CN107001526A - 在气相中生产丙烯共聚物的方法 - Google Patents

在气相中生产丙烯共聚物的方法 Download PDF

Info

Publication number
CN107001526A
CN107001526A CN201580061717.XA CN201580061717A CN107001526A CN 107001526 A CN107001526 A CN 107001526A CN 201580061717 A CN201580061717 A CN 201580061717A CN 107001526 A CN107001526 A CN 107001526A
Authority
CN
China
Prior art keywords
alkyl
catalyst
ethene
propylene
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580061717.XA
Other languages
English (en)
Inventor
卢吉·雷斯科尼
诺伯特·哈夫纳
威尔弗雷德·托尔奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis AG
Borealis AS
Original Assignee
Borealis AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis AS filed Critical Borealis AS
Publication of CN107001526A publication Critical patent/CN107001526A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

制备丙烯和乙烯的多相共聚物的方法,包括在存在不含外在载体的固体颗粒状催化剂的情况下在气相中聚合丙烯和乙烯,该催化剂包括:(i)式(I)的对称复合物:其中M是锆或铪;各X是σ配体;L是二价桥,选自‑R'2C‑、‑R'2C‑CR'2‑、‑R'2Si‑、‑R'2Si‑SiR'2‑、‑R'2Ge‑,其中各R'独立地是氢原子、C1‑C20‑烷基、三(C1‑C20‑烷基)甲硅烷基、C6‑C20‑芳基、C7‑C20‑芳基烷基或C7‑C20‑烷基芳基;R2是C1‑C20烃基自由基;R5是C1‑C20烃基自由基;R6是叔C4‑C20烃基自由基;R7是氢原子或C1‑10‑烃基自由基;n是0至3;R1是C1‑C20烃基自由基,并且任选地两个相邻的R1基团一起可形成缩合至Ph环的进一步的单环或多环型环,其任选地被一个或两个R4基团取代;和R4是C1‑C10烷基自由基;和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;其中丙烯和乙烯的多相共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。

Description

在气相中生产丙烯共聚物的方法
本发明涉及使用桥连双茚基催化剂聚合丙烯和乙烯的方法。具体地,本发明涉及使用包含固体形式的某些桥连双茚基复合物但不含外在载体的催化剂在气相中聚合乙烯和丙烯,从而形成同时具有高乙烯含量和高Mw的二甲苯可溶性部分的多相共聚物。
茂金属催化剂已被用于生产聚烯烃多年。无数学术的和专利的公开描述了在烯烃聚合中使用这些催化剂。茂金属现被工业使用,并且具体地常常使用不同取代模式的环戊二烯系催化剂体系来生产聚乙烯和聚丙烯。
这些茂金属可用于溶液聚合,但这种聚合的结果总体上不好。因此这些茂金属通常被承载在载体如二氧化硅上。研究发现,多相催化(其中催化剂颗粒不溶解在反应介质中)产生的聚合产物优于均相催化(在溶液中)。因此承载物的使用是常见的。尽管这种催化剂技术发展了数年,仍有提高活性和提高聚合物颗粒形成的空间。
在WO03/051934中,发明人提出了催化剂的替代形式,其以固体形式提供,但不需要常规的外在载体材料如二氧化硅。该发明基于如下发现:包含过渡金属的有机金属化合物的均相催化剂体系可以受控方式转化成均匀固体催化剂颗粒——通过首先形成液/液乳液体系,该液/液乳液体系包括所述均相催化剂体系溶液作为分散相和与其不混溶的溶剂作为连续相;然后固化所述分散液滴,以形成包括所述催化剂的固体颗粒。
WO03/051934描述的发明能够在不使用本领域通常需要的例如外在多孔载体颗粒如二氧化硅的情况下形成所述有机过渡金属催化剂的固体球状催化剂颗粒。因此,催化剂二氧化硅残余物相关的问题可通过这种类型的催化剂得到解决。进一步可见,形态改善的催化剂颗粒还将由于复制效应(replica effect)而提供形态改善的聚合物颗粒。
虽然在茂金属催化剂领域关于常规承载型催化剂以及根据所述WO03/051934描述的原理制备的固体催化剂已进行大量工作,但仍存在一些问题——尤其与具有大二甲苯可溶性部分的聚合物的生产相关。发现这种聚合物的生产存在挑战,特别是在生产低熔体指数(MI)(即,高分子量,Mw)的聚合物时。
因此仍需要找到能够生产具有期望性质的聚合物的烯烃聚合催化剂。因此,发明人着手研发关于下列特性中的一个或多个具有优于上述聚合催化剂体系的聚合表现的催化剂:
-对于形成具有大二甲苯可溶性部分的聚合物的性能提高;
-对于高分子量丙烯乙烯共聚物的性能提高,例如,经由聚合物的特性粘度或更具体地该聚合物的二甲苯可溶性部分的特性粘度所观察的;
-获得二甲苯可溶性部分内乙烯含量高的丙烯乙烯共聚物。
本发明因此能够形成具有乙烯含量高并且特性粘度也高的二甲苯可溶性部分的丙烯乙烯共聚物。这种特征组合有益地导致聚合物在低温下具有高冲击强度。
发明人现已发现某类烯烃聚合催化剂能够解决上文公开的问题。本发明将使用WO03/051934的催化剂乳液/固化技术的已知承载技术与特定一组基于双茚基结构的茂金属复合物(其中茚基环的2、4、5和6位必须携带非氢基团)组合。理想地,2位在相对于环戊二烯基环的β碳处分支。6位携带叔烷基。这种组合在丙烯和乙烯气相聚合的环境中惊人地产生具有良好活性的催化剂,并且能够形成在二甲苯可溶性部分内、在该部分的高特性粘度下具有高乙烯含量的共聚物。这在商业相关聚合温度下也得以实现。
另外并且惊人地,利用本发明催化剂形成的富丙烯共聚物呈现低熔体指数_即使在二甲苯可溶性部分内的乙烯浓度增加的情况下。
如下文所述,本发明使用的茂金属复合物本身不是新型的,并且其它类似茂金属催化剂是已知的。WO2009/054832公开了常规承载型茂金属催化剂,其中茂金属在组成催化剂的配体的至少一个中的环戊二烯基环的2位处支化。
WO2007/116034描述了2位处被直链烷基取代的茂金属化合物。具体地,描述了在2位处携带甲基的化合物二甲基甲硅烷基(2-甲基-4-苯基-5-甲氧基-6-叔丁基茚-1-基)2二氯锆。
WO2006/097497描述了基于三环环体系(四氢引达省基(tetrahydroindacenyl))的某些对称茂金属。
WO2011/135004和WO2011/135005描述了rac-Me2Si(2-Me-4-Ph-5-OMe-6-tBuInd)2ZrCl2——但仅在丙烯均聚的环境中。
本发明方法中使用的复合物被描述于WO2012/084961,并且被建议用于丙烯乙烯无规共聚生产低XS含量和低乙烯含量的无规共聚物。然而,其明确在气相聚合—生产具有本文限定的特性的丙烯乙烯多相共聚物中的应用是未知的。
现惊人地发现,下文描述的固体形式但无外在载体的具体复合物可用于气相中的丙烯乙烯聚合以生产多相共聚物。该催化剂能够形成具有高二甲苯可溶性部分的聚合物,其中该部分具有高特性粘度和高乙烯含量。将理解,总体上,高共聚单体含量与Mw降低和因此特性粘度降低有关。能够在高分子量下保持高乙烯含量使得机械性质显著提高得以实现。
发明概述
因此,从一方面来看,本发明提供制备丙烯和乙烯的多相共聚物的方法,包括在存在不含外在载体的固体颗粒状催化剂的情况下在气相中聚合丙烯和乙烯,该催化剂包括:
(i)式(I)的对称复合物:
其中
M是锆或铪;
各X是σ配体;
L是二价桥,选自-R'2C-、-R'2C-CR'2-、-R'2Si-、-R'2Si-SiR'2-、-R'2Ge-,其中各R'独立地是氢原子、C1-C20-烷基、三(C1-C20-烷基)甲硅烷基、C6-C20-芳基、C7-C20-芳基烷基或C7-C20-烷基芳基;
R2是C1-C20烃基自由基;
R5是H或C1-C20烃基自由基;
R6是叔C4-10烃基自由基;
R7是氢原子或C1-10-烃基自由基;
n是0至3;
R1是C1-C20烃基自由基,并且任选地两个相邻的R1基团一起可形成缩合至Ph环的进一步的单环或多环型环,其被一个或两个R4基团取代;和
R4是C1-C10烷基自由基;
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;
其中丙烯和乙烯的多相共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。理想地,XS部分形成丙烯和乙烯多相共聚物整体的至少15wt%。
用于本发明方法的催化剂是不含外在载体的固体颗粒状形式。理想地,催化剂可通过如下方法获得,其中
(a)形成液/液乳液体系,所述液/液乳液体系包括分散在溶剂中以形成分散液滴的催化剂组分(i)和(ii)的溶液;和
(b)通过固化所述分散液滴形成固体颗粒。
从另一方面来看,因此,本发明提供上文限定的丙烯和乙烯的多相共聚物的制备方法,其中通过获得式(I)复合物和上文描述的助催化剂来制备上文限定的催化剂;
形成液/液乳液体系,该液/液乳液体系包括分散在溶剂中的催化剂组分(i)和(ii)的溶液,和固化所述分散液滴以形成固体颗粒。
本发明的聚合物是丙烯和乙烯的多相共聚物。因此其一般包含基质组分和无定形组分。理想地,聚合方法的所有步骤在至少60℃的温度下发生(除了可能的预聚合步骤,其可在更低温度下发生)。聚合方法在包括至少一个气相反应器的方法配置中发生。
从另一方面来看,本发明提供制备丙烯和乙烯的多相共聚物的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下,聚合丙烯和任选地乙烯,该催化剂包括:
(i)上文限定的式(I)的对称复合物:
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物和存在步骤(I)的催化剂的情况下在气相中聚合丙烯和乙烯;
以生产丙烯和乙烯的多相共聚物,其中丙烯乙烯共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。理想地,XS部分形成聚合物整体的至少15wt%。
从另一方面来看,本发明提供制备丙烯和乙烯的多相共聚物的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下在气相中聚合丙烯和任选地乙烯,该催化剂包括:
(i)式(I)的对称复合物:
其中
M是锆或铪;
各X是σ配体;
L是二价桥,选自-R'2C-、-R'2C-CR'2-、-R'2Si-、-R'2Si-SiR'2-、-R'2Ge-,其中各R'独立地是氢原子、C1-C20-烷基、三(C1-C20-烷基)甲硅烷基、C6-C20-芳基、C7-C20-芳基烷基或C7-C20-烷基芳基;
R2是C1-C20烃基自由基;
R5是H或C1-C20烃基自由基;
R6是叔C4-C20烃基自由基;
R7是氢原子或C1-10-烃基自由基;
n是0至3;
R1是C1-C20烃基自由基,并且任选地两个相邻的R1基团一起可形成缩合至Ph环的进一步的单环或多环型环,其被一个或两个R4基团取代;和
R4是C1-C10烷基自由基
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物的情况下和在存在步骤(I)的催化剂的情况下,在气相中聚合丙烯和乙烯,从而生产丙烯和乙烯的多相共聚物组分;
其中丙烯乙烯共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。
从另一方面来看,本发明提供制备丙烯和乙烯的多相共聚物的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下,在本体中聚合丙烯和任选地乙烯,该催化剂包括:
(i)上文限定的式(I)的对称复合物和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物的情况下和在存在步骤(I)的催化剂的情况下,在气相中聚合丙烯和乙烯;
从而生产丙烯和乙烯的多相共聚物,
其中丙烯乙烯共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。理想地,XS部分形成聚合物整体的至少15wt%。
定义
贯穿说明书采用下列定义。
不含外在载体意为催化剂不包含外在承载体,如无机承载体,例如,二氧化硅或氧化铝、或有机聚合物承载体材料。
术语C1-20烃基因此包括C1-20烷基、C2-20烯基、C2-20炔基、C3-20环烷基、C3-20环烯基、C6-20芳基、C7-20烷基芳基或C7-20芳基烷基、或当然地这些基团的混合,如烷基取代的环烷基。
除非另外说明,优选的C1-20烃基是C1-20烷基、C4-20环烷基、C5-20环烷基-烷基、C7-20烷基芳基、C7-20芳基烷基或C6-20芳基,特别是C1-10烷基、C6-10芳基、或C7-12芳基烷基,例如C1-8烷基。最特别优选的烃基是甲基、乙基、丙基、异丙基、叔丁基、异丁基、C5-6-环烷基、环己基甲基、苯基或苄基。
当涉及复合物限定时,术语卤包括氟、氯、溴和碘基团,特别是氯基团。
金属离子的氧化状态主要由所讨论的金属离子的本性和各金属离子的个体氧化状态的稳定性来控制。
将理解,在本发明的复合物中,金属离子M由配体X配位,从而符合金属离子的价态和填充其可用的配位位点。这些σ-配体的本性可相差很大。
术语叔基团如叔烷基意为该基团中的碳原子未结合氢原子,因此所讨论的基团在连接于链时连接四个其它碳原子。
催化剂活性在本申请中被定义为聚合物产量/g催化剂/h。术语产率也有时用于表示催化剂活性,虽然在本文中其表示每单位重量催化剂的聚合物产量。
发明详述
复合物,和因此本发明的催化剂,基于上文限定的式(I),其尤其组合茚基环结构的使用与2、4、5和6位的非H取代基。
组成式(I)复合物的的两个多环配体是相同的,因此式(I)复合物是对称的(C2对称)。本发明的复合物可处于其内消旋或外消旋形式(或其混合物)。优选地,采用外消旋(rac)形式。
M优选是Zr或Hf,特别是Zr。
各X,可以相同或不同,优选是氢原子、卤素原子、R、OR、OSO2CF3、OCOR、SR、NR2或PR2基团,其中R是直链或支链的、环状或非环状的C1-C20-烷基、C2-C20烯基、C2-C20炔基、C6-C20-芳基、C7-C20-烷基芳基或C7-C20-芳基烷基自由基。R优选是C1-10烷基或C6-20芳基。R更优选是C1-6烷基、苯基或苄基。
最优选地,各X独立地是氢原子、卤素原子、C1-6-烷氧基或R基团,例如优选是C1-6-烷基、苯基或苄基。最优选地,X是氯或甲基自由基。优选地两X基团相同。
L优选是包括亚乙基或亚甲基的桥,或是基于杂原子如硅或锗的桥,例如–SiR8 2-,其中各R8独立地是C1-C20-烷基、C6-C20-芳基或三(C1-C20-烷基)甲硅烷基-残基(residue),如三甲基甲硅烷基。更优选地,R8是C1-8烷基,例如C1-6-烷基,特别是甲基。最优选地,L是二甲基甲硅烷基、二乙基甲硅烷基、亚甲基或亚乙基桥。
R2优选是适当的分支的C4-20烃基。优选地,R2相对于环戊二烯基环β分支。相对于环戊二烯基环β分支(branchedβto the cyclopentadienyl ring)意为自环戊二烯基环的第二原子必须是叔或季原子,优选叔原子,即,自环戊二烯基环的第二个碳原子连接三个碳原子和一个H原子。R2自由基的链中优选包括至少4个碳原子。还将理解,在相对于环戊二烯基的β原子处存在环状基团如环烷基或芳基时,则具有分支存在。
优选地,R2是相对于环戊二烯基β分支的C4-C12烃基。
自由基R2还可以是CH2-环烷基——具有4至12个碳原子、或CH2-芳基自由基——包含7至11个碳原子。
在优选的实施方式中,R2是基团–CH2-R2’,即,与环戊二烯基环的连接通过亚甲基,并且R2’表示R2基团的其余部分,例如C3-19烃基。
具体地,R2'表示C3-7-环烷基(任选地被C1-6-烷基取代)、C6-10-芳基,特别是苯基或甲苯基、或C3-8-烷基(使得相对于环戊二烯基的β位置是分支的)。
因此,在进一步优选的实施方式中,R2是基团CH2-C(R3)3-q(H)q,其中各R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环。下标q可以是1或0。
R2理想地是异丁基、-CH2C(Me)3或-CH2CH(Me)(Et)基团。可选地,R2是-CH2C6H11,其中C6H11是环己基;CH2C6H11(Me),其中环己基被甲基取代;或–CH2C6H5(苄基)。
优选地,R6是叔(例如环状或非环状的)C4-20烷基、C6-C20-芳基、C7-C20-烷基芳基或C7-C20-芳基烷基自由基。优选地,R6是叔C4-10烷基。
优选地,R6是C4-C10分支烷基或是烷基环烷基。优选的选择包括叔丁基、1-烷基环戊基或1-烷基环己基,如1-甲基环戊基或1-甲基环己基。
R7优选是氢原子或C1-6烷基如甲基、乙基、丙基或异丙基,最优选地甲基或特别是氢。
下标n可以是0或1至3。苯基环因此是未取代的或携带1至3个取代基。任何Ph基团上的任选的取代基是R1。若存在,应有1至3个R1基团,优选1或2个R1基团。
优选地R1是直链或支链的、环状或非环状的C1-C20-烷基、C2-C20烯基、C2-C20炔基、C6-C20-芳基、C7-C20-烷基芳基或C7-C20-芳基烷基自由基。优选地,R1是直链或支链的、环状或非环状的C1-C10-烷基,特别是直链或支链的C1-6烷基。最优选地,R1是叔丁基。然而最优选n为0.
优选存在的任何R1基团位于相对于与茚基的键(to the bond to the indenylgroup)的3、4和/或5位,例如4位。
在一个优选的实施方式中,两个相邻的R1基团一起可形成缩合至Ph的进一步的单环或多环型环。新环优选是5或6元的,或R1基团优选形成两个新环,如一个进一步的五元环和六元环。
一个或多个新环可以是脂肪族或芳香族的。优选地,任何新环与其附接的Ph环一起形成芳香族体系。
以这种方式,可形成诸如吲哚基、咔唑基、苯并噻吩基和萘基的基团。这些新环被1或2个R4基团取代——其中R4是C1-10烷基——也在本发明的范围内。
R5优选是C1-10烃基,更优选C1-10烷基或C6-10芳基,特别是C1-6烷基。使用甲基或乙基是最优选的。
因此,在优选的实施方式中,本发明的复合物具有式(II)
其中
M是Zr或Hf;
R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
L是亚甲基、亚乙基或SiR8 2
R8是C1-10烷基、C6-10-芳基、C7-12-烷基芳基、或C7-12-芳基烷基;
各X是氢原子、苄基、OR、卤素原子、或R基团;
R是C1-10烷基或C6-10芳基;
各R7是H或C1-3-烷基;
n是0至2;
R1是C1-10-烷基;
R5是C1-10-烷基;和
R6是叔C4-10-烷基;
并且其中形成复合物的两个配体相同。
在更进一步优选的实施方式中,本发明提供式(III)的复合物
其中:
M是Zr或Hf;
各R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
L是SiR8 2
R8是C1-8烷基;
各X是卤素原子、甲氧基、苄基或甲基;
n是0或1;
R5是C1-6烷基;
R6是叔C4-10-烷基;和
R1是C1-6烷基;
并且其中形成复合物的两个配体相同。
在进一步高度优选的实施方式中,本发明提供式(IV)的复合物
其中L是SiR8 2
R8是C1-8烷基;
R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
各X是卤素原子、甲氧基、苄基或甲基;
M是Zr;或Hf;
R5是C1-6烷基;和
R6是叔C4-10烷基;
并且其中形成复合物的两个配体相同。
本发明的再一特别优选的复合物具有式(V)
其中L是SiR8 2
R8是C1-8烷基;
各X是卤素原子、甲氧基、苄基或甲基;和
M是Zr,最特别是
为免生疑问,上文关于任何式提供的取代基的任何较窄定义可与任何其它取代基的任何其它或宽或窄的定义组合。
贯穿上文公开内容,在存在取代基的较窄定义时,该较窄定义被认为结合本申请的其它取代基的所有较宽和较窄定义被公开。
合成
形成本发明的催化剂所需的配体可通过任何方法合成,并且有机化学技术人员将能够想到制造所需配体材料的各种合成方案。WO2007/116034以及上文提到的其它现有技术参考文献公开了所需的化学,并且通过引用被并入本文。
方案概括了可能的合成途径:
途径
方案1
双茚基配体可按照方案1概述的合成策略来制备。关键中间体,6-叔丁基-2-异丁基-5-甲氧基茚-1-酮,通过如下制备:用2-异丁基丙烯酸酰化2-叔丁基苯甲醚(2-tert-butylanisol),然后Nazarov环化。获得的茚酮的随后溴化、与四苯基硼酸钠的交叉偶联反应和还原/脱水提供5-叔丁基-2-异丁基-6-甲氧基-7-苯基-1H-茚。其锂盐与二氯二甲基硅烷的反应以几乎定量的产率生成实际配体双(6-叔丁基-2-异丁基-5-甲氧基-4-苯基-1H-茚-1-基)(二甲基)硅烷。
然后可通过在甲苯中用四氯化锆使配体的二锂盐转金属,生成二甲基甲硅烷基-双(2-异丁基-4-苯基-5-甲氧基-6-叔丁基茚-1-基)二氯化锆茂金属。
式(IX)的配体的制备类似于式(VIII)的配体,但使用2-(2,2-二甲基丙基)丙烯酸代替2-异丁基丙烯酸作为起始材料。详细制备公开于实验部分。
助催化剂
为形成活性催化物质,通常需要使用本领域公知的助催化剂。包括一种或多种第13族金属化合物的助催化剂,如用于活化茂金属催化剂的有机铝化合物或硼酸盐,适用于本发明。
本发明的烯烃聚合催化剂体系包括(i)复合物,其中金属离子由本发明的配体配位;和通常(ii)铝烷基化合物(或其它适当的助催化剂)、或其反应产物。因此,助催化剂优选是铝氧烷,如MAO或除MAO的铝氧烷。
也可使用硼酸盐助催化剂。技术人员将理解,在使用硼系助催化剂的情况下,通常预活化复合物——通过其与铝烷基化合物如TIBA的反应。该程序是公知的,并且任何适当的铝烷基,例如Al(C1-6-烷基)3,都可使用。
目标硼系助催化剂包括具有下式的那些
BY3
其中Y相同或不同,并且是氢原子,1至约20个碳原子的烷基、6至约15个碳原子的芳基、烷基芳基、芳基烷基、卤烷基或卤芳基——每个在烷基自由基中具有1至10个碳原子和每个在芳基自由基中具有6-20个碳原子或每个具有氟、氯、溴或碘。Y的优选实例是对氟苯基、3,5-二氟苯基、五氟苯基、3,4,5-三氟苯基和3,5-二(三氟甲基)苯基。优选的硼系催化剂是三(4-氟苯基)硼烷、三(3,5-二氟苯基)硼烷、三(2,4,6-三氟苯基)硼烷、三(五氟苯基)硼烷和/或三(3,4,5-三氟苯基)硼烷。
特别优选三(五氟苯基)硼烷。
然而,优选使用硼酸盐,即包含硼酸根3+离子的化合物。这种离子型助催化剂优选包含非配位阴离子,如四(五氟苯基)硼酸根。适当的反离子是质子化胺或苯胺衍生物,如甲基铵、苯胺鎓、二甲基铵、二乙基铵、N-甲基苯胺鎓、二苯基铵、N,N-二甲基苯胺鎓、三甲基铵、三乙基铵、三正丁基铵、甲基二苯基铵、吡啶鎓(pyridinium)、对溴代-N,N-二甲基苯胺鎓或对硝基-N,N-二甲基苯胺鎓。
根据本发明可使用的优选离子型化合物包括:四(五氟苯基)硼酸三丁基铵、四(三氟甲基苯基)硼酸三丁基铵、四(4-氟苯基)硼酸三丁基铵、四(五氟苯基)硼酸N,N-二甲基环己基铵、四(五氟苯基)硼酸N,N-二甲基苄基铵、四(五氟苯基)硼酸N,N-二甲基苯胺、四(五氟苯基)硼酸N,N-二(丙基)铵、四(五氟苯基)硼酸二(环己基)铵、四(五氟苯基)硼酸三苯基碳、或四(五氟苯基)硼酸二茂铁。优选四(五氟苯基)硼酸三苯基碳、四(五氟苯基)硼酸N,N-二甲基环己基铵或四(五氟苯基)硼酸N,N-二甲基苄基铵。
特别是优选使用B(C6F5)3、C6H5N(CH3)2H:B(C6F5)4、(C6H5)3C:B(C6F5)4或Ni(CN)4[B(C6F5)3]4 2-
助催化剂的适宜量对技术人员将是公知的。
制造
用于本发明方法的催化剂是固体颗粒状形式,但无承载体,即,不使用外在载体。为提供固体形式但不使用外在载体的本发明催化剂,优选使用液液乳液体系。方法涉及形成在溶剂中分散的催化剂组分(i)和(ii),和固化所述分散液滴以形成固体颗粒。
具体地,方法涉及制备一种或多种催化剂组分的溶液;在溶剂中分散所述溶液以形成所述一种或多种催化剂组分存在于分散相液滴中的乳液;在不存在外在颗粒状多孔承载体的情况下在分散液滴中固定催化剂组分,以形成包括所述催化剂的固体颗粒,和任选地回收所述颗粒。
此方法能够制造形态改善的活性催化剂颗粒,例如具有预定的球状形状和颗粒尺寸并且不使用任何添加的外在多孔承载体材料,如无机氧化物,例如二氧化硅。而且可获得期望的表面性质。
术语“制备一种或多种催化剂组分的溶液”意为可将催化剂形成化合物组合在一种溶液中,将该溶液分散至不混溶的溶剂,或可选地,可制备针对催化剂形成化合物的各部分的至少两种单独的催化剂溶液,然后将该溶液相继分散至溶剂。
在形成催化剂的优选方法中,可制备针对所述催化剂的每个或部分的至少两种单独的溶液,然后将该溶液相继分散至不混溶的溶剂。
更优选地,将包括过渡金属化合物的复合物和助催化剂的溶液与溶剂组合形成乳液,其中惰性溶剂形成连续液相,并且包括催化剂组分的溶液以分散液滴形式形成分散相(不连续相)。然后将液滴固化形成固体催化剂颗粒,并将固体颗粒从液体分离,和任选地洗涤和/或干燥。形成连续相的溶剂可至少在分散步骤期间采用的条件(例如,温度)下不混溶至催化剂溶液。
术语“与催化剂溶液不混溶”意为溶剂(连续相)与分散相溶液完全不混溶或部分不混溶,即不完全混溶。
优选地所述溶剂对于待生产催化剂体系的化合物是惰性的。所需方法的完全公开可在WO03/051934中找到,其通过引用并入本文。
惰性溶剂必须至少在分散步骤期间所用的条件(例如温度)下是化学惰性的。优选地,所述连续相的溶剂不包含溶解在其中的任何显著量的催化剂形成化合物。因此,催化剂固体颗粒在液滴中由源于分散相的化合物(即,在分散到连续相中的溶液中被提供至乳液)形成。
术语“固定”和“固化”在本文中互换使用——基于相同目的,即,在不存在外在多孔颗粒状载体如二氧化硅的情况下形成自由流动的固体催化剂颗粒。固化因此在液滴内发生。所述步骤可以所述WO03/051934公开的多种方式实施。优选地,固化通过对乳液体系的外在刺激如温度变化以引起固化而造成。因此在所述步骤中,催化剂组分(一种或多种)保持“固定”在形成的固体颗粒中。催化剂组分中的一种或多种可参与固化/固定反应也是可以的。
因此,可获得具有预定颗粒尺寸范围、组成上均匀的固体颗粒。
此外,本发明的催化剂颗粒的颗粒尺寸可通过溶液中的液滴尺寸来控制,并且可获得颗粒尺寸分布均匀的球状颗粒。
本发明也在工业上有益,因为其能够实现固体颗粒的制备作为一锅程序(one-potprocedure)实施。连续或半连续方法也可以用于生产催化剂。
分散相
制备两相乳液体系的原理在化学领域是已知的。因此,为形成两相液体体系,催化剂组分(一种或多种)的溶液和用作连续液相的溶剂至少在分散步骤期间必须本质上不混溶。这可以已知方式实现,例如通过相应地选择所述两种液体和/或分散步骤/固化步骤的温度。
可使用溶剂形成催化剂组分(一种或多种)的溶液。所述溶剂经选择使得其溶解所述催化剂组分(一种或多种)。该溶剂可优选是有机溶剂,如本领域所用的,包括任选取代的烃如直链或支链脂肪族、脂环族或芳香族烃,如直链或环状烷烃、芳香族烃和/或含卤素烃。
芳香族烃的实例是甲苯、苯、乙基苯、丙基苯、丁基苯和二甲苯。甲苯是优选溶剂。溶液可包括一种或多种溶剂。这种溶剂可因此用于促进乳液形成,并且通常不构成固化颗粒的部分,而是例如在固化步骤后与连续相一起被移除。
可选地,溶剂可参与固化,例如具有高熔点(如40℃以上,适宜地70℃以上,例如,80℃或90℃以上)的惰性烃可用作分散相的溶剂以使催化剂化合物固定在形成的液滴内。
在另一实施方式中,溶剂部分或完全由液体单体组成,例如被设计在“预聚合”固定步骤中聚合的液体烯烃单体。
连续相
用于形成连续液相的溶剂是单种溶剂或不同溶剂的混合物,并且可以至少在分散步骤期间所用的条件(例如温度)下与催化剂组分的溶液不混溶。优选地,所述溶剂对于所述化合物是惰性的。
术语“对于所述化合物是惰性的”在此意为连续相的溶剂是化学惰性的,即,不与任何催化剂形成组分发生化学反应。因此,催化剂的固体颗粒在液滴中由源于分散相的化合物(即,在分散到连续相中的溶液中被提供至乳液)形成。
优选用于形成固体催化剂的催化剂组分不溶于连续液相的溶剂。优选地,所述催化剂组分本质上不溶于所述连续相形成溶剂。
固化本质上在液滴形成后发生,即,固化发生在液滴内——例如通过引起液滴中存在的化合物之间的固化反应。此外,即使向体系单独添加一些固化剂,其也是在液滴相内反应,并且催化剂形成组分不进入连续相。
本文使用的术语“乳液”涵盖双相和多相体系。
在优选的实施方式中,形成连续相的所述溶剂是惰性溶剂,包括卤化有机溶剂或其混合物,优选氟化有机溶剂,和具体地半氟化、高氟化或全氟化有机溶剂和其官能化衍生物。上述溶剂的实例是半氟化、高氟化或全氟化烃,如烷烃、烯烃和环烷烃、醚,例如全氟化醚和胺,具体地叔胺,和其官能化衍生物。优选半氟化、高氟化或全氟化烃,具体地全氟化烃,例如全氟烃,例如C3-C30,如C4-C10的全氟烃。适当的全氟烷烃和全氟环烷烃的具体实例包括全氟-己烷、-庚烷、-辛烷和-(甲基环己烷)。半氟化烃具体地涉及半氟化正烷烃,如全氟烷基-烷烃。
“半氟化”烃还包括其中-C-F和-C-H段(blocks)交替的这种烃。“高氟化”意为大部分-C-H单元被-C-F单元替代。“全氟化”意为所有-C-H单元均被-C-F单元替代。参见A.Enders和G.Maas,"Chemie in unserer Zeit",34.Jahrg.2000,Nr.6和Pierandrea LoNostro,"Advances in Colloid and Interface Science”,56(1995)245-287,ElsevierScience的文章。
分散步骤
乳液可通过本领域已知的任何手段形成:通过混合,如通过将所述溶液剧烈搅拌至形成连续相的所述溶剂,或通过混合研磨机、或通过超声波、或通过使用所谓相变方法制备乳液——通过先形成均相体系,然后通过改变体系温度使该均相体系转变成双相体系因而形成液滴。
两相状态在乳液形成步骤和固化步骤期间维持,如例如通过适当的搅拌。
另外,可使用乳化剂/乳液稳定剂——优选以本领域已知的方式——以促进乳液的形成和/或稳定性。基于所述目的,可使用例如表面活性剂,例如基于烃的一类(包括分子量例如上至10 000并且任选地被杂原子(一个或多个)中断的聚合烃),优选卤化烃,如半氟化或高氟化烃——任选地具有选自例如下列的官能团:-OH、-SH、NH2、NR"2、-COOH、-COONH2、烯烃氧化物、-CR"=CH2(其中R"是氢)、或C1-C20烷基、C2-20-烯基或C2-20-炔基、氧-基团、环状醚和/或这些基团的任何反应性衍生物,如烷氧基、或羧酸烷基酯基团、或优选地具有官能化末端的半氟化、高氟化或全氟化烃。表面活性剂可被添加至形成乳液分散相的催化剂溶液,以促进乳液形成和稳定化乳液。
可选地,还可通过使负载至少一种官能团的表面活性剂前体与对所述官能团具有反应性并且存在于催化剂溶液或形成连续相的溶剂中的化合物反应而形成乳化和/或乳液稳定助剂。获得的反应产物充当形成的乳液体系中的实际乳化助剂和或稳定剂。
可用于形成所述反应产物的表面活性剂前体的实例包括例如负载选自例如下列的至少一种官能团的已知表面活性剂:-OH、-SH、NH2、NR"2、-COOH、-COONH2、烯烃氧化物、-CR"=CH2(其中R"是氢)、或C1-C20烷基、C2-20-烯基或C2-20-炔基基团、氧-基团、具有3至5个环原子的环状醚、和/或这些基团的任何反应性衍生物,如烷氧基或羧酸烷基酯基团;例如负载所述官能团中的一种或多种的半氟化、高氟化或全氟化烃。优选地,表面活性剂前体具有如上限定的末端官能团。
与这种表面活性剂前体反应的化合物优选被包含在催化剂溶液中,并且可以是进一步的添加剂或催化剂形成化合物中的一种或多种。这种化合物例如是第13族的化合物(例如MAO和/或铝烷基化合物和/或过渡金属化合物)。
如果使用表面活性剂前体,则优选其先与催化剂溶液的化合物反应,然后添加过渡金属化合物。在一个实施方式中,使例如高氟化C1-n(适宜地,C4-30-或C5-15)醇(例如高氟化庚醇、辛醇或壬醇)、氧化物(例如丙烯氧化物(propenoxide))或丙烯酸酯与助催化剂反应形成“实际”表面活性剂。然后,将额外量的助催化剂和过渡金属化合物添加至所述溶液,并将获得的溶液分散至形成连续相的溶剂。“实际”表面活性剂溶液可在分散步骤前或在分散体系中制备。如果所述溶液在分散步骤前制成,则可将制备的“实际”表面活性剂溶液和过渡金属溶液相继分散(例如,表面活性剂溶液在先)至不混溶的溶剂,或在分散步骤前组合在一起。
固化
分散液滴中催化剂组分(一种或多种)的固化可以不同方式发生——例如通过引起或加速使液滴中存在的化合物的反应聚合产物形成的所述固体催化剂的形成。这可在有或无外在刺激如体系温度变化的情况下根据使用的化合物和/或期望的固化速率而发生。
在特别优选的实施方式中,固化在乳液体系形成后通过使体系经历外在刺激如温度变化(例如5至100℃,如10至100℃、或20至90℃,如50至90℃的温差)而发生。
乳液体系可经历急速温度变化,导致分散体系迅速固化。分散相可例如经历即时(在毫秒至几秒内)温度变化,从而实现液滴内组分(一种或多种)瞬时固化。适当的温度变化,即组分的期望固化速率所需的乳液体系温度增加或减少无法限于任何具体范围,而是自然取决于乳液体系,即所用化合物和其浓度/比例,以及所用溶剂,并且被相应地选择。任何技术均可用于向分散体系提供充足的加热或冷却效果以引起期望的固化,这也是显而易见的。
在一个实施方式中,加热或冷却效果通过如下获得:通过将某一温度的乳液体系引至温度显著不同例如如上所述的惰性接收介质,从而乳液体系的所述温度变化足以引起液滴迅速固化。接收介质可以是气态的,例如,空气、或液态的,优选溶剂或两种或更多种溶剂的混合物,其中催化剂组分(一种或多种)是不混溶的并且对于催化剂组分(一种或多种)是惰性的。例如,接收介质包括第一乳液形成步骤中用作连续相的相同的不混溶溶剂。
所述溶剂可单独使用,或作为与其它溶剂如脂肪族或芳香族烃如烷烃的混合物使用。优选地,使用氟化溶剂作为接收介质,其可与乳液形成中的连续相相同,例如,全氟化烃。
可选地,温差可通过渐进式加热乳液体系(例如,上至10℃/分钟,优选0.5至6℃/分钟,更优选1至5℃/分钟)而产生。
如果熔体(例如烃溶剂的熔体)用于形成分散相,则可使用上述温差通过冷却体系发生液滴固化。
优选地,可用于形成乳液的“一相”变化也可用于固化乳液体系液滴内的催化活性内容物——通过再次引起分散体系的温度变化,从而液滴中所用的溶剂变得与连续相(优选如上限定的氟连续相)混溶,使得液滴变得缺少溶剂并且保留在“液滴”中的固化组分开始固化。因此可关于溶剂和条件(温度)调节不混溶性,以控制固化步骤。
例如有机溶剂与氟溶剂的混溶性可从文献找到,并且被技术人员相应地选择。相变所需的临界温度也可从文献获得或可使用本领域已知的方法(例如,Hildebrand-Scatchard-Theorie)确定。参考上文引用的A.Enders和G.和Pierandrea Lo Nostro的文章。
因此,根据本发明,液滴的全部或仅部分可转化成固体形式。“固化”液滴的尺寸可小于或大于原液滴——例如,在用于预聚合的单体量相对大的情况下。
回收的固体催化剂颗粒可在任选的洗涤步骤后用于烯烃聚合过程。可选地,分离的和任选地洗涤的固体颗粒可被干燥去除任何存在于颗粒中的溶剂,然后用于聚合步骤。分离和任选的洗涤步骤可以已知的方式发生——例如,通过固体过滤和随后用适当溶剂洗涤。
颗粒的液滴形状可基本上保持。形成的颗粒可具有1至500μm的平均尺寸范围,例如5至500μm,有益地5至200μm或10至150μm。甚至5至60μm的平均尺寸范围也可以。尺寸的选择可取决于催化剂所用于的聚合。有益地,颗粒的形状是本质上球状,其具有低孔隙度和低表面积。
溶液的形成可在0-100℃的温度下发生,例如20-80℃。分散步骤可在-20℃-100℃发生,例如约-10-70℃,如-5至30℃,例如0℃左右。
可向获得的分散液添加如上限定的乳化剂,以提高/稳定液滴形成。液滴中的催化剂组分的固化优选通过升高混合物温度而发生,例如从0℃温度上至100℃,例如上至60-90℃,渐进地。例如在1至180分钟内,例如1-90或5-30分钟,或以快速热交换。加热时间取决于反应器尺寸。
在固化步骤期间(优选在约60至100℃实施,优选约75至95℃,(溶剂沸点以下)),可优选地移除溶剂,并且任选地将固体用洗涤溶液洗涤,该洗涤溶液可以是任何溶剂或溶剂混合物,如上文限定和/或本领域使用的那些,优选烃,如戊烷、己烷或庚烷,适宜地庚烷。可将洗涤的催化剂干燥,或可将其在油中成浆并作为催化剂-油浆在聚合过程中使用。
制备步骤的全部或部分可以连续方式进行。参考WO2006/069733,其描述了通过乳液/固化方法制备的固体催化剂类型的这种连续或半连续制备方法的原理。
催化剂预聚合(“离线预聚合”)
多相非承载型催化剂(即,“自承载型”催化剂)的使用可能具有容易在一定程度上溶于聚合介质的缺陷,即,一些活性催化剂组分可能在浆液聚合期间从催化剂颗粒渗出,因而催化剂的原始良好形态可丧失。这些渗出的催化剂组分非常具有活性,可能在聚合期间产生问题。因此,组分渗出量应被最小化,即,全部催化剂组分应保持多相形式。
此外,由于催化剂体系中有大量催化活性物质,自承载型催化剂在聚合开始时产生高温,其可导致产物材料熔融。两种效果,即催化剂体系部分溶解和生热,均可导致聚合物材料形态结垢、成层和恶化。
为将与高活性或渗出相关的可能的问题减少到最小,优选“预聚合”催化剂,然后将其用于聚合方法。必须指出的是,关于这方面的预聚合是催化剂制备方法的一部分,是在固体催化剂形成后实施的步骤。该催化剂预聚合步骤不是实际聚合配置的一部分,实际聚合配置还可包括常规方法的预聚合步骤。在催化剂预聚合步骤后,获得固体催化剂并用于聚合。
催化剂“预聚合”在上文描述的液-液乳液方法的固化步骤后发生。预聚合可通过本领域描述的已知方法发生,如WO 2010/052263、WO 2010/052260或WO 2010/052264描述的方法。本发明的这方面的优选实施方式在本文中得到描述。
作为催化剂预聚合步骤中的单体,优选地,使用α-烯烃。优选使用C2-C10烯烃,如乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、苯乙烯和乙烯基环己烯。最优选的α-烯烃是乙烯和丙烯。催化剂预聚合可在气相或惰性稀释剂(一般为油或氟化烃)中进行,优选在氟化烃或氟化烃混合物中进行。优选使用全氟化烃。这种(全)氟化烃的熔点一般在0至140℃范围内,优选30至120℃,如50至110℃。
在催化剂预聚合在氟化烃中进行时,预聚合步骤的温度在70℃以下,例如在-30至70℃范围内,优选0-65℃,更优选地在20至55℃范围内。
预聚合容器内的压力优选高于大气压,以最小化空气和/或湿气向催化剂容器中的最终渗入。优选地,压力在至少1至15巴范围内,优选2至10巴。预聚合容器优选维持在惰性气氛中,如在氮气或氩气或类似气氛下。
预聚合持续到达到预聚合度(DP)——定义为聚合物基质重量/预聚合步骤前固体催化剂重量。该度为25以下,优选0,5至10.0,更优选1.0至8.0,最优选2,0至6,0。
催化剂预聚合步骤的使用提供了最小化催化剂组分渗出和因此局部过热的优势。
在预聚合后,可将催化剂分离和储存。
聚合
本发明涉及丙烯和乙烯共聚生产多相聚合物。形成的聚合物主要包含丙烯。理想地,除乙烯外无其它共聚单体存在。本发明聚合物的二甲苯可溶物(XS)部分的乙烯含量为至少10wt%乙烯或更多。整个聚合物中的乙烯量优选多于6wt-%。
本发明方法中的聚合可发生在一个或多个(例如1、2或3个)聚合反应器中,其中至少一个反应器是气相反应器。方法还可涉及预聚合步骤。该预聚合步骤是聚合物合成惯常采用的常规步骤,并且区别于上述催化剂预聚合步骤。
优选地,本发明的方法利用两个主要反应器,两个气相反应器、或在本体中操作的第一反应器和第二气相反应器,后者的配置是优选的。方法还可采用预聚合步骤。
本发明的发明方法理想地适于制备多相丙烯乙烯共聚物。在该方法中,可形成均聚物基质或无规乙烯共聚物基质。优选形成均聚物基质。基质组分与共聚物无定形部分组合形成本发明的多相共聚物。将理解,多相聚合物的二甲苯可溶物含量主要来源于无定形组分。
理想地,因此,丙烯均聚物基质在本体中形成,并且丙烯乙烯共聚物无定形相在气相反应器中形成。
关于本体和气相共聚反应,所用反应温度总体上在60至115℃范围内(例如70至90℃),气相反应的反应器压力总体上在10至25巴范围内,并且本体聚合在略微更高的压力下操作。停留时间总体上为0,25至8小时(例如0,5至4小时)。所用气体是单体,任选地作为与非反应性气体如氮气或丙烷的混合物。本发明的一个具体特征是本发明所有步骤的聚合在至少60℃的温度下发生。
总体上,催化剂用量取决于催化剂的本性、反应器类型和条件和聚合物产物的期望性质。本领域公知,氢可用于控制聚合物的分子量。
本发明的催化剂能够形成高分子量聚合物。最终聚合物的MFR2值可在0.05至50g/10min范围内,如0,1至40g/10min。
本发明聚合物的二甲苯可溶物(XS)含量优选地为15wt%或更多,如15至70wt%,更优选20至60wt%,特别地30至50wt%,最特别地35至50wt%。
聚合物的XS组分的C2含量可以是至少10wt%,如至少14wt%。XS部分中C2含量的上限可以是70wt%,如65wt%,优选60wt-%。
XS组分的特性粘度可以是至少1.5dl/g,如至少1.8dl/g。XS组分的特性粘度的上限可以是6dl/g。
通过本发明的催化剂制成的聚合物可用于各种最终制品,如管、膜(流延、吹塑或BOPP膜)、纤维、模塑制品(例如注塑、吹塑、滚塑制品)、挤出涂层等。
现参考下列非限制性实例示例本发明。
测量方法:
ICP分析
催化剂的元素分析通过如下进行:提取质量M的固体样本,在干冰上冷却。将样本稀释至已知的体积V——通过溶解在硝酸(HNO3,65%,5%V)和新去离子(DI)水(5%V)中。然后将溶液添加至氢氟酸(HF,40%,3%V),用DI水稀释至最终体积V,并留置稳定2小时。分析在室温下使用Thermo Elemental iCAP 6300电感耦合等离子体–光发射光谱仪(ICP-OES)运行,该ICP-OES用如下校准:空白液(5%HNO3、3%HF在DI水中的溶液)和6个标准品:5%HNO3、3%HF的DI水溶液中的0.5ppm、1ppm、10ppm、50ppm、100ppm和300ppm的Al,和0.5ppm、1ppm、5ppm、20ppm、50ppm和100ppm的Hf和Zr。
在分析前即刻,校准使用空白液和100ppm Al、50ppm Hf、Zr标准品‘再定斜率(resloped)’,并且运行质量控制样本(quality control sample)(5%HNO3、3%HF的DI水溶液中20ppm Al、5ppm Hf、Zr)以确认该再定斜率(reslope)。QC样本也在每第5个样本后和在排定分析组结束时运行。
使用282.022nm和339.980nm线监测铪含量,并使用339.198nm线监测锆含量。当ICP样本中的Al浓度在0-10ppm之间(仅校准至100ppm)时通过167.079nm线监测铝含量,并且10ppm以上的Al浓度通过396.152nm线监测。
表4报告的数值是从相同样本提取的三个连续等份的平均值,并通过在软件中输入样本原质量和稀释体积与原催化剂关联。
熔体流动速率
熔体流动速率(MFR)根据ISO 1133测定,并且以g/10min表示。MFR是聚合物的流动性和因此可加工性的指标。熔体流动速率越高,聚合物粘度越低。MFR在230℃下测定,并且可在不同载荷如2.16kg(MFR2)或21.6kg(MFR21)下测定。
GPC:分子量平均值、分子量分布、和多分散指数(Mn、Mw、MWD)
分子量平均值(Mw,Mn)、分子量分布(MWD)和通过多分散指数PDI=Mw/Mn(其中Mn是数均分子量,并且Mw是重均分子量)描述的其广度(broadness)根据ISO 16014-4:2003和ASTM D 6474-99通过凝胶渗透色谱法(GPC)来测定。Waters GPCV2000仪器——配备差示折射率检测器和在线粘度计——与Tosoh Bioscience的2x GMHXL-HT和1xG7000HXL-HT TSK凝胶柱和1,2,4-三氯代苯(TCB,用250mg/L 2,6-二叔丁基-4-甲基-苯酚稳定化的)作为溶剂在140℃和1mL/min恒定流速下联用。每次分析注入209.5μL样本溶液。采用1kg/mol至12000kg/mol范围内的至少15种窄MWD聚苯乙烯(PS)标准品使用通用校准(根据ISO 16014-2:2003)校准柱套组。所用的PS、PE和PP的Mark Houwink常数按照ASTM D 6474-99。所有样本均通过如下制备:将0.5–4.0mg聚合物溶于4mL(140℃)稳定化的TCB(与流动相相同),并在最高60℃下维持最多3小时,并且在取样到GPC仪器前持续轻轻晃动。
二甲苯可溶物(XS)
将2.0g聚合物在搅动下溶于135℃的250ml p-二甲苯。30分钟后,使溶液在环境温度下冷却15分钟,然后使其在25℃下沉降30分钟。将溶液用滤纸过滤到两个100ml烧瓶中。使第一个100ml容器的溶液在氮气流下蒸发,并将残余物在90℃、真空下干燥,直到达到恒定重量。
XS%=(100·m·Vo)/(mo·v);mo=初始聚合物量(g);m=残余物重量(g);Vo=初始体积(ml);v=分析样本体积(ml)。
催化剂活性
催化剂活性基于下式计算:
共聚单体含量——通过13C NMR
通过NM光谱定量微结构
定量核磁共振(NMR)光谱用于定量聚合物的共聚单体含量。
利用在400.15和100.62MHz下操作的Bruker Advance III 400NMR光谱仪,分别记录溶液状态下的1H和13C的定量13C{1H}NMR光谱。针对所有气体力学利用氮气、利用13C优化型10mm延伸温度探头在125℃下记录所有光谱。将约200mg材料和乙酰丙酮酸铬(III)(Cr(acac)3)一起溶于3ml 1,2-四氯乙烷-d2(TCE-d2),产生弛豫剂在溶剂中的65mM溶液,如G.Singh,A.Kothari,V.Gupta,Polymer Testing 2009,28(5),475所述。
为确保均质溶液,在热区中初始样本制备后,将NMR管在旋转烘箱中进一步加热至少1小时。在插入磁体后,将管在10Hz下旋转。这种设置的选择主要是为了高分辨率,并且是精确乙烯含量定量在定量上所需的。在无NOE的情况下采用标准单脉冲激励——利用优化尖端角度,1s再循环延迟和双水平WALTZ16解耦方案,如Z.Zhou,R.Kuemmerle,X.Qiu,D.Redwine,R.Cong,A.Taha,D.Baugh,B.Winniford,J.Mag.Reson.187(2007)225和V.Busico,P.Carbonniere,R.Cipullo,C.Pellecchia,J.Severn,G.Talarico,Macromol.RapidCommun.2007,28,1128所述。每个光谱获取总共6144(6k)个瞬变(transients)。
对定量13C{1H}NMR光谱进行处理、积分和根据积分确定相关定量性质。所有化学位移都间接参照30.00ppm下利用溶剂化学位移的乙烯段(EEE)的中心亚甲基。这种方法允许可比较的参照,即使此结构单元不存在时。
随着观察到2,1红区缺陷(erythro regio defects)对应的特征信号(如L.Resconi,L.Cavallo,A.Fait,F.Piemontesi,Chem.Rev.2000,100(4),1253;Cheng,H.N.,Macromolecules 1984,17,1950;和W-J.Wang和S.Zhu,Macromolecules 2000,33 1157所述),需要校正区域缺陷对确定性质的影响。其它类型的区域缺陷所对应的特征信号未被观察到。
乙烯并入对应的特征信号被观察到(如Cheng,H.N.,Macromolecules 1984,17,1950所述),并且共聚单体分数计算为聚合物中的乙烯相对于聚合物中所有单体的分数:
fE=(E/(P+E)
利用W-J.Wang和S.Zhu,Macromolecules 2000,33 1157的方法,通过横跨13C{1H}光谱的整个光谱区域的多个信号的积分,定量共聚单体分数。选择此方法是因为其稳健性质和在需要时将区域缺陷的存在纳入考虑的能力。略微调节积分区域以增加跨越遇到的共聚单体含量的整个范围的适用性。
根据摩尔分数计算共聚单体并入摩尔百分比:
E[mol%]=100*fE
根据摩尔分数计算共聚单体并入重量百分比:
E[wt%]=100*(fE*28.06)/((fE*28.06)+((1-fE)*42.08))
乙烯含量(FTIR C2)
乙烯含量使用傅里叶变换红外光谱(FTIR)来测量,FTIR校准至用引起区域不规则丙烯插入的方法通过13C NMR光谱获得的结果。当测量聚丙烯中的乙烯含量时,使用GrasebySpecac压机通过在230℃下热压(预热5min.,加压1min,冷却(冷水)5min.)来制备样本薄膜(厚度约0.220至0.250mm)。样本的FTIR光谱立即用Nicolet Protégé 460光谱仪记录——4000至400cm-1,解析度(resolution)4cm-1,扫描64。评价733cm-1下的吸收峰面积(基线700cm-1至760cm-1)和809cm-1下的参考峰高度(基线780cm-1至880cm-1)。结果使用下式计算
Etot=a x A/R+b
其中
A=733cm-1下的吸收峰面积
R=809cm-1下的参考峰高度
Etot=C2含量(wt.-%)
A、b是通过将13C NMR光谱确定的已知乙烯含量的多个校准标准品关联于A/R而测定的校准常数。
结果以两次测量的平均值报告。
特性粘度
根据DIN ISO 1628/1,1999年10月(在十氢萘中,135℃)测量。
预聚合度:聚合物基质重量/预聚合步骤前的固体催化剂重量
实施例
一般程序和起始材料
关于空气和湿气敏感性化合物的所有操作在利用标准Schlenk技术充分纯化的氩气气氛中或在受控气氛手套箱(Mecaplex,VAC或M.Braun)中进行。
MAO购自Albermarle并且作为30wt-%甲苯溶液使用。全氟烷基乙基丙烯酸酯(CAS号65605-70-1)(用作表面活性剂)购自Cytonix corporation,在使用前经活化分子筛干燥(2次)并通过氩气鼓泡脱气。十六氟-1,3-二甲基环己烷(PFC)在使用前经活化分子筛干燥(2次)并通过氩气鼓泡脱气。丙烯由Borealis提供,并且在使用前充分纯化。
实施例1
rac-二甲基亚甲硅烷基-双(6-叔丁基-2-异丁基-5-甲氧基-4-苯基-1H-茚-1-基)二氯化锆:
如WO2012084961的实施例1所述制备。
催化剂实施例1(E1)
在手套箱中,将80μL干燥和脱气的表面活性剂溶液与2mL MAO在隔膜式瓶(septumbottle)混合并留置反应过夜。第二天,将73,4mg茂金属甲苯溶剂化物(67,2mg茂金属+6,2mg甲苯)在另一隔膜式瓶中溶于4mL MAO溶液,并在手套箱中留置搅拌。
60分钟后,将1mL表面活性剂溶液和4mL MAO-茂金属溶液相继加入包含40mL-10℃PFC并且配备顶置式搅拌器(overhead stirrer)(搅拌速度=600rpm)的50mL乳化玻璃反应器。MAO总量为5mL(300当量)。红橙色乳液立即形成,并且在0℃/600rpm下在15分钟期间进行搅拌。然后将乳液通过2/4特氟隆管转移至90℃的100mL热PFC,并在600rpm下搅拌到转移完成,然后速度降至300rpm。15分钟搅拌后,移除油浴并关闭搅拌器。催化剂留置定位在PFC上,并且在45分钟后将溶剂虹吸去除。将剩余红色催化剂在2小时期间在50℃下经氩气流干燥。获得0.39g红色自由流动粉末。
表1.催化剂合成概述
催化剂 收率 Al(%) Zr(%) Al/Zr(摩尔)
E1 0,39g 28,7 0,33 294
E1-p催化剂制备/预聚合程序
催化剂预聚合实验在配备气体供应管线和顶置式搅拌器的125mL压力反应器中完成。在手套箱中将待预聚合的干燥并脱气的全氟-1,3-二甲基环己烷(15cm3)和期望量的红色催化剂装入反应器,并密封反应器。然后将反应器从手套箱取出,并置于水冷浴中。然后连接顶置式搅拌器和供应管线。该管线以氢气加压,并且通过打开H2供应管线和反应器之间的阀门开始实验。同时,丙烯进料通过相同H2供应管线开始,从而确保全部氢气都被供应到反应器中。丙烯进料一直开放,并且通过保持反应器总压力恒定(约5巴g(barg))来补偿单体消耗。实验持续到聚合时间足以提供期望的聚合度。然后将反应器取回手套箱中,然后打开,并将内容物倒入玻璃容器。蒸发全氟-1,3-二甲基环己烷,直到获得恒定重量,生成预聚合的粉色催化剂。通过重量分析和/或通过催化剂灰分和/或铝含量分析确定聚合度。预聚合度为3,9。
比较催化剂实施例(C1)
预聚合的C1(C1-p)
Rac-环己基(甲基)硅烷二基双(2-甲基-4-(4’-叔丁基苯基)茚基)二氯化锆
此催化剂如WO2010/052263的实施例10所述制备并如上所述离线预聚合,直到达到3,1的预聚合度。
比较催化剂实施例(C2)
预聚合的C2(C2-p)
反式(anti)-二甲基亚甲硅烷基(2-甲基-4-苯基-5-甲氧基-6-叔丁基-茚基)(2-甲基-4-苯基-6-叔丁基-茚基)二氯化锆
此催化剂如WO2013007650实例茂金属E1、催化剂E1所述制备并如该申请(离线预聚合的催化剂E1p)所述离线预聚合,直到达到3,5的预聚合度。
聚合实施例:本体丙烯均聚,然后气相乙烯/丙烯共聚
聚合实施例1(PE1),利用催化剂E1-p
1)本体
将容积21.2dm3的包含0.2巴g丙烯的搅拌高压釜(双螺旋搅拌器)再装入3.97kg丙烯。在添加初始量的0,2NL H2(Air Liquide,品质(quality)6.0)和利用250g丙烯流添加1,83mmol三乙基铝(Aldrich,1摩尔正己烷溶液)后,将溶液在20℃和250rpm下搅拌20min,然后将反应器升至40℃设定温度,然后如下所述注入催化剂。
在手套箱中将固体预聚合催化剂(类型、数量和聚合度如表2所列)装入不锈钢小瓶,将小瓶连接至高压釜,然后在顶上添加包含5ml全氟-1,3-二甲基环己烷(PFC)并以60巴N2加压的第二小瓶,打开两小瓶之间的阀门,并使固体催化剂与PFC在N2压力(0.003mol,~10巴)下接触60s,然后用250g丙烯冲洗到反应器中。将反应器的搅拌速度增至350rpm,并将反应器温度增至聚合温度。该温度在聚合中始终保持恒定。聚合时间在温度达到设定聚合温度以下2℃时开始测量。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至20rpm,并将温度控制器设定至60℃。然后将反应器放气至0,3巴g。将搅拌器速度增至250rpm,并且开始通过流量控制器进行丙烯-乙烯送料。流量C3:28,6g/min。流量C2:23,3g/min。比例:1,23g/g。当送料224g丙烯和181g乙烯总量时,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过2,13(g/g)的C3/C2比使反应器压力保持恒定,直到消耗210g该共聚单体混合物。持续时间:76min。在此时间段内,反应器温度保持恒定在60℃,并且反应器压力恒定在15巴g。
3)冷却和冲洗
然后,将搅拌器速度设定至20rpm,并且将单体放气至1巴g以及温度控制器设定至30℃。分别通过N2两倍增压至5巴g和冲低至1巴g。然后将反应器排空10min并再次充入N2至3巴g,然后冲至1巴g。然后打开反应器。将产物取出并在罩中干燥过夜,在60℃真空干燥烘箱中再干燥2小时。称重后,向材料添加0.2w%Ionol和0.1w%PEPQ。
聚合实施例2(PE2),利用催化剂E1-p
1)本体聚合如PE1进行。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至20rpm,并将温度控制器设定至60℃。然后将反应器放气至0,3巴g。然后将搅拌器速度增至250rpm,并开始通过流量控制器进行丙烯-乙烯送料。流量C3:13,1g/min。流量C2:33,0g/min。比例:0,4g/g。当送料98g丙烯和244g乙烯总量时,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过1,36g/g的C3/C2比使反应器压力保持恒定,直到消耗250g该共聚单体混合物。持续时间:153min。在此时间段内,反应器温度保持恒定在60℃并且反应器压力恒定在15巴g。
3)冷却和冲洗如PE1-完成。
聚合实施例3(PE3),利用催化剂E1-p
1)本体聚合如PE1进行。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至100rpm并将温度控制器设定至60℃。然后将反应器放气至1巴g。然后将搅拌器速度增至250rpm,并开始通过流量控制器进行丙烯-乙烯送料。流量C3:83g/min。流量C2:38g/min。比例:2,18g/g。当送料317g丙烯和145g乙烯总量时,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过3.7g/g的C3/C2比使反应器压力保持恒定,直到消耗225g该共聚单体混合物。持续时间:82min。在该时间段内,反应器温度保持恒定在60℃并且压力恒定在15巴。
3)冷却和冲洗如PE1进行。
比较聚合实施例1,(PC1),利用比较催化剂C1-p
1)本体
在包含0.2巴g丙烯的容积21.2dm3的搅拌高压釜(双螺旋搅拌器)中再装入3.97kg丙烯。在添加初始量的0,4NL H2(Air Liquide,品质6.0)和利用250g丙烯流添加1,83mmol三乙基铝(Aldrich,1摩尔正己烷溶液)后,将溶液在20℃和250rpm下搅拌20min,然后使反应器升至40℃设定预聚合温度,然后如下所述注入催化剂。
在手套箱中将固体预聚合催化剂(类型、数量和聚合度如表2所列)载入不锈钢小瓶,将小瓶连接至高压釜,然后在顶上添加包含5ml全氟-1,3-二甲基环己烷(PFC)并以60巴N2加压的第二小瓶,打开两小瓶之间的阀门,并使固体催化剂与PFC在N2压力(0.003mol,~10巴g)下接触60s,然后用250g丙烯冲洗到反应器中。将搅拌速度增至350rpm,并运行预聚合15min。预聚合步骤结束时,添加实现目标MFR2的第二量H2,并将反应器的温度增至聚合温度。该温度在聚合中始终保持恒定。聚合时间在温度达到设定聚合温度以下2℃时开始测量。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至20rpm并将温度控制器设定至60℃。然后将反应器放气至0,3巴g。然后使搅拌器速度增至250rpm并开始通过流量控制器进行丙烯-乙烯送料。流量C3:28,6g/min。流量C2:23,3g/min。比例:1,23g/g。当送料246g丙烯和182g乙烯总量时,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过1,9g/g的C3/C2比使反应器压力保持恒定,直到消耗352g该共聚单体混合物。持续时间:124min。在该时间段内,反应器温度保持恒定在60℃并且反应器压力恒定在15巴g。
3)冷却和冲洗如PE1进行。
比较聚合实施例2,(PC2),利用比较催化剂C1-p
1)本体
在包含0.2巴g丙烯的21.2dm3容积的搅拌高压釜(双螺旋搅拌器)中再装入5.18kg丙烯。在添加初始量的0,2ln H2(Air Liquide,品质6.0)和利用250g丙烯流添加0.97mmol三乙基铝(Aldrich,1摩尔正己烷溶液)后,将溶液在20℃和250rpm下搅拌20min,然后使反应器升至40℃设定温度,然后如下所示注入催化剂。
在手套箱中将固体预聚合催化剂(类型、数量和聚合度如表2所列)载入不锈钢小瓶,将小瓶连接至高压釜,然后在顶上添加包含5ml全氟-1,3-二甲基环己烷并以60巴N2加压的第二小瓶,打开两小瓶之间的阀门,并使固体催化剂与全氟-1,3-二甲基环己烷在N2压力(0.003mol,~10巴g)下接触60s,然后用491g丙烯冲洗到反应器中。将搅拌速度增至350rpm,并将反应器的温度增至聚合温度。该温度在聚合中始终保持恒定。聚合时间在温度达到设定聚合温度以下2℃时开始测量。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至20rpm并将温度控制器设定至60℃。然后将反应器放气至0.1巴g。然后使搅拌器速度增至250rpm并开始通过流量控制器进行丙烯-乙烯送料。流量C3:28,6g/min。流量C2:23,3g/min。比例:1,23g/g。在送料248g丙烯和188g乙烯总量后,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过1,88g/g的C3/C2比使反应器压力保持恒定,直到消耗297g该共聚单体混合物。持续时间:90min。在该时间段内,反应器压力保持恒定在15巴g。
3)冷却和冲洗如PE1进行。
比较聚合实施例3,(PC3),利用比较催化剂C2-p
1)本体
在包含0.2巴g丙烯的21.2dm3容积的搅拌高压釜(双螺旋搅拌器)中再装入5,18kg丙烯。在添加初始量的0,2ln H2(Air Liquide,品质6.0)和利用250g丙烯流添加0,97mmol三乙基铝(Aldrich,1摩尔正己烷溶液)后,将溶液在20℃和250rpm下搅拌20min,然后使反应器升至40℃设定预聚合温度,然后如下所示注入催化剂。
在手套箱中将固体预聚合催化剂(类型、数量和聚合度如表2所列)载入不锈钢小瓶,将小瓶连接至高压釜,然后在顶上添加包含5ml全氟-1,3-二甲基环己烷(PFC)并以60巴N2加压的第二小瓶,打开两小瓶之间的阀门,并使固体催化剂与PFC在N2压力(0.003mol,~10巴g)下接触60s,然后用500g丙烯冲洗到反应器中。将搅拌速度增至350rpm,并使反应器的温度增至聚合温度。该温度在聚合中始终保持恒定。聚合时间在温度达到设定聚合温度以下2℃时开始测量。
2)过渡和气相
在本体步骤结束时,将搅拌器速度调节至20rpm并将温度控制器设定至60℃。然后将反应器放气至0,0巴g。然后使搅拌器速度增至250rpm并开始通过流量控制器进行丙烯-乙烯送料。
流量C3:28,6g/min。流量C2:23,2g/min。比例:1,23g/g。当送料239g丙烯和190g乙烯总量时,达到15巴g目标压力和60℃反应器温度,经由流量控制器通过1,83g/g的C3/C2比使反应器压力保持恒定,直到消耗523g该共聚单体混合物。持续时间:56min。在该时间段内,反应器温度保持恒定在60℃并且反应器压力恒定在15巴g。
3)冷却和冲洗如PE1进行。
聚合条件和聚合物性质显示在表2中。
*基于非预聚合的催化剂的量
由该表可见,根据本发明生产的聚合物的二甲苯可溶性部分(XS)具有高特性粘度(IV),并且XS中的C2量为14wt-%以上,而比较实施例的所述IV(XS)较低,并且XS中的C2量在本发明实施例的范围内。本发明实施例的气相聚合步骤中活性仍良好。可见,比较实施例PC3的所述活性也良好,但XS中的IV低于本发明实施例。因此,本发明提供了良好活性与宽范围C2量内的二甲苯可溶性部分中高IV的组合。

Claims (17)

1.制备丙烯和乙烯的多相共聚物的方法,包括在存在不含外在载体的固体颗粒状催化剂的情况下在气相中聚合丙烯和乙烯,所述催化剂包括:
(i)式(I)的对称复合物:
其中
M是锆或铪;
各X是σ配体;
L是二价桥,选自-R'2C-、-R'2C-CR'2-、-R'2Si-、-R'2Si-SiR'2-、-R'2Ge-,其中各R'独立地是氢原子、C1-C20-烷基、三(C1-C20-烷基)甲硅烷基、C6-C20-芳基、C7-C20-芳基烷基或C7-C20-烷基芳基;
R2是C1-C20烃基自由基;
R5是C1-C20烃基自由基;
R6是叔C4-C20烃基自由基;
R7是氢原子或C1-10-烃基自由基;
n是0至3;
R1是C1-C20烃基自由基并且任选地两个相邻的R1基团一起可形成缩合至Ph环的进一步的单环或多环型环,其任选地被一个或两个R4基团取代;和
R4是C1-C10烷基自由基
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;
其中所述丙烯和乙烯的多相共聚物的二甲苯可溶性部分(XS)具有至少1.5dl/g的特性粘度和10至70wt%的乙烯含量。
2.根据权利要求1所述的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下聚合丙烯和任选地乙烯,所述催化剂包括:
(i)权利要求1限定的式(I)的对称复合物:
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物的情况下和在存在步骤(I)的催化剂的情况下在气相中聚合丙烯和乙烯;
以生产所述丙烯和乙烯的多相共聚物。
3.根据权利要求1或2所述的方法,其中所述催化剂通过获得上述式(I)复合物和助催化剂而形成;
形成液/液乳液体系,所述液/液乳液体系包括分散在溶剂中的催化剂组分(i)和(ii)的溶液,和固化所述分散液滴以形成固体颗粒。
4.根据权利要求1至3所述的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下在气相中聚合丙烯和任选地乙烯,所述催化剂包括:
(i)权利要求1限定的式(I)的对称复合物:
和(ii)助催化剂,其优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物的情况下和在存在步骤(I)的催化剂的情况下在气相中聚合丙烯和乙烯;
以生产所述丙烯和乙烯的多相共聚物。
5.根据权利要求1至3所述的方法,包括:
(I)在第一阶段中,在存在不含外在载体的固体颗粒状催化剂的情况下在本体中聚合丙烯和任选地乙烯,所述催化剂包括:
(i)权利要求1限定的式(I)的对称复合物和(ii)助催化剂,所述助催化剂优选包括第13族金属的有机金属化合物;和
(II)在随后的第二阶段中,在存在步骤(I)的产物的情况下和在存在步骤(I)的催化剂的情况下在气相中聚合丙烯和乙烯;
以生产所述丙烯和乙烯的多相共聚物。
6.根据权利要求2至5所述的方法,其中步骤(I)生产丙烯均聚物。
7.根据任意前述权利要求所述的方法,其中所述丙烯和乙烯的多相共聚物的二甲苯可溶性部分为至少15wt%。
8.根据任意前述权利要求所述的方法,其中所述方法的所有聚合步骤都在至少60℃的温度下发生(除了任何预聚合步骤)。
9.根据任意前述权利要求所述的方法,其中所述丙烯和乙烯的多相共聚物的二甲苯可溶性部分的乙烯含量为至少14wt%,如15至60wt%。
10.根据任意前述权利要求所述的方法,其中XS组分的特性粘度为至少1.5dl/g。
11.根据任意前述权利要求所述的方法,其中R2是相对于环戊二烯基环β分支的。
12.根据任意前述权利要求所述的方法,包括,其中所述复合物具有式(II)
其中
M是Zr或Hf;
R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
L是亚甲基、亚乙基或SiR8 2
R8是C1-10烷基、C6-10-芳基、C7-12-烷基芳基、或C7-12-芳基烷基;
各X是氢原子、苄基、OR、卤素原子、或R基团;
R是C1-10烷基或C6-10芳基;
各R7是H或C1-3-烷基;
n是0至2;
R1是C1-10-烷基;
R5是C1-10烷基;和
R6是叔C4-10-烷基;
并且其中形成复合物的两个配体相同。
13.根据任意前述权利要求所述的方法,包括,其中所述复合物具有式(III)
其中:
M是Zr或Hf
各R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
L是SiR8 2
R8是C1-8烷基;
各X是卤素原子、甲氧基、苄基或甲基;
n是0或1;
R5是C1-6烷基;
R6是叔C4-10烷基;和
R1是C1-6烷基;
并且其中形成复合物的两个配体相同。
14.根据任意前述权利要求所述的方法,包括,其中所述复合物具有式(IV)
其中L是SiR8 2
R8是C1-8烷基;
R2是CH2-Ph、CH2-C(R3)3-q(H)q,其中R3是C1-6-烷基,或两个R3基团一起形成C3-7-环烷基环,其中所述环任选地被C1-6烷基取代,并且q可以是1或0;
各X是卤素原子、甲氧基、苄基或甲基;
M是Zr;或Hf;
R5是C1-6烷基;和
R6是叔C4-10烷基;
并且其中形成复合物的两个配体相同。
15.根据任意前述权利要求所述的方法,包括,其中所述复合物具有式(V)
其中L是SiR8 2
R8是C1-8烷基;
各X是卤素原子、甲氧基、苄基或甲基;和
M是Zr;更特别地
16.根据任意前述权利要求所述的方法,其中所述丙烯和乙烯的多相共聚物的XS部分为至少20wt-%。
17.通过任何前述权利要求所述的方法可获得的聚合物。
CN201580061717.XA 2014-09-12 2015-09-11 在气相中生产丙烯共聚物的方法 Pending CN107001526A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14184641.0 2014-09-12
EP14184641.0A EP2995629B1 (en) 2014-09-12 2014-09-12 Process for producing propylene copolymers in gas phase
PCT/EP2015/070889 WO2016038210A1 (en) 2014-09-12 2015-09-11 Process for producing propylene copolymers in gas phase

Publications (1)

Publication Number Publication Date
CN107001526A true CN107001526A (zh) 2017-08-01

Family

ID=51582243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580061717.XA Pending CN107001526A (zh) 2014-09-12 2015-09-11 在气相中生产丙烯共聚物的方法

Country Status (4)

Country Link
US (1) US10364307B2 (zh)
EP (1) EP2995629B1 (zh)
CN (1) CN107001526A (zh)
WO (1) WO2016038210A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492012A (zh) * 2018-01-05 2020-08-04 博里利斯股份公司 基于单活性中心催化剂的具有优异机械和光学性能的耐冲击共聚物
CN112041354A (zh) * 2018-05-09 2020-12-04 北欧化工公司 聚丙烯-超高分子量-聚乙烯组合物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038211A1 (en) 2014-09-12 2016-03-17 Borealis Ag Process for the preparation of copolymers of propylene
JP7037562B2 (ja) 2016-11-18 2022-03-16 ボレアリス エージー 触媒
EP3555148B1 (en) 2016-12-15 2023-04-05 Borealis AG Catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
KR102543361B1 (ko) 2016-12-15 2023-06-13 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 새로운 촉매 시스템
WO2018122134A1 (en) 2016-12-29 2018-07-05 Borealis Ag Catalysts
WO2019007655A1 (en) * 2017-07-07 2019-01-10 Borealis Ag PROCESS FOR THE PREPARATION OF HETEROPHASIC PROPYLENE COPOLYMERS
KR20200133264A (ko) 2018-03-19 2020-11-26 보레알리스 아게 올레핀 중합용 촉매
EP3814388A1 (en) 2018-06-28 2021-05-05 Borealis AG Catalysts
US20230002605A1 (en) 2019-09-25 2023-01-05 Borealis Ag Heterophasic polypropylene copolymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896522A (zh) * 2007-12-18 2010-11-24 波利亚里斯技术有限公司 具有高抗冲击性的多相聚丙烯
CN103380151A (zh) * 2010-12-22 2013-10-30 博里利斯股份公司 桥连茂金属催化剂

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317655A1 (de) 1993-05-27 1994-12-01 Basf Ag Mehrphasige Blockcopolymerisate des Propylens
JP2005510567A (ja) 2001-11-30 2005-04-21 バセル ポリオレフィン ジーエムビーエイチ メタロセン化合物およびプロピレンポリマー製造方法
EP1323747A1 (en) 2001-12-19 2003-07-02 Borealis Technology Oy Production of olefin polymerisation catalysts
JP2005529227A (ja) 2002-06-12 2005-09-29 バセル ポリオレフィン ジーエムビーエイチ 良好な低温衝撃靭性と高い透明性を有するプロピレンコポリマー組成物
DE602004019647D1 (de) 2003-05-28 2009-04-09 Basell Polyolefine Gmbh Bisindenyl-zirconium-komplexe zur olefinpolymerisation
DE10358082A1 (de) 2003-12-10 2005-07-14 Basell Polyolefine Gmbh Organübergangsmetallverbindung, Bscyclopentadienyligandsystem, Katalysatorsystem und Hertellung von Polyolefinen
US7285608B2 (en) 2004-04-21 2007-10-23 Novolen Technology Holdings C.V. Metallocene ligands, metallocene compounds and metallocene catalysts, their synthesis and their use for the polymerization of olefins
EP1846158B1 (en) 2004-12-31 2011-06-29 Borealis Technology Oy Process to prepare a solid olefin polymerisation catalyst
BRPI0611557B1 (pt) 2005-03-18 2017-03-28 Basell Polyolefine Gmbh compostos metalocenos bis-indenila em ponte com simetria c2, sistema catalítico dessa classe de compostos e processo de polimerização de a-olefinas com a referida classe de compostos
US7834205B2 (en) * 2006-04-12 2010-11-16 Basell Polyolifine GmbH Metallocene compounds
KR101107825B1 (ko) 2006-08-11 2012-02-08 가부시키가이샤 프라임 폴리머 포장 재료용 프로필렌계 수지 조성물
US8299287B2 (en) 2007-10-25 2012-10-30 Lammus Novolen Technology GmbH Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo- and copolymers
EP2363433B1 (en) 2007-12-17 2018-02-07 Borealis Technology OY Heterophasic polypropylene with high flowability and excellent low temperature impact properties
WO2010052260A1 (en) 2008-11-07 2010-05-14 Borealis Ag Solid catalyst composition
EP2355926B1 (en) 2008-11-07 2017-01-04 Borealis AG Solid catalyst composition
EP2355927B1 (en) 2008-11-07 2015-03-04 Borealis AG Solid catalyst composition
EP2316882A1 (en) 2009-10-29 2011-05-04 Borealis AG Heterophasic polypropylene resin
ATE538173T1 (de) 2009-10-29 2012-01-15 Borealis Ag Heterophasisches polypropylenharz mit langkettiger verzweigung
EP2338920A1 (en) 2009-12-22 2011-06-29 Borealis AG Preparation of single-site catalysts
EP2563821B1 (en) 2010-04-28 2019-08-07 Borealis AG Catalysts
WO2011135004A2 (en) 2010-04-28 2011-11-03 Borealis Ag Catalysts
EP2426171A1 (en) * 2010-08-30 2012-03-07 Borealis AG Heterophasic polypropylene with high flowability and enhanced mechanical properties
EP2729529B1 (en) 2011-07-08 2016-04-27 Borealis AG Heterophasic copolymers
EP2824142B1 (en) * 2013-07-12 2016-04-13 Borealis AG Heterophasic copolymer
ES2612627T3 (es) * 2013-07-24 2017-05-17 Borealis Ag Proceso
WO2016038211A1 (en) 2014-09-12 2016-03-17 Borealis Ag Process for the preparation of copolymers of propylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896522A (zh) * 2007-12-18 2010-11-24 波利亚里斯技术有限公司 具有高抗冲击性的多相聚丙烯
CN103380151A (zh) * 2010-12-22 2013-10-30 博里利斯股份公司 桥连茂金属催化剂

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492012A (zh) * 2018-01-05 2020-08-04 博里利斯股份公司 基于单活性中心催化剂的具有优异机械和光学性能的耐冲击共聚物
CN111492012B (zh) * 2018-01-05 2023-05-16 博里利斯股份公司 基于单活性中心催化剂的具有优异机械和光学性能的耐冲击共聚物
CN112041354A (zh) * 2018-05-09 2020-12-04 北欧化工公司 聚丙烯-超高分子量-聚乙烯组合物
CN112041354B (zh) * 2018-05-09 2024-02-02 北欧化工公司 聚丙烯-超高分子量-聚乙烯组合物

Also Published As

Publication number Publication date
US10364307B2 (en) 2019-07-30
EP2995629A1 (en) 2016-03-16
WO2016038210A1 (en) 2016-03-17
US20170247484A1 (en) 2017-08-31
EP2995629B1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
CN107001526A (zh) 在气相中生产丙烯共聚物的方法
CN104870462B (zh) 催化剂
CN102947354B (zh) 包含桥连的茂金属的固体颗粒催化剂
CN103025767B (zh) 包含桥连的茂金属的固体颗粒催化剂
EP2829558B1 (en) Process
CN106795239A (zh) 制备丙烯共聚物的方法
EP3031832B1 (en) Method for preparing polyolefin
JP2019151680A (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒、及びそれを用いたα−オレフィン重合体の製造方法
EP2722344B1 (en) Polymerisation process
CN104870461B (zh) 催化剂
EP3255066B1 (en) Method for producing metallocene-supported catalyst
CN105408370B (zh) 一种方法
CN105339392A (zh) 用于制备丙烯聚合物的方法
EP2722345B1 (en) Catalyst for the polymerisation of olefins
JP7218581B2 (ja) α-オレフィン重合用固体触媒成分の製造方法、α-オレフィン重合用触媒、及びそれを用いたα-オレフィン重合体の製造方法
JP6314851B2 (ja) α−オレフィン重合用固体触媒成分の製造方法、α−オレフィン重合用触媒の製造方法およびα−オレフィン重合体の製造方法
CN117377704A (zh) 共聚物
CN117396525A (zh) 一种制备异相丙烯树脂的方法
JP2011074360A (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒およびα−オレフィン重合体又は共重合体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170801