CN107117650B - 一种单分散二氧化钛微球及制备方法和应用 - Google Patents

一种单分散二氧化钛微球及制备方法和应用 Download PDF

Info

Publication number
CN107117650B
CN107117650B CN201710361892.1A CN201710361892A CN107117650B CN 107117650 B CN107117650 B CN 107117650B CN 201710361892 A CN201710361892 A CN 201710361892A CN 107117650 B CN107117650 B CN 107117650B
Authority
CN
China
Prior art keywords
monodisperse
titanium dioxide
powder
temperature
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710361892.1A
Other languages
English (en)
Other versions
CN107117650A (zh
Inventor
王茂华
杨蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710361892.1A priority Critical patent/CN107117650B/zh
Publication of CN107117650A publication Critical patent/CN107117650A/zh
Application granted granted Critical
Publication of CN107117650B publication Critical patent/CN107117650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种单分散二氧化钛的制备方法与应用,属于压敏材料制备技术领域。使用溶胶凝胶法制备单分散二氧化钛微球,单分散球形TiO2粉体具有均匀的粒径和形状,粒径细、比表面大,通过单分散球状的二氧化钛制备出来的二氧化钛基复合陶瓷相比较与一般的二氧化钛基复合陶瓷的烧结温度较低,致密化提高,并且具有良好的电性能。

