CN106981728B - 一种方向图可重构的稀布直线阵综合方法 - Google Patents

一种方向图可重构的稀布直线阵综合方法 Download PDF

Info

Publication number
CN106981728B
CN106981728B CN201710149527.4A CN201710149527A CN106981728B CN 106981728 B CN106981728 B CN 106981728B CN 201710149527 A CN201710149527 A CN 201710149527A CN 106981728 B CN106981728 B CN 106981728B
Authority
CN
China
Prior art keywords
array
excitation
vector
directional diagram
linear array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710149527.4A
Other languages
English (en)
Other versions
CN106981728A (zh
Inventor
赵晓雯
杨青山
张云华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Science Center of CAS
Original Assignee
National Space Science Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Science Center of CAS filed Critical National Space Science Center of CAS
Priority to CN201710149527.4A priority Critical patent/CN106981728B/zh
Publication of CN106981728A publication Critical patent/CN106981728A/zh
Application granted granted Critical
Publication of CN106981728B publication Critical patent/CN106981728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种方向图可重构的稀布直线阵综合方法,包括:构造一个虚拟的过采样均匀间隔直线阵;确定虚拟的过采样均匀间隔直线阵的阵元位置矢量d;根据虚拟的过采样均匀间隔直线阵的阵元位置矢量d,确定该虚拟的过采样均匀间隔直线阵可重构的第q个方向图对应的激励列矢量w(q),以及由这Q组激励列矢量组成的激励矩阵W;确定虚拟的过采样均匀间隔直线阵的导向矢量a(θ);根据联合稀疏恢复理论,以最小化激励矩阵W的混合l2/l1范数为优化目标,以Q个方向图设计要求为约束条件,建立综合Q组方向图的凸优化模型;利用凸优化算法求解凸优化模型,计算出激励矩阵W,确定阵元数目、阵元位置以及可重构的Q个方向图对应的Q组阵元激励。

Description

一种方向图可重构的稀布直线阵综合方法
技术领域
本发明涉及无线通信领域,特别涉及一种方向图可重构的稀布直线阵综合方法。
背景技术
近年来,可重构阵列天线因其仅需改变阵元激励就可实现多个方向图而被广泛应用于雷达、遥感、航天器及无线通信等领域(参考文献[1]:A.F.Morabito,A.Massa,P.Rocca,and T.Isernia,"An effective approach to the synthesis of phase-onlyreconfigurable linear arrays,"IEEE Trans.Antennas Propagat.,vol.60,no.8,pp.3622-3631,Aug.2012)。众所周知,阵元位置的非均匀排布可以有效地节省阵元数目,从而有利于减轻阵列天线整体重量、简化馈电网络以及降低应用系统的成本和造价(参考文献[2]:X.Zhao,Y.Zhang,Q.Yang,"A Hybrid Algorithm for Synthesizing LinearSparse Arrays,"Prog.Electromagn.Res.C,vol.63,pp.75-83,2016)。目前,非均匀阵列天线主要分为稀疏阵列天线和稀布阵列天线这两类,其中稀疏阵列天线是指从相邻元间隔为半波长的均匀满阵中,挑选出起作用的阵元而构成,与之不同,稀布阵列天线中阵元不再被约束在半波长的栅格上,而是可以更为随机地分布在给定的阵列口径中。因此,相比于稀疏阵列天线,稀布阵列天线具有更多的优化自由度来以更少的阵元数实现期待的辐射特性(参考文献[3]:X.Zhao,Q.Yang,Y.Zhang,“A Hybrid Method for the Optimal Synthesisof 3-D Patterns of Sparse Concentric Ring Arrays,”IEEE Trans.AntennasPropagat.,vol.64,no.2,pp.515-524,Jan.2016)。
由压缩感知理论可知,稀布直线阵的综合问题可等效为高维稀疏信号的重建问题,在此基础上,本申请人已提出了基于迭代加权l1范数最小化的稀布直线阵综合方法(参考文献[4]:X.Zhao,Q.Yang,Y.Zhang,"Compressed sensing approach for patternsynthesis of maximally sparse non-uniform linear array,"IET Microwav.AntennasPropag.,vol.8,pp.301-307,2014),该方法可以利用凸优化算法对阵元数、阵元位置和相应的阵元激励这些阵列参数实现整体优化,从而最大程度的节省阵列所需的阵元数目,但是该方法仅涉及单一方向图要求的阵列综合问题。
此外,公开的研究表明,众多的综合方法已广泛地应用于具有单一方向图的稀布阵列天线的设计中,而关于方向图可重构的稀布阵列天线的研究相对较少,这是由于这类天线的综合更为复杂,是一个多约束、多参数非线性优化问题,需要根据多个方向图的辐射要求,确定所需的最少阵元数目、相应的阵元位置以及多个方向图对应的各组阵元激励。最近,扩展的矩阵束方法(参考文献[5]:Y.Liu,Q.H.Liu,and Z.Nie,“Reducing the numberof elements in multiple-pattern linear arrays by the extended matrix pencilmethods,”IEEE Trans.Antennas Propag.,vol.62,no.2,pp.652-660,Feb,2014.)和多次测量矢量欠定系统局域解方法(参考文献[6]:F.Yan,P.Yang,F.Yang,L.Zhou,and M.Gao,“Synthesis of Pattern Reconfigurable Sparse Arrays with Multiple MeasurementVectors FOCUSS Method,”IEEE Trans.Antennas Propag.,vol.,no.,pp.,2016.)被应用于综合方向图可重构的稀布直线阵,尽管这两种方法可以有效地求解这类复杂的阵列综合问题,但其均需预先给定具体的参考方向图,即需要将已知的多个参考方向图作为算法的先验信息,而无法应用于仅根据期待的多个方向图包络即多个主波束赋形和共同的副瓣电平要求来综合可重构稀布直线阵,且在实际工程中,根据方向图包络要求来综合可重构稀布直线阵更具有普遍实用性。
发明内容
本发明的目的在于克服现有技术需要将已知的多个参考方向图作为算法的先验信息,而无法应用于仅根据期待的多个方向图包络即多个主波束赋形和共同的副瓣电平要求来综合可重构稀布直线阵的缺陷,从而提供一种更具有普遍实用性的稀布直线阵综合方法。
为了实现上述目的,本发明提供了一种方向图可重构的稀布直线阵综合方法,包括:
步骤S01、根据给定的阵列口径长度,以微小步长对其进行均匀离散化,在每个离散点上都排布一个阵元,从而构造一个虚拟的过采样均匀间隔直线阵;确定所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d;
步骤S02、根据所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d,确定该虚拟的过采样均匀间隔直线阵可重构的第q个方向图对应的激励列矢量w(q),q=1,…,Q,以及由这Q组激励列矢量组成的激励矩阵W;然后由位置矢量d、激励列矢量w(q)和观测角度θ共同决定的方向图函数,确定所述虚拟的过采样均匀间隔直线阵的导向矢量a(θ);
步骤S03、根据联合稀疏恢复理论,以最小化激励矩阵W的混合l2/l1范数为优化目标,以Q个方向图设计要求为约束条件,建立综合Q组方向图的凸优化模型;
步骤S04、利用凸优化算法求解步骤S03建立的凸优化模型,计算出激励矩阵W,由此确定阵元数目、阵元位置以及可重构的Q个方向图对应的Q组阵元激励。
上述技术方案中,步骤S01具体包括:
以离散步长Δ均匀离散化给定的阵列口径L,形成N个足够密的均匀栅格点,在每个栅格点上放置一个天线单元,构成虚拟的N元过采样等间隔直线阵,其中Δ<<λ/2,λ为工作波长;该虚拟阵的位置矢量d=[d1,d2…,dN],其中第n个栅格点的位置dn=(n-1)Δ,n=1,2,…,N。
上述技术方案中,步骤S01中,所述离散步长Δ根据给定的阵列口径L来取值,以保证离散点足够密,在相应的阵列口径上形成一个过采样均匀间隔阵,对于L≤50λ,Δ=0.001λ。
上述技术方案中,步骤S02具体包括:
根据所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d中的元素值与激励矢量w(q)中的元素值一一对应的关系,由所述阵元位置矢量d确定相应的第q个方向图对应的激励矢量w(q)=[w1 (q),w2 (q)…,wN (q)]T,其中,q=1,…,Q,T表示转置运算;
由Q组激励矢量构成激励矩阵W,激励矩阵W的表达式为:
由阵元位置矢量d中的阵元位置和激励矢量w(q)中的阵元激励确定虚拟阵方向图,所述虚拟阵方向图的表达式为:
其中θ为观测角,θ∈[-90°,+90°];
虚拟阵方向图的矢量形式则为:
F(q)(θ)=a(θ)w(q) (3)
由此确定导向矢量a(θ),其表达式为:
上述技术方案中,所述激励矢量w(q)为稀疏矢量,若第n个激励值wn (q)=0,则表明对应位置dn上不存在阵元。
上述技术方案中,步骤S02中,所述激励矩阵W是行稀疏矩阵。
上述技术方案中,步骤S03具体包括:
首先,定义混合l2/l1范数为:
其中Wn→表示激励矩阵W的第n行,且Wn→的l2范数对应为:
然后,根据给定的期望设计的Q个赋形主波束Fd (q)(θ)和共同的副瓣电平上限要求UB,结合混合l2/l1范数以及步骤S02得到的激励列矢量w(q)、导向矢量a(θ),建立多方向图稀布直线阵综合的凸优化模型,该凸优化模型的表达式为:
min||W||2,1
|a(θ)w(q)|≤UB,θ∈sidelobe region
q=1,2,…Q (7)
其中ε为赋形误差,取10-6;shaped reigon表示赋形区域,sidelobe region表示副瓣区域。
上述技术方案中,步骤S04具体包括:
利用求解器CVX求解步骤S03建立的凸优化模型,并定义求解器的变量为复数,计算出激励矩阵W,它的非零行数目则为稀布直线阵的阵元数;激励矩阵W各列中非零元的数目和出现的位置相同,第q列中的非零元则为相应的第q个方向图对应的阵元激励;根据阵元激励与阵元位置的一一对应关系,由各列激励矢量相同的非零元索引,从阵元位置矢量d中确定相应的阵元位置。
本发明的优点在于:
1、本发明方法适用于根据期望的多个方向图包络来综合可重构稀布直线阵,避免了要将已知的参考方向图作为综合设计的先验信息;
2、通过联合稀疏恢复理论,本发明方法将多约束、多目标、多参数的方向图可重构稀布直线阵列综合问题转化为最小化混合l2/l1范数的凸优化问题,从而采用凸优化算法对这样的复杂阵列综合问题进行有效求解;
3、本发明方法可以实现对阵列参数的整体优化,通过同时优化阵元数目、阵元位置以及不同方向图对应的各组阵元激励,在节省阵元数的同时,仅更新阵元激励来实现多方向图的重构。
附图说明
图1是本发明的一种方向图可重构的稀布直线阵综合方法的流程图;
图2是本发明在阵列口径为9.5λ上设计的14元稀布直线阵综合的双方向图;
图3是本发明在阵列口径为9.5λ上设计的14元稀布直线阵的阵元位置与激励分布图。
具体实施方式
现结合附图对本发明作进一步的描述。
如图1所示,本发明的一种方向图可重构的稀布直线阵综合方法包括以下步骤:
S01:构造虚拟的过采样均匀阵;
根据给定的阵列口径长度,以微小步长对其进行均匀离散化,并假定每个离散点上都排布一个阵元,从而构成一个虚拟的过采样均匀间隔直线阵,据此确定相应的阵元位置矢量d。
步骤S01具体包括如下过程:
采用微小步长Δ(Δ<<λ/2,λ为工作波长)均匀离散化给定的阵列口径L,形成N个足够密的均匀栅格点,假定每个栅格点上放置一个天线单元,则构成虚拟的N元过采样等间隔直线阵,该虚拟阵的位置矢量d=[d1,d2…,dN],其中第n个栅格点的位置dn=(n-1)Δ(n=1,2,…,N)。需要指出的是,需要根据给定的阵列口径L,确定离散步长Δ的取值,从而保证口径上的离散点足够多,在相应的阵列口径上可以形成一个过采样均匀间隔阵,对于L≤50λ,通常Δ=0.001λ。
S02:确定行稀疏矩阵和导向矢量;
根据虚拟阵的位置矢量d,确定该虚拟阵可重构的第q(q=1,…,Q)个方向图对应的激励列矢量w(q)和由这Q组激励列矢量组成的激励矩阵W。由虚拟阵的位置矢量d、激励列矢量w(q)和观测角度θ共同决定的多方向图函数,确定该虚拟阵的导向矢量a(θ);
步骤S02具体包括如下步骤:
在虚拟阵位置矢量d确定的情况下,若该虚拟阵可以仅改变阵元激励来实现Q个方向图,那么相应的第q(q=1,…,Q)个方向图对应的激励矢量w(q)=[w1 (q),w2 (q)…,wN (q)]T,其中T表示转置运算。由此可知,激励矢量w(q)中的元素值与位置矢量d中的元素值是一一对应的,若第n个激励值wn (q)=0,则表明对应位置dn上不存在阵元。尽管假定了足够多的阵元位于阵列口径内,但实际起作用的阵元很少,从虚拟阵中移除那些激励值为零的阵元,则可得到稀布阵,这就要求激励矢量w(q)是一个稀疏矢量,即非零元的数目远远小于矢量长度。对于可重构Q组方向图的稀布直线阵而言,相应的Q组激励矢量w(q)是联合稀疏的,即各组稀疏矢量中的非零元数目和位置相同。
由这Q组激励矢量组成的激励矩阵W为:
由于Q组激励矢量w(q)是联合稀疏的,因此激励矩阵W为行稀疏矩阵,起作用的阵元数则对应为矩阵W的非零行数目。
由阵元位置和阵元激励确定的虚拟阵方向图为:
其中θ为观测角,且θ∈[-90°,+90°]。
(2)式的矢量形式则为:
F(q)(θ)=a(θ)w(q) (3)
由此确定的导向矢量a(θ)为:
S03:建立最小化混合l2/l1范数的凸优化模型;
根据联合稀疏恢复理论,以最小化激励矩阵W的混合l2/l1范数为优化目标,以Q个赋形方向图设计要求为约束条件,建立多方向图综合的凸优化模型;
步骤S03具体过程如下:
为了加强激励矩阵W各列向量之间的联合稀疏性,定义混合l2/l1范数为:
其中Wn→表示激励矩阵W的第n行,且Wn→的l2范数对应为:
根据给定的Q个赋形主波束Fd (q)(θ)(q=1,…,Q,θ∈赋形主波束区域)和共同的副瓣电平上限要求UB,结合混合l2/l1范数以及步骤S02得到的激励列矢量w(q)、导向矢量a(θ),建立多方向图稀布直线阵综合的凸优化模型,该凸优化模型为:
min||W||2,1
|a(θ)w(q)|≤UB,θ∈sidelobe region
q=1,2,…Q (7)
其中,ε为赋形误差,通常取10-6;shaped reigon表示赋形区域,sidelobe region表示副瓣区域。
S04:输出阵元数目、阵元位置、多方向图对应的各组阵元激励;
利用凸优化算法求解步骤S03建立的优化模型(7),计算出激励矩阵W,由此确定阵元数目、阵元位置以及可重构的Q个方向图对应的Q组阵元激励。
步骤S04具体过程如下:
利用求解器CVX求解步骤S03建立的优化模型(7),并定义求解器的变量为复数,计算出激励矩阵W,它的非零行数目则为稀布阵的阵元数;激励矩阵W各列中非零元的数目和出现的位置相同,第q列中的非零元则为相应的第q个方向图对应的阵元激励;根据阵元激励与阵元位置的一一对应关系,由各列阵元激励矢量相同的非零元索引,从阵元位置矢量d中确定相应的阵元位置。
本发明所提出的一种方向图可重构的稀布直线阵综合方法,可以进一步通过以下具体的仿真实例来验证并说明。
仿真实例:
本实例在给定的阵列口径L=9.5λ内综合一个双方向图可重构的稀布直线阵,其中一个为笔形波束方向图,另一个为平顶波束方向图,要求笔形波束主波束区域为[-8.7°,+8.7°],主波束方向θo=0°,平顶波束的主波束区域为[-20.5°,+20.5°],且其波纹抖动不超过0.5dB,并要求这两个方向图的副瓣电平均小于-25dB。已有研究表明,若采用相邻元间隔为0.5λ的均匀满阵,则需要20个阵元;若将该满阵实现的方向图作为参考方向图,利用扩展的矩阵束方法综合稀布直线阵,则需要15个阵元。采用本发明提出的一种方向图可重构的稀布直线阵综合方法进行设计,仿真结果表明,本发明所需的阵元数仅为14,综合的可重构方向图如图2所示,由此可知,本发明方法综合的稀布直线阵实现的方向图满足期望的辐射特性。相应的阵元位置与激励分布如图3所示,由于阵列结构的对称性,表1也仅列出了位于正半轴上的阵元位置和各个波束所对应的阵元激励,由此可知,该稀布直线阵的最小阵元间隔为0.697λ,相邻元之间的耦合很小,几乎可以忽略,这具有非常显著的工程意义和应用价值。
表1
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种方向图可重构的稀布直线阵综合方法,包括:
步骤S01、根据给定的阵列口径长度,以微小步长对其进行均匀离散化,在每个离散点上都排布一个阵元,从而构造一个虚拟的过采样均匀间隔直线阵;确定所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d;
步骤S02、根据所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d,确定该虚拟的过采样均匀间隔直线阵可重构的第q个方向图对应的激励列矢量w(q),q=1,…,Q,以及由这Q组激励列矢量组成的激励矩阵W;然后由位置矢量d、激励列矢量w(q)和观测角度θ共同决定的方向图函数,确定所述虚拟的过采样均匀间隔直线阵的导向矢量a(θ);
步骤S03、根据联合稀疏恢复理论,以最小化激励矩阵W的混合l2/l1范数为优化目标,以Q个方向图设计要求为约束条件,结合步骤S02得到的激励列矢量w(q)、导向矢量a(θ),建立综合Q组方向图的凸优化模型;
步骤S03具体包括:
首先,定义混合l2/l1范数为:
其中Wn→表示激励矩阵W的第n行,且Wn→的l2范数对应为:
然后,根据给定的期望设计的Q个赋形主波束Fd (q)(θ)和共同的副瓣电平上限要求UB,结合混合l2/l1范数以及步骤S02得到的激励列矢量w(q)、导向矢量a(θ),建立多方向图稀布直线阵综合的凸优化模型,该凸优化模型的表达式为:
min||W||2,1
|a(θ)w(q)|≤UB,θ∈sidelobe region
q=1,2,…Q (7)
其中ε为赋形误差,取10-6;shaped reigon表示赋形区域,sidelobe region表示副瓣区域;
步骤S04、利用凸优化算法求解步骤S03建立的凸优化模型,计算出激励矩阵W,由此确定阵元数目、阵元位置以及可重构的Q个方向图对应的Q组阵元激励。
2.根据权利要求1所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,步骤S01具体包括:
以离散步长Δ均匀离散化给定的阵列口径L,形成N个足够密的均匀栅格点,在每个栅格点上放置一个天线单元,构成虚拟的N元过采样等间隔直线阵,其中Δ<<λ/2,λ为工作波长;该虚拟阵的位置矢量d=[d1,d2…,dN],其中第n个栅格点的位置dn=(n-1)Δ,n=1,2,…,N。
3.根据权利要求2所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,步骤S01中,所述离散步长Δ根据给定的阵列口径L来取值,以保证离散点足够密、在相应的阵列口径上形成一个过采样均匀间隔阵;对于L≤50λ,Δ=0.001λ。
4.根据权利要求1所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,步骤S02具体包括:
根据所述虚拟的过采样均匀间隔直线阵的阵元位置矢量d中的元素值与激励矢量w(q)中的元素值一一对应的关系,由所述阵元位置矢量d确定相应的第q个方向图对应的激励矢量w(q)=[w1 (q),w2 (q)…,wN (q)]T,其中,q=1,…,Q,T表示转置运算;
由Q组激励矢量构成激励矩阵W,激励矩阵W的表达式为:
由阵元位置矢量d中的阵元位置和激励矢量w(q)中的阵元激励确定虚拟阵方向图,所述虚拟阵方向图的表达式为:
其中θ为观测角,θ∈[-90°,+90°];
虚拟阵方向图的矢量形式则为:
F(q)(θ)=a(θ)w(q) (3)
由此确定导向矢量a(θ),其表达式为:
5.根据权利要求4所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,所述激励矢量w(q)为稀疏矢量,若第n个激励值wn (q)=0,则表明对应位置dn上不存在阵元。
6.根据权利要求4所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,步骤S02中,所述激励矩阵W是行稀疏矩阵。
7.根据权利要求1所述的一种方向图可重构的稀布直线阵综合方法,其特征在于,步骤S04具体包括:
利用求解器CVX求解步骤S03建立的凸优化模型,并定义求解器的变量为复数,计算出激励矩阵W,它的非零行数目为稀布直线阵的阵元数;激励矩阵W各列中非零元的数目和出现的位置相同,第q列中的非零元为相应的第q个方向图对应的阵元激励;根据阵元激励与阵元位置的一一对应关系,由各列激励矢量相同的非零元索引,从阵元位置矢量d中确定相应的阵元位置。
CN201710149527.4A 2017-03-14 2017-03-14 一种方向图可重构的稀布直线阵综合方法 Active CN106981728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710149527.4A CN106981728B (zh) 2017-03-14 2017-03-14 一种方向图可重构的稀布直线阵综合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710149527.4A CN106981728B (zh) 2017-03-14 2017-03-14 一种方向图可重构的稀布直线阵综合方法

Publications (2)

Publication Number Publication Date
CN106981728A CN106981728A (zh) 2017-07-25
CN106981728B true CN106981728B (zh) 2019-12-24

Family

ID=59338908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710149527.4A Active CN106981728B (zh) 2017-03-14 2017-03-14 一种方向图可重构的稀布直线阵综合方法

Country Status (1)

Country Link
CN (1) CN106981728B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729640A (zh) * 2017-10-10 2018-02-23 金陵科技学院 一种使用最少阵元的稀疏天线阵列综合布阵方法
CN108446503B (zh) * 2018-03-22 2021-09-07 电子科技大学 基于压缩感知与凸优化的近场稀布天线阵列优化方法
CN108987941B (zh) * 2018-05-22 2020-07-03 中国科学院国家空间科学中心 一种基于压缩感知的一维子阵划分方法
CN109472089B (zh) * 2018-11-12 2020-12-04 北京航空航天大学 一种适用于被动毫米波人体安检仪的布局结构及方法
CN111007491A (zh) * 2019-12-30 2020-04-14 西安电子科技大学 基于误差矩阵导向的非均匀阵列综合方法
CN111209670B (zh) * 2020-01-06 2020-10-13 电子科技大学 一种可实现高增益的不规则子阵排布优化方法
CN112615158B (zh) * 2020-12-01 2022-01-28 厦门大学 超宽带扫描稀疏阵列天线的综合方法及装置
CN113126087B (zh) * 2021-03-10 2021-11-09 中国科学院国家空间科学中心 一种星载干涉成像高度计天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433754B1 (en) * 2000-06-20 2002-08-13 Northrop Grumman Corporation Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements
CN103646144A (zh) * 2013-12-19 2014-03-19 西安电子科技大学 非周期阵列天线设计方法
JP2014157110A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 信号処理装置、レーダ装置および信号処理方法
CN104182636A (zh) * 2014-08-22 2014-12-03 西安电子科技大学 一种阵列天线辐射场和散射场综合低副瓣快速实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433754B1 (en) * 2000-06-20 2002-08-13 Northrop Grumman Corporation Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements
JP2014157110A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 信号処理装置、レーダ装置および信号処理方法
CN103646144A (zh) * 2013-12-19 2014-03-19 西安电子科技大学 非周期阵列天线设计方法
CN104182636A (zh) * 2014-08-22 2014-12-03 西安电子科技大学 一种阵列天线辐射场和散射场综合低副瓣快速实现方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array;Xiaowen Zhao etc.;《IET Microwaves,Antennas&Propagation》;20140331;301-307 *
Robust Recovery of Signals From a Structured Union of Subspaces;Yonina C. Eldar etc.;《IEEE Transactions on Information Theory》;20091020;5302-5316 *
稀布阵列天线的压缩感知和入侵杂草优化算法研究;赵晓雯;《中国博士学位论文全文数据库 信息科技辑》;20160815;第I136-5页 *
面向压缩感知的块稀疏度自适应迭代算法;付宁 等;《电子学报》;20110315;第75-79页 *

Also Published As

Publication number Publication date
CN106981728A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
CN106981728B (zh) 一种方向图可重构的稀布直线阵综合方法
Xu et al. Pattern synthesis of conformal antenna array by the hybrid genetic algorithm
CN102110883B (zh) 一种赋形可变波束阵列天线的波束赋形方法
CN106654601B (zh) 无栅瓣宽角扫描混合阵列超稀疏布局方法
CN108808266A (zh) 一种用于不规则子阵排列的四维天线阵联合优化方法
CN104020448A (zh) 等阵元约束的雷达子阵级和波束/差波束形成优化方法
CN106650260A (zh) 最小间距可控的超宽带无栅瓣稀疏线阵设计方法
CN103715518B (zh) 泰勒-指数复合不等距模组化阵列天线的设计方法
CN108446503B (zh) 基于压缩感知与凸优化的近场稀布天线阵列优化方法
Abdulqader et al. Antenna pattern optimization via clustered arrays
Yang et al. A novel method for maximum directivity synthesis of irregular phased arrays
Oraizi et al. Sum, difference and shaped beam pattern synthesis by non-uniform spacing and phase control
CN110364829B (zh) 一种稀疏直线阵天线
CN113189538A (zh) 一种基于互质稀疏排列的三元阵列及其空间谱估计方法
CN108170888B (zh) 基于最小化加权向量动态范围的波束图综合设计方法
Oueslati et al. Potentialities of hybrid arrays with parasitic elements
CN111914427B (zh) 一种基于面积归一化策略的多约束矩形阵列稀布优化方法
CN114386271A (zh) 一种考虑互耦效应的随机阵列天线方向图综合方法
CN110071751B (zh) 模拟域波束赋形参数非恒模的部分连接混合波束赋形方法
CN111211425A (zh) 一种超大扫描角的不规则子阵排布优化方法
CN114844543B (zh) 一种低交叉极化的共形阵列混合波束形成码本设计方法
CN114297863B (zh) 基于多项式零点组合的线阵低副瓣双波束泰勒综合方法
Zhi et al. Design of simultaneous multi-beam forming method
CN116632561B (zh) 一种稀布高增益天线阵列设计方法、存储介质
Gu et al. Synthesis of Sparse Circular-Arc Arrays with Wide Angle Scanning Based on Iterative Convex Optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant