种直线电机驱动fts基于eso滑模改进重复控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710102512.2A CN107132759B (zh) 2017-02-24 2017-02-24 一种直线电机驱动fts基于eso滑模改进重复控制方法

Publications (2)

Publication Number Publication Date
CN107132759A true CN107132759A (zh) 2017-09-05
CN107132759B CN107132759B (zh) 2020-05-22

Family

ID=59721666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710102512.2A Active CN107132759B (zh) 2017-02-24 2017-02-24 一种直线电机驱动fts基于eso滑模改进重复控制方法

Country Status (1)

Country Link
CN (1) CN107132759B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085758A (zh) * 2018-10-20 2018-12-25 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN110045604A (zh) * 2019-02-27 2019-07-23 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN110161838A (zh) * 2019-05-06 2019-08-23 浙江大学 带压电力传感器静态漂移自动补偿的切削力主从控制系统
CN110579964A (zh) * 2019-09-06 2019-12-17 浙江大学城市学院 一种鲁棒自适应重复控制器设计方法
CN110597064A (zh) * 2019-09-24 2019-12-20 燕山大学 基于非线性和不确定模型的主动悬挂输出反馈控制方法
CN110850886A (zh) * 2019-11-04 2020-02-28 哈尔滨工程大学 一种全浸式水翼艇纵向运动控制方法
CN111077772A (zh) * 2019-12-02 2020-04-28 固高伺创驱动技术(深圳)有限公司 基于伺服驱动的跟踪控制方法、装置和计算机设备
CN113204193A (zh) * 2021-05-06 2021-08-03 北京航空航天大学 飞行器故障容错控制方法、装置和电子设备
CN113885336A (zh) * 2021-11-16 2022-01-04 哈尔滨工业大学(深圳) 基于积分型高阶滑模控制的压电驱动器轨迹跟踪控制方法
CN114609975A (zh) * 2022-03-25 2022-06-10 江南大学 一种基于复合自抗扰控制的fts控制方法
CN114859716A (zh) * 2022-04-24 2022-08-05 北京理工大学 基于多学科协同优化接口电路设计方法及电机模拟器系统
CN114967440A (zh) * 2022-04-14 2022-08-30 吉林大学 增程式电动汽车转速控制方法及控制系统
CN117452822A (zh) * 2023-11-13 2024-01-26 中原工学院 一种基于c语言的重复控制技术编程实现方法
CN114859716B (zh) * 2022-04-24 2024-06-04 北京理工大学 基于多学科协同优化接口电路设计方法及电机模拟器系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136217A (zh) * 2007-10-18 2008-03-05 清华大学 用于蓝光高密度光盘伺服系统的周期自适应重复控制器
CN103560721A (zh) * 2013-11-16 2014-02-05 沈阳工业大学 用双直线永磁同步电机控制龙门数控铣床的装置及方法
US20140117918A1 (en) * 2012-10-26 2014-05-01 Woodward Hrt, Inc. Robust controller for electro-mechanical actuators employing sliding and second control modes
CN104238572A (zh) * 2014-07-23 2014-12-24 南京理工大学 基于扰动补偿的电机伺服系统无抖动滑模位置控制方法
CN104460518A (zh) * 2014-11-16 2015-03-25 沈阳工业大学 基于模糊扰动补偿直接驱动xy平台轮廓控制装置及方法
CN104467595A (zh) * 2014-12-05 2015-03-25 沈阳工业大学 直接驱动伺服系统的二阶滑模控制系统及其控制方法
CN104917436A (zh) * 2015-07-08 2015-09-16 沈阳工业大学 永磁直线同步电机的自适应二阶终端滑模控制系统及方法
CN104953875A (zh) * 2015-07-14 2015-09-30 太原理工大学 一种离网逆变器的重复滑模控制方法
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于插入式快速重复控制器的复合控制方法及系统
CN104201941B (zh) * 2014-06-30 2017-01-11 浙江工业大学 一种基于非线性扩张状态观测器的永磁同步电机混沌控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136217A (zh) * 2007-10-18 2008-03-05 清华大学 用于蓝光高密度光盘伺服系统的周期自适应重复控制器
US20140117918A1 (en) * 2012-10-26 2014-05-01 Woodward Hrt, Inc. Robust controller for electro-mechanical actuators employing sliding and second control modes
CN103560721A (zh) * 2013-11-16 2014-02-05 沈阳工业大学 用双直线永磁同步电机控制龙门数控铣床的装置及方法
CN104201941B (zh) * 2014-06-30 2017-01-11 浙江工业大学 一种基于非线性扩张状态观测器的永磁同步电机混沌控制方法
CN104238572A (zh) * 2014-07-23 2014-12-24 南京理工大学 基于扰动补偿的电机伺服系统无抖动滑模位置控制方法
CN104460518A (zh) * 2014-11-16 2015-03-25 沈阳工业大学 基于模糊扰动补偿直接驱动xy平台轮廓控制装置及方法
CN104467595A (zh) * 2014-12-05 2015-03-25 沈阳工业大学 直接驱动伺服系统的二阶滑模控制系统及其控制方法
CN104917436A (zh) * 2015-07-08 2015-09-16 沈阳工业大学 永磁直线同步电机的自适应二阶终端滑模控制系统及方法
CN104953875A (zh) * 2015-07-14 2015-09-30 太原理工大学 一种离网逆变器的重复滑模控制方法
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于插入式快速重复控制器的复合控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张戟,等: "快速刀具伺服系统的复合PI重复控制", 《第十三届沈阳科学学术年会论文集(理工农医)》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085758B (zh) * 2018-10-20 2022-02-18 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN109085758A (zh) * 2018-10-20 2018-12-25 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN110045604A (zh) * 2019-02-27 2019-07-23 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN110045604B (zh) * 2019-02-27 2022-03-01 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN110161838B (zh) * 2019-05-06 2020-12-15 浙江大学 带压电力传感器静态漂移自动补偿的切削力主从控制系统
CN110161838A (zh) * 2019-05-06 2019-08-23 浙江大学 带压电力传感器静态漂移自动补偿的切削力主从控制系统
CN110579964A (zh) * 2019-09-06 2019-12-17 浙江大学城市学院 一种鲁棒自适应重复控制器设计方法
CN110579964B (zh) * 2019-09-06 2022-03-29 浙江大学城市学院 一种鲁棒自适应重复控制器设计方法
CN110597064B (zh) * 2019-09-24 2021-04-16 燕山大学 基于非线性和不确定模型的主动悬挂输出反馈控制方法
CN110597064A (zh) * 2019-09-24 2019-12-20 燕山大学 基于非线性和不确定模型的主动悬挂输出反馈控制方法
CN110850886A (zh) * 2019-11-04 2020-02-28 哈尔滨工程大学 一种全浸式水翼艇纵向运动控制方法
CN111077772B (zh) * 2019-12-02 2020-11-10 固高伺创驱动技术(深圳)有限公司 基于伺服驱动的跟踪控制方法、装置和计算机设备
CN111077772A (zh) * 2019-12-02 2020-04-28 固高伺创驱动技术(深圳)有限公司 基于伺服驱动的跟踪控制方法、装置和计算机设备
CN113204193A (zh) * 2021-05-06 2021-08-03 北京航空航天大学 飞行器故障容错控制方法、装置和电子设备
CN113204193B (zh) * 2021-05-06 2022-10-25 北京航空航天大学 飞行器故障容错控制方法、装置和电子设备
CN113885336A (zh) * 2021-11-16 2022-01-04 哈尔滨工业大学(深圳) 基于积分型高阶滑模控制的压电驱动器轨迹跟踪控制方法
CN113885336B (zh) * 2021-11-16 2023-06-06 哈尔滨工业大学(深圳) 基于积分型高阶滑模控制的压电驱动器轨迹跟踪控制方法
CN114609975A (zh) * 2022-03-25 2022-06-10 江南大学 一种基于复合自抗扰控制的fts控制方法
CN114609975B (zh) * 2022-03-25 2024-04-30 江南大学 一种基于复合自抗扰控制的fts控制方法
CN114967440A (zh) * 2022-04-14 2022-08-30 吉林大学 增程式电动汽车转速控制方法及控制系统
CN114859716A (zh) * 2022-04-24 2022-08-05 北京理工大学 基于多学科协同优化接口电路设计方法及电机模拟器系统
CN114859716B (zh) * 2022-04-24 2024-06-04 北京理工大学 基于多学科协同优化接口电路设计方法及电机模拟器系统
CN117452822A (zh) * 2023-11-13 2024-01-26 中原工学院 一种基于c语言的重复控制技术编程实现方法

Also Published As

Publication number Publication date
CN107132759B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN107132759A (zh) 一种直线电机驱动fts基于eso滑模改进重复控制方法
WO2022232977A1 (zh) 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
CN104977901B (zh) 三轴运动平台改进型交叉耦合控制装置及方法
CN102969968B (zh) 一种永磁同步电机控制方法
CN105223809A (zh) H型平台的模糊神经网络补偿器的同步控制系统及方法
CN104460518A (zh) 基于模糊扰动补偿直接驱动xy平台轮廓控制装置及方法
CN106026835A (zh) 一种基于模糊控制和滑模观测器的无速度传感器优化方法
CN104917436A (zh) 永磁直线同步电机的自适应二阶终端滑模控制系统及方法
CN107370431A (zh) 一种工业机器人用永磁同步电机模糊自抗扰控制方法
CN105048896B (zh) 一种无刷直流电机直接转矩自适应模糊控制方法
CN103414419A (zh) 基于模糊rbf网络滑模的双直线电机轮廓补偿装置与方法
CN101834554A (zh) 用负载扰动补偿器并对其优化设定来提高加工精度的方法
CN112039390B (zh) 基于负载转矩观测的永磁同步电机滑模控制方法
CN113206623B (zh) 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
CN105929693A (zh) H型精密运动平台自适应滑模补偿同步控制系统与方法
CN108123648A (zh) 基于线性矩阵不等式与滑模控制的直线伺服位置跟踪控制
CN113193809A (zh) 一种改进二阶线性自抗扰的永磁同步电机控制方法
CN101691020A (zh) 一种用于虚拟轴机床刀具运动控制的滑模控制方法
CN104467595A (zh) 直接驱动伺服系统的二阶滑模控制系统及其控制方法
CN104834219A (zh) 一种基于经验模态分解的pmlsm驱动xy平台控制方法及系统
CN110649845A (zh) 基于鲁棒广义预测控制的光电转台位置跟踪控制方法
CN104485864B (zh) 直接驱动伺服系统的二阶滑模控制系统及其控制方法
CN110266227A (zh) 一种基于模糊滑膜变结构的永磁同步电机控制系统
CN203896241U (zh) 基于模糊rbf网络积分滑模的双直线电机轮廓补偿装置
CN109143869B (zh) 一种h型平台的递归小波神经网络补偿器的同步控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210506

Address after: 215000 no.855 Zhujiang Road, high tech Zone, Suzhou City, Jiangsu Province

Patentee after: SUZHOU XIONGFENG MOTOR Co.,Ltd.

Address before: 110870 No. 111 Shenyang West Road, Shenyang economic and Technological Development Zone, Liaoning

Patentee before: SHENYANG University OF TECHNOLOGY