Description

一种单分散二氧化钛微球及制备方法和应用
技术领域
本发明涉及一种单分散二氧化钛微球及制备方法和应用,属于压敏材料制备技术领域。本发明的用单分散二氧化钛制备的压敏陶瓷材料具有烧结温度低,致密度提高,介电常数εr大的优良综合的特点。
背景技术
二氧化钛(TiO2)晶体在自然环境中存在锐钛矿型、金红石型和板钛矿型3种结构。在高温条件下,锐钛矿型和板钛矿型结构会转变为金红石型结构,故经高温烧结的二氧化钛陶瓷通常呈现金红石型结构。因TiO2晶体材料具有高温稳定性、化学稳定性良好、催化效率高、无毒无污染等特性而被广泛地应用在陶瓷、压敏电阻、压电设备等领域。二氧化钛基压敏陶瓷是利用多种氧化物的混合,使晶粒变成半导体。二氧化钛基压敏陶瓷具有高的介电常数,广泛的应用在电容性器件中。单分散粉体具有均匀的粒径和形状,粒径细、比表面大,能避免异常晶粒的生长。这样不仅可以显著降低烧结温度,而且在烧成后期可保证形成晶粒的均匀生长,并使气孔率下降,从而可获得均匀的、致密的烧结体。单分散是指颗粒的大小,形状和组分完全一致的分散体系。单分散的特征是形貌的统一,大小的一致,晶形的控制。粉体材料的分散性与材料特定的尺寸和形状等特征有直接的关系。陶瓷材料的烧结温度和烧成收缩均与颗粒粒径和比表面积有关。烧成后期的气孔消失和晶粒长大也与粉体的均匀度相关。
一般的二氧化钛晶体分散性差,故其陶瓷的烧结温度高,孔隙率高,且非线性系数α及相对介电常数εr较小。例如,文献1(Li.C.P et al,Materials Letters.,57(2003)1400)和文献2(Chang.X et al,Journal of Materials Chemistry A.3(2015)5805)近年报道了实施(Nb,Y)共掺杂的二氧化钛基陶瓷材料的烧结性能和电性能。目前,制备单分散球形TiO2粉体的方法有很多,主要有溶胶凝胶法、水热法、硫酸盐法等。其中,溶胶凝胶法制备单分散球形TiO2粉体技术比较成熟,原料易得,如文献3(Dehong.Chen et al,J.Am.Chem.Soc.,132(2010)4438)报道了用有机钛盐溶解于无水乙醇中,加入一定量的结构导向剂,转变成溶胶,经热处理得到单分散球形TiO2粉体。本项目通过一种简单的溶胶凝胶法,以钛酸四异丙酯作为钛源,选用HDA作为结构导向剂,无水乙醇作为溶剂,加入氯化钾和超纯水,制备单分散二氧化钛微球,再将二氧化钛,五氧化二铌,三氧化钇按一定比例混合,制成二氧化钛基陶瓷。通过不同煅烧温度,研究陶瓷的烧结性能和电性能。
本项目的优点在于,单分散球形TiO2粉体具有均匀的粒径和形状,粒径细、比表面大,能避免异常晶粒的生长。这样不仅可以显著降低烧结温度,而且在烧成后期可保证形成晶粒的均匀生长,并使气孔率下降,从而可获得均匀的、致密的细晶烧结体。
发明内容
针对上述情况,本发明在现有技术基础上研究用单分散球状TiO2粉体制备二氧化钛基陶瓷,提供一类具有良好综合烧结性能和电性能的二氧化钛基陶瓷材料。
解决上述问题所采取的技术方案是该复合陶瓷由下述方法制备而成:
1.制备单分散球状二氧化钛粉体
将钛酸异丙酯(TIP)溶于无水乙醇溶剂中,再加入十六胺(HDA),常温搅拌后加入KCl溶液和超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤,所得到白色产物干燥后的得到的白色粉末经过热处理,得到单分散TiO2白色粉末。
上述步骤1中,HDA、超纯水、KCl、无水乙醇、钛酸异丙酯的物质的量的比是0.24:1.75:5×10-3:214.38:1.0。
所述KCl溶液的浓度为0.1M。
常温搅拌1小时,静置18小时。
所述干燥温度为80℃;热处理温度为500℃,热处理时间为2小时。
2.制备单分散球状二氧化钛基陶瓷粉
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色粉末以去离子水为介质,常温下搅拌,然后干燥,得到单分散球状二氧化钛基陶瓷粉。
所述搅拌时间为4小时,所述干燥指在80℃干燥12小时。
3.烧结单分散球状二氧化钛基陶
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇(PVA)溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1100~1250℃,保温2小时,然后降至室温。
所述保温温度优选为1200℃。
4.烧银电极
将步骤3中得到的陶瓷上下表面分别涂覆银浆,120℃干燥后,置于马弗炉中550℃烧银15分钟,然后降至室温,得到单分散球状二氧化钛基陶瓷材料。
本发明的优点和积极效果:(1)使用溶胶凝胶法,无需大型昂贵设备,成本低,能够大规模生产;(2)本发明制备的二氧化钛分体具有分散性好,尺寸均一等特征;(3)通过单分散球状的二氧化钛制备出来的二氧化钛基复合陶瓷相比较与一般的二氧化钛基复合陶瓷的烧结温度较低,致密化提高,并且具有良好的电性能。
附图说明
图1为实施例1~4制备样品的单分散二氧化钛微球,由图可以看出二氧化钛微球的分散性良好,形貌大小均一。
图2为实施例3制备样品的单分散二氧化钛基复合陶瓷的断面扫面电镜图,由图可以看出烧结温度在1200℃时,孔隙率减少,致密化程度提高。
表1为实施例1~4制备样品的单分散二氧化钛基复合陶瓷的电性能,由表可以看出,烧结温度在1200℃时,非线性系数和介电常数达到最大。
具体实施方式
下面结合实施例对本发明进一步说明
实施例1
称取4.53mL的钛酸异丙酯溶于100mL的无水乙醇溶剂中,记为溶液A;再加入0.90g的十六胺;常温搅拌1小时后再加入0.8mL0.1M的KCl和0.51mL的超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置18小时后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤数次,所得到白色产物80℃干燥;将干燥后的白色粉末经过500℃的热处理2h,得到单分散TiO2白色粉末。
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色粉末加入三口烧瓶中,以去离子水为介质,常温下充分搅拌4小时,然后在80℃下干燥12小时,得到单分散球状二氧化钛基陶瓷粉。
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇(PVA)溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1100℃,保温2小时,然后降至室温。
将步骤3中得到的陶瓷上下表面分别涂覆银浆,120℃干燥后,置于马弗炉中550℃烧银15分钟,然后降至室温,得到单分散球状二氧化钛基陶瓷材料。
实施例2
称取4.53mL的钛酸异丙酯溶于100mL的无水乙醇溶剂中,记为溶液A;再加入0.90g的十六胺;常温搅拌1小时后再加入0.8mL0.1M的KCl和0.51mL的超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置18小时后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤数次,所得到白色产物80℃干燥;将干燥后的白色粉末经过500℃的热处理2h,得到单分散TiO2白色粉末。
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色粉末加入三口烧瓶中,以去离子水为介质,常温下充分搅拌4小时,然后在80℃下干燥12小时,得到单分散球状二氧化钛基陶瓷粉。
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇(PVA)溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1150℃,保温2小时,然后降至室温。
将步骤3中得到的陶瓷上下表面分别涂覆银浆,120℃干燥后,置于马弗炉中550℃烧银15分钟,然后降至室温,得到单分散球状二氧化钛基陶瓷材料。
实施例3
称取4.53mL的钛酸异丙酯溶于100mL的无水乙醇溶剂中,记为溶液A;再加入0.90g的十六胺;常温搅拌1小时后再加入0.8mL0.1M的KCl和0.51mL的超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置18小时后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤数次,所得到白色产物80℃干燥;将干燥后的白色粉末经过500℃的热处理2h,得到单分散TiO2白色粉末。
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色粉末加入三口烧瓶中,以去离子水为介质,常温下充分搅拌4小时,然后在80℃下干燥12小时,得到单分散球状二氧化钛基陶瓷粉。
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇(PVA)溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1200℃,保温2小时,然后降至室温。
将步骤3中得到的陶瓷上下表面分别涂覆银浆,120℃干燥后,置于马弗炉中550℃烧银15分钟,然后降至室温,得到单分散球状二氧化钛基陶瓷材料。
实施例4
称取4.53mL的钛酸异丙酯溶于100mL的无水乙醇溶剂中,记为溶液A;再加入0.90g的十六胺;常温搅拌1小时后再加入0.8mL0.1M的KCl和0.51mL的超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置18小时后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤数次,所得到白色产物80℃干燥;将干燥后的白色粉末经过500℃的热处理2h,得到单分散TiO2白色粉末。
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色粉末加入三口烧瓶中,以去离子水为介质,常温下充分搅拌4小时,然后在80℃下干燥12小时,得到单分散球状二氧化钛基陶瓷粉。
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇(PVA)溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1250℃,保温2小时,然后降至室温。
将步骤3中得到的陶瓷上下表面分别涂覆银浆,120℃干燥后,置于马弗炉中550℃烧银15分钟,然后降至室温,得到单分散球状二氧化钛基陶瓷材料。
采用场发射扫描电镜,阿基米德法对产品进行分析;图1证明了成功制备出单分散的二氧化钛微球;图2和表1证明了用单分散的二氧化钛微球制备出的二氧化钛基复合陶瓷可降低陶瓷的烧结温度,提高致密化,具有良好的电性能。
表1

Claims (2)

1.利用一种单分散二氧化钛微球制备二氧化钛基复合陶瓷的方法,降低烧结温度,提高致密度和电性能,其特征在于,具体步骤如下:
(1)制备单分散球状二氧化钛基陶瓷粉
按照Nb0.001Y0.006Ti0.993O2的化学计量比,将原料Nb2O5、Y2O3和单分散TiO2白色微球以去离子水为介质,常温下搅拌,然后干燥,得到单分散球状二氧化钛基陶瓷粉;所述单分散TiO2白色微球的制备方法如下:将钛酸异丙酯溶于无水乙醇溶剂中,再加入十六胺HDA,常温搅拌后加入KCl溶液和超纯水,继续搅拌得到乳白色胶体溶液,将此溶液静置后得到溶胶;溶胶经过离心机分离,并用乙醇洗涤,所得到白色产物干燥后的得到的白色粉末经过热处理,得到单分散TiO2白色微球;HDA、超纯水、KCl、无水乙醇、钛酸异丙酯的物质的量的比是0.24:1.75:5×10-3:214.38:1.0;所述单分散TiO2白色微球的制备过程中,KCl溶液的浓度为0.1M;常温搅拌1小时,静置18小时;所述干燥温度为80℃;热处理温度为500℃,热处理时间为2小时;
(2)烧结单分散球状二氧化钛基陶
向单分散球状二氧化钛基陶瓷粉加入其质量5%~10%的质量分数为5%的聚乙烯醇PVA溶液,造粒,过100目筛,用粉末压片机制成圆柱形生胚,将圆柱形生胚在空气中以3℃/分钟的升温速率升至1200℃,保温2小时,然后降至室温;
(3)烧银电极
将得到的陶瓷上下表面分别涂覆银浆,干燥后烧银,然后降至室温,得到二氧化钛基复合陶瓷。
2.如权利要求1所述的方法,其特征在于,步骤(1)中,所述单分散球状二氧化钛基陶瓷粉的制备过程中,搅拌时间为4小时,所述干燥指在80℃干燥12小时。
CN201710361892.1A 2017-05-22 2017-05-22 一种单分散二氧化钛微球及制备方法和应用 Active CN107117650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710361892.1A CN107117650B (zh) 2017-05-22 2017-05-22 一种单分散二氧化钛微球及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710361892.1A CN107117650B (zh) 2017-05-22 2017-05-22 一种单分散二氧化钛微球及制备方法和应用

Publications (2)

Publication Number Publication Date
CN107117650A CN107117650A (zh) 2017-09-01
CN107117650B true CN107117650B (zh) 2019-05-28

Family

ID=59727476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710361892.1A Active CN107117650B (zh) 2017-05-22 2017-05-22 一种单分散二氧化钛微球及制备方法和应用

Country Status (1)

Country Link
CN (1) CN107117650B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181366B (zh) * 2017-12-13 2019-09-27 河南大学 以二氧化钛-二硫化钼-金三元复合材料为支架的光电化学适配体传感器的构建方法
CN111759774A (zh) * 2020-08-17 2020-10-13 刘婷 美白抗皱精华液

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686934A (zh) * 2005-04-19 2005-10-26 昆明理工大学 纳米改性制造TiO2压敏陶瓷材料的方法及应用此方法制造的TiO2压敏陶瓷电阻

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280018B1 (ko) * 2011-11-09 2013-07-05 한국기초과학지원연구원 고굴절률 티타니아 미세입자 제조방법
KR20140080204A (ko) * 2012-12-20 2014-06-30 삼성전자주식회사 도핑된 메조다공성 이산화티타늄 마이크로스피어 입자 제조 방법
CN104844192B (zh) * 2015-04-30 2017-04-12 昆明理工大学 一种压敏陶瓷材料的制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686934A (zh) * 2005-04-19 2005-10-26 昆明理工大学 纳米改性制造TiO2压敏陶瓷材料的方法及应用此方法制造的TiO2压敏陶瓷电阻

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells";Yoon-Cheol Park et al.;《J. Mater. Chem.》;20110603;第21卷;第9582–9586页

Also Published As

Publication number Publication date
CN107117650A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
KR101323697B1 (ko) 지르코늄 산화물 및 그 제조 방법
CN102923770B (zh) 一种钇稳定纳米二氧化锆粉体的制备方法
CN110203969A (zh) 一种高分散四方相纳米氧化锆及其制备方法
CN108511797B (zh) 一种Li7La3Zr2O12固体电解质制备方法
CN107954469B (zh) 一种制备四方相纳米钛酸钡的方法
CN107117650B (zh) 一种单分散二氧化钛微球及制备方法和应用
CN109399711A (zh) 一种金红石相二氧化钒纳米粉体的制备方法
CN1313417C (zh) 结构陶瓷用纳米晶氧化锆球状颗粒粉体的制备方法
CN108530057A (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN102976400A (zh) 一种四方相纳米钛酸钡的制备方法
CN104229874A (zh) 一种钛酸锶纳米粉体的制备方法
CN107879750B (zh) 一种利用微波辅助制备锆钛酸钡钙粉体的方法
Foo et al. Synthesis and characterisation of Y2O3 using ammonia oxalate as a precipitant in distillate pack co-precipitation process
CN109336572A (zh) 一种制备氧化物陶瓷的冷压烧结方法
Asadi et al. Effect of crystalline size on the structure of copper doped zirconia nanopaticles synthesized via sol-gel
CN106241853B (zh) 一种氧化钇纳米材料的制备方法
Liu et al. Direct ink writing of dense alumina ceramics prepared by rapid sintering
CN104016708B (zh) 一种高抗折强度陶瓷管支撑体的制备方法
CN106747403A (zh) 铝掺杂氧化锌粉体及其陶瓷制备方法
CN108217720A (zh) 片式多层陶瓷电容器用钛酸钡纳米晶的制备方法
CN111233022B (zh) 一种制备钇铝石榴石纳米颗粒的方法
CN103757751B (zh) 一种超高温氧化锆陶瓷纤维的制备方法
CN109850938B (zh) 钛酸锶球状纳米晶体的制备方法
CN107117586B (zh) 一种提高化学沉淀法制备氧化物粉体分散性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant