CN114386271A - 一种考虑互耦效应的随机阵列天线方向图综合方法 - Google Patents

一种考虑互耦效应的随机阵列天线方向图综合方法 Download PDF

Info

Publication number
CN114386271A
CN114386271A CN202210019891.XA CN202210019891A CN114386271A CN 114386271 A CN114386271 A CN 114386271A CN 202210019891 A CN202210019891 A CN 202210019891A CN 114386271 A CN114386271 A CN 114386271A
Authority
CN
China
Prior art keywords
array
antenna
directional diagram
amplitude
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210019891.XA
Other languages
English (en)
Inventor
赵琪
魏浩
韩威
魏恒
王亚舟
周媛
卢云龙
赵建欣
刘子奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN202210019891.XA priority Critical patent/CN114386271A/zh
Publication of CN114386271A publication Critical patent/CN114386271A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Abstract

本发明公开了一种考虑互耦效应的随机阵列天线方向图综合方法,属于天线阵列方向图综合技术领域。本方法包括天线阵列建模步骤、天线阵列方向图生成步骤以及最优幅相加权获取步骤。本发明考虑了阵列天线单元间的互耦效应及阵列天线的极化特性,结合有源单元方向图,构建精确的天线阵列模型,针对目标阵列方向图使用混合粒子群算法进行天线阵列方向图快速优化,最终实现波束展宽、低副瓣和相控阵扫描等波束赋形。

Description

一种考虑互耦效应的随机阵列天线方向图综合方法
技术领域
本发明属于天线阵列方向图综合技术领域,特别涉及一种考虑互耦效应的随机阵列天线方向图综合方法。
技术背景
阵列天线由于可以根据不同的应用场景进行波束赋形来提升系统性能,在雷达、通信、导航定位等领域得到广泛应用。为了获得满足特定要求的方向图,许多阵列综合算法被用来求解阵列天线辐射单元的激励幅度和相位值,主要包括解析方法、数值方法及随机优化算法等。相比较传统的阵列综合算法,随机优化算法具有全局搜索,动态调节目标函数、可以多目标同时优化的优势。粒子群算法作为一种高效的、并行的全局优化方法,是常用的随机阵列天线方向图综合方法。
一方面,传统的基于粒子群算法的随机阵列天线方向图综合方法是基于阵因子相乘原理,假设各单元方向图相同,而实际的相控阵天线由于阵元间互耦效应明显,各单元的方向图并不相同,因此会导致阵列天线方向图综合仿真结果与实际结果相差很大。为了使阵列综合仿真结果与实际效果更加吻合,采用有源单元方向图等效法,仅第n个天线单元馈电,其余所有单元接匹配负载,可以将天线阵元间的互耦考虑在内。但是一般基于有源单元方向图的阵列综合方法未考虑天线极化特性。而在通信、雷达、电子战等领域,圆极化天线由于能够接收任意线极化和相同旋向的圆极化电磁波,且可以消除电离层法拉第旋转效应引起的极化畸变损失,被广泛应用。所以在阵列综合中如何在考虑阵列天线单元间的互耦效应的基础上,将极化特性也考虑在内显得尤为关键。另一方面,传统的粒子群算法虽然易快速收敛,但是也易陷入局部收敛,而无法实现全局最优值的搜索。
所以,将粒子群算法应用到阵列天线方向图综合时,需要解决以下问题:
(1)需要考虑天线阵元间的耦合效应,并考虑天线的极化特性以保证不论是线极化或是圆极化阵列天线方向图综合结果与实际效果基本吻合。
(2)传统粒子群算法易局部收敛。
发明内容
本发明要解决的技术问题在于克服现有技术问题的不足,提供一种考虑互耦效应的随机阵列天线方向图综合方法。本发明考虑了阵列天线单元间的互耦效应及阵列天线的极化特性,结合两个垂直极化方向上的有源单元方向图,构建精确的天线阵列模型,针对目标阵列方向图使用混合粒子群算法进行天线阵列方向图快速优化,最终实现波束展宽、低副瓣和相控阵扫描等波束赋形。
本发明解决上述技术问题的技术方案如下:
一种考虑互耦效应的随机阵列天线方向图综合方法,包括以下步骤:
(1)根据系统应用指标确定矩形天线阵列的阵元数目、阵元间距及单元天线材料,利用全波电磁仿真软件,建立M×N的二维矩形阵列天线模型,进行全波电磁仿真并导出全部天线单元的有源单元方向图;
(2)根据阵列方向图的指标要求,确定混合粒子群算法的优化目标函数;
(3)随机生成NP个粒子作为初始种群;种群的位置表示天线阵列幅相加权值分布,粒子速度值表示天线阵列幅相加权值的变化方向和大小;
(4)基于天线的有源单元方向图和混合粒子群算法产生的幅相加权值,生成天线阵列的远场方向图;根据步骤(2)的优化目标函数计算粒子相对应的适应度,并确定个体适应度的极值Pi k和群体适应度的极值
Figure BDA0003461943140000031
(5)在每次迭代过程中,粒子通过个体极值Pi k和群体极值
Figure BDA0003461943140000032
更新自身的速度和位置,即
Figure BDA0003461943140000033
Figure BDA0003461943140000034
其中,w为惯性权重;i=1,2,...,NP;k为当前迭代次数;
Figure BDA0003461943140000035
为粒子位置;Vi k为粒子速度;c1和c2为加速度因子;r1和r2是分布于[0,1]区间的随机数;
惯性权重w根据下式进行动态变化:
Figure BDA0003461943140000036
其中,wstart为初始惯性权重;wend为迭代至最大次数时的惯性权重;k为当前迭代次数;kmax为最大迭代次数;
然后,粒子自身进行变异操作,采用保留优秀个体策略,对变异后新粒子适应度更优的个体进行保留;通过迭代在全局范围内搜索最佳的幅相加权值;
(6)根据最优幅相加权结果生成最终的天线阵列综合方向图,验证是否满足系统指标,若不满足指标要求则返回步骤(2),重新修改优化目标函数。
进一步的,步骤(1)中,所述全波电磁仿真软件采用HFSS,端口激励源的设置及仿真结果的导出通过HFSS-MATLAB-API方式实现,以实现MATLAB和HFSS的联合仿真。
进一步的,步骤(1)中,每个单元天线的有源单元方向图包括两个垂直极化方向(rEtheta,rEphi)上的幅值和相位方向图。
进一步的,步骤(4)中,天线阵列的远场方向图表示为:
Figure BDA0003461943140000041
Figure BDA0003461943140000042
Figure BDA0003461943140000043
其中,M和N分别对应X方向和Y方向上的阵元数量;k为波矢;Im,n为幅度加权值,φm,n为圆极化旋转馈电相位及相位加权值;
Figure BDA0003461943140000044
Figure BDA0003461943140000045
包括有源单元方向图的幅度和相位;xm为X方向上阵元位置,yn为Y方向阵元位置;θ00分别为俯仰扫描角及方位扫描角;
将公式(6)计算得到的合成幅值方向图代入公式(7),得到功率方向图:
Figure BDA0003461943140000046
本发明的有益效果在于:
(1)本发明在阵列天线方向图综合结果的精度上有明显的提升。通过HFSS软件的全波仿真结果对阵列综合算法的精度进行验证,不论是对于线极化还是圆极化天线,阵列综合仿真结果与HFSS软件的全波仿真结果完全吻合,最终可以实现指标要求。而传统粒子群算法的阵列综合仿真结果与HFSS软件全波仿真结果具有明显差异,无法满足指标要求。
(2)本发明采用混合粒子群算法,通过引入遗传算法的变异操作和惯性权重动态变化来实现全局优化,以克服粒子群算法易局部收敛的缺陷,最终可以实现满足指标要求的波束赋形。
综上所述,采用考虑互耦效应的混合粒子群算法进行阵列天线方向图综合能够提高阵列天线方向图优化的效果,进行更加精确的波束设计,并在保证计算精度的基础上通过优化粒子群算法提升阵列方向图的优化速度。
附图说明
图1为本发明实施例方法的流程图;
图2为一种X频段右旋圆极化微带天线阵列形式。
图3为一种右旋圆极化阵列天线副瓣抑制仿真结果,包括全波仿真软件HFSS中的二维及三维方向图。其中三维图左侧条状图标明增益最大值和最小值。
图4为一种右旋圆极化阵列天线基于本发明方法及阵因子合成法的副瓣抑制仿真结果,包括软件Matlab和软件HFSS中的
Figure BDA0003461943140000051
方向的阵列功率方向图切面图对比。
图5为一种K频段左旋圆极化微带天线阵列形式。
图6为一种左旋圆极化阵列天线辐射平顶宽波束综合仿真结果,包括全波仿真软件HFSS中的二维及三维方向图。其中三维图左侧条状图标明增益最大值和最小值。
图7为左旋圆极化阵列天线基于本发明方法及阵因子合成法的辐射平顶宽波束综合仿真结果,包括软件Matlab和软件HFSS中的
Figure BDA0003461943140000052
Figure BDA0003461943140000053
方向的阵列功率方向图切面图对比。
图8为一种Ka频段线极化微带天线阵列形式。
图9为一种线极化阵列天线辐射平顶宽波束综合仿真结果,包括全波仿真软件HFSS中的二维及三维方向图。其中三维图左侧条状图标明增益最大值和最小值。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰明了,以下结合附图和实例,对本发明进行进一步详细说明。
一种考虑互耦效应的随机阵列天线方向图综合方法,具体包括以下步骤:
步骤1:根据系统应用指标确定矩形天线阵列的阵元数目、阵元间距及单元天线材料,利用全波电磁仿真软件HFSS,建立M×N二维矩形阵列天线模型,进行全波电磁仿真。并通过HFSS-MATLAB-API方式提取所有阵元的有源单元方向图,设置待求解单元的激励源幅值为1,其他单元的激励源幅值为0,以及导出对应的天线单元的有源单元方向图,包括两个垂直极化方向上(rEtheta,rEphi)的幅值和相位方向图。
步骤2:根据阵列方向图的指标要求,确定混合粒子群算法的优化目标函数。
步骤3:随机生成NP个粒子作为初始种群。种群的位置表示天线阵列幅相加权值分布,粒子速度值表示天线阵列幅相加权值的变化方向和大小。
步骤4:基于有源单元方向图和混合粒子群算法随机产生的幅相加权值,生成天线阵列的远场方向图:
Figure BDA0003461943140000061
Figure BDA0003461943140000071
Figure BDA0003461943140000072
其中,M和N分别对应X方向和Y方向上的阵元数量,k为波矢,Im,n为幅度加权值,φm,n为圆极化旋转馈电相位及相位加权值。
Figure BDA0003461943140000073
Figure BDA0003461943140000074
包括有源单元方向图的幅度和相位。xm为X方向上阵元位置,yn为Y方向阵元位置。θ0,φ0分别为俯仰扫描角及方位扫描角。
采用公式(3)进行矢量合成得到合成幅值方向图。最后将计算得到的合成幅值方向图(单位V)代入公式(4),得到功率方向图(单位dB):
Figure BDA0003461943140000075
根据步骤2的优化目标函数计算粒子相对应的适应度。并确定个体适应度的极值Pi k和群体适应度的极值
Figure BDA0003461943140000076
步骤5:在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即
Figure BDA0003461943140000077
Figure BDA0003461943140000078
其中,w为惯性权重;i=1,2,...,NP;k为当前迭代次数;
Figure BDA0003461943140000079
为粒子位置;Vi k为粒子速度;c1和c2为加速度因子;r1和r2是分布于[0,1]区间的随机数。惯性权重w根据下式进行动态变化:
Figure BDA00034619431400000710
其中,wstart为初始惯性权重;wend为迭代至最大次数时的惯性权重;k为当前迭代次数;kmax为最大迭代次数。然后,粒子自身进行变异操作,采用保留优秀个体策略,对变异后新粒子适应度更优的个体进行保留。通过迭代一定次数在全局范围内搜索最佳的幅相加权值;
步骤6:根据最优幅相加权结果生成最终的天线阵列综合方向图,验证是否满足系统指标,不满足指标要求需要返回步骤2,重新修改优化目标函数参数。
以下为几个具体的例子:
实施例一:对于右旋圆极化天线,以4×4的X频段右旋圆极化微带天线阵列为例,解决副瓣抑制波束综合问题。为了在保证阵列综合性能的基础上减少计算量,并且已经根据先验知识确定幅相加权分布关于阵列中心对称,可以只考虑
Figure BDA0003461943140000081
Figure BDA0003461943140000082
两个方向上的阵列方向图。由于
Figure BDA0003461943140000083
方向上阵列方向图的副瓣小于
Figure BDA0003461943140000084
方向,所以可以只考虑
Figure BDA0003461943140000085
一个方向上的阵列方向图,最终目标实现副瓣抑制达到20dB。如图1所示,天线方向图综合方法的具体步骤如下:
步骤1:根据系统应用指标确定矩形天线阵列中心频率为8.15GHz,阵元数目为4×4,阵元间距为17.8mm的微带天线,利用软件HFSS建立二维矩形阵列天线模型,进行全波电磁仿真,如图2所示。为了保证更好地实现右旋圆极化天线的极化特性,将4个天线单元划分为一组,以其中一个单元为参考,另外三个天线单元分别按顺时针自旋90°、180°、270°,并在馈电相位上相应给予90°、180°和270°的相位补偿。分别提取了所有4×4个有源单元方向图。
通过HFSS-MATLAB-API设置待求解单元的激励源幅值为1,其他单元的激励源幅值为0,并快速导出对应的天线单元的有源单元方向图,包括两个垂直极化方向上(rEtheta,rEphi)的幅值和相位方向图。
步骤2:根据阵列方向图的指标要求,确定混合粒子群算法的优化目标函数:
Figure BDA0003461943140000091
Figure BDA0003461943140000092
公式(8)中,主瓣区域最小值rEmin对应带内抖动;副瓣区域最大值rEmax对应副瓣电平为-20dB;θmax
Figure BDA0003461943140000093
分别对应俯仰角及方位角方向的主瓣范围,设定
Figure BDA0003461943140000094
θmax=30°。w1,w2根据不同的应用需求确定的主瓣区域和副瓣区域的权值。由于不考虑主瓣区域,即主瓣区域权值w1设定为0,副瓣区域权值w2设定为1。
步骤3:初始化粒子群种群和速度。设置种群规模为50。并且为了更加符合实际的工程应用需求,需要考虑数控移相器和数控衰减器引入的量化误差,仿真中采用5位数控衰减器、6位数控移相器。
步骤4:基于每个天线单元的有源单元的方向图和随机幅相加权值,生成天线阵列的远场方向图:
Figure BDA0003461943140000095
Figure BDA0003461943140000096
Figure BDA0003461943140000097
其中M和N都为4。Im,n代入幅度加权值,φm,n为旋转馈电相位及相位加权值。考虑到旋转馈电,每次计算阵列方向图时馈电相位需要对应分别附加0°、90°、180°和270°的相位补偿,如图2所示。
Figure BDA0003461943140000098
Figure BDA0003461943140000101
代入步骤1中的有源单元方向图的幅度和相位。
公式(9)及公式(10)需要分别提取在两个垂直方向上的有源单元方向图,相对应的合成方向图也在对应方向上,最后采用公式(11)进行矢量合成得到合成幅值方向图。最后将计算得到的合成幅值方向图(单位V)代入公式(12),得到功率方向图(单位dB):
Figure BDA0003461943140000102
根据优化目标函数(8)计算粒子相对应的适应度。并确定个体适应度的极大值Pi k和群体适应度的极大值
Figure BDA0003461943140000103
步骤5:在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即
Figure BDA0003461943140000104
Figure BDA0003461943140000105
其中,w为惯性权重,c1和c2加速度因子都为1.5。惯性权重w根据下式进行动态变化:
Figure BDA0003461943140000106
其中,wstart初始惯性权重为0.9;wend迭代至最大次数时的惯性权重为0.4,在算法初期更有利于进行全局搜索,在后期更有利于进行局部搜索。kmax最大迭代次数为100。然后,粒子自身进行变异操作,采用保留优秀个体策略,对变异后新粒子适应度更优的个体进行保留。通过迭代100次在全局范围内搜索最佳的幅相加权值;
步骤6:根据最优幅相加权结果依照步骤4中的公式生成最终的天线阵列综合方向图,验证最终能够满足系统指标。
本实施例中采用考虑互耦效应的随机阵列天线方向图综合方法计算幅相加权值以实现副瓣抑制。在HFSS软件中导入幅相加权值进行验证,如图3所示,最终实现了副瓣抑制,在
Figure BDA0003461943140000111
方向副瓣可以达到-22dB,并且在
Figure BDA0003461943140000112
范围内都可以达到副瓣抑制大于22dB,满足指标要求。图4对比了本方法的算法仿真结果和软件HFSS中全波仿真结果,本方法和软件HFSS仿真结果可以达到100%一致。并且对比了基于阵因子合成法的阵列综合算法仿真结果和软件HFSS中全波仿真结果,虽然在仿真中同样可以达到副瓣抑制的效果,但是HFSS全波仿真结果完全不满足指标要求。因此采用本方法对于右旋圆极化天线,最终可以实现满足指标要求的波束赋形,而传统阵列综合算法难以实现。
实施例二:对于左旋圆极化天线,以4×4的K频段左旋圆极化微带天线阵列为例,解决辐射平顶宽波束综合问题。为了在保证阵列综合性能的基础上减少计算量,并且已经根据先验知识确定幅相加权分布关于阵列中心对称,可以只考虑
Figure BDA0003461943140000113
Figure BDA0003461943140000114
两个方向上的阵列方向图,满足3dB波束宽度达到80°。如图1所示,天线方向图综合方法的具体实施步骤如下:
步骤1:根据系统应用指标确定矩形天线阵列中心频率为14.75GHz,阵元数目为4×4,阵元间距为10.5mm的微带天线,利用全波电磁仿真软件HFSS,建立二维矩形阵列天线模型,进行全波电磁仿真,如图5所示。为了保证更好地实现左旋圆极化天线的极化特性,将4个天线单元划分为一组,以其中一个单元为参考,另外三个天线单元分别按逆时针自旋90°、180°、270°,并在馈电相位上相应给予90°、180°和270°的相位补偿。分别提取了所有4×4个有源单元方向图。
步骤2:根据阵列方向图的指标要求,确定混合粒子群算法的优化目标函数。公式(8)中,主瓣区域最小值rEmin对应带内抖动为3dB;副瓣区域最大值rEmax对应副瓣电平对应-13dB;θmax
Figure BDA0003461943140000121
分别对应俯仰角及方位角方向的主瓣范围,设定
Figure BDA0003461943140000122
θmax=40°以及
Figure BDA0003461943140000123
θmax=60°。经过仿真确定,主瓣区域权值w1设定为0.4,副瓣区域权值w2设定为0.6。
步骤3:初始化粒子群种群和速度。设置种群规模为50,仿真中采用5位数控衰减器、6位数控移相器。
步骤4:基于每个天线单元的有源单元的方向图和随机幅相加权值,生成天线阵列的远场方向图。考虑到旋转馈电,每次计算阵列方向图时馈电相位需要对应分别附加0°、90°、180°和270°的相位补偿,如图5所示。
Figure BDA0003461943140000124
Figure BDA0003461943140000125
代入步骤1中的有源单元方向图的幅度和相位。根据优化目标函数(8)计算粒子相对应的适应度。并确定个体适应度的极大值Pi k和群体适应度的极大值
Figure BDA0003461943140000126
步骤5:在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,c1和c2加速度因子都为1.4。wstart初始惯性权重为0.9;wend迭代至最大次数时的惯性权重为0.4,kmax最大迭代次数为100。然后,粒子自身进行变异操作,采用保留优秀个体策略,通过迭代100次在全局范围内搜索最佳的幅相加权值;
步骤6:根据最优幅相加权结果依照步骤4中的公式生成最终的天线阵列综合方向图,验证最终能够满足系统指标。
本实施例中采用考虑互耦效应的随机阵列天线方向图综合方法计算幅相加权值以实现辐射平顶宽波束综合。在HFSS软件中导入幅相加权值进行验证,如图6所示,最终实现了平顶宽波束赋形,在
Figure BDA0003461943140000131
方向3dB波束宽度可以达到89°,在
Figure BDA0003461943140000132
方向3dB波束宽度可以达到122°,在
Figure BDA0003461943140000133
范围内3dB波束宽度大于80°。图7对比了本方法的算法仿真结果和软件HFSS中全波仿真结果,本方法和软件HFSS仿真结果可以达到100%一致。并且对比了基于阵因子合成法的阵列综合算法仿真结果和软件HFSS中全波仿真结果,虽然在仿真中同样可以达到波束展宽的效果,但是HFSS全波仿真结果完全不满足指标要求。因此采用本方法对于圆极化天线,通过修改优化目标函数可以实现满足不同指标要求的波束赋形,而传统阵列综合算法难以实现。
实施例三:对于大规模线极化阵列,以16×16的Ka频段线极化微带天线阵列为例,解决辐射平顶宽波束综合问题。只考虑
Figure BDA0003461943140000134
Figure BDA0003461943140000135
两个方向上的阵列方向图,最终目标实现3dB波束宽度达到50°,副瓣电平值小于-10dB。如图1所示,天线方向图综合方法具体实施步骤如下:
步骤1:根据系统应用指标确定矩形天线阵列中心频率为30GHz,阵元数目为16×16,阵元间距为5mm的微带天线,利用全波电磁仿真软件HFSS,建立二维矩形阵列天线模型,进行全波电磁仿真,如图8所示。对于大规模阵列,通过HFSS-MATLAB-API快速提取所有有源单元方向图;
步骤2:根据阵列方向图的指标要求,确定优化目标函数:
公式(8)中,确定主瓣区域最小值rEmin对应带内抖动为3dB;副瓣区域最大值rEmax对应副瓣电平对应-10dB;θmax
Figure BDA0003461943140000136
分别对应俯仰角及方位角方向的主瓣范围,设定
Figure BDA0003461943140000137
θmax=25°以及
Figure BDA0003461943140000138
θmax=25°。经过仿真确定,主瓣区域权值w1设定为0.4,副瓣区域权值w2设定为0.6;
步骤3:初始化粒子群种群和速度。设置种群规模为200。并且为了更加符合实际的工程应用需求,需要考虑数控移相器和数控衰减器引入的量化误差,仿真中采用5位数控衰减器、6位数控移相器。
步骤4:基于每个天线单元的有源单元的方向图和随机幅相加权值,根据式(9~12)生成天线阵列的远场方向图,其中m和n都为16。Im,n代入幅度加权值,φm,n为相位加权值。根据优化目标函数(8)计算粒子相对应的适应度。并确定个体适应度的极大值Pi k和群体适应度的极大值
Figure BDA0003461943140000141
步骤5:在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,如式(13~15),w为惯性权重,c1和c2加速度因子都为1.4,wstart初始惯性权重为0.9;wend迭代至最大次数时的惯性权重为0.4。kmax最大迭代次数为300。然后,粒子自身进行变异操作,采用保留优秀个体策略。通过迭代300次在全局范围内搜索最佳的幅相加权值;
步骤6:相加权结果依照步骤4中的公式生成最终的天线阵列综合方向图,验证可以满足系统指标。
本实施例中采用考虑互耦效应的随机阵列天线方向图综合方法计算幅相加权值以实现波束展宽。在HFSS软件中导入幅相加权值进行验证,如图9所示,最终实现了平顶宽波束赋形,在
Figure BDA0003461943140000142
方向3dB波束宽度基本可以达到60°,在
Figure BDA0003461943140000143
方向3dB波束宽度可以达到80°,在
Figure BDA0003461943140000144
范围内3dB波束宽度大于50°。因此对于大规模线极化天线,本方法同样可以实现高精度的波束赋形。
总之,本发明考虑了阵列天线单元间的互耦效应及阵列天线的极化特性,结合有源单元方向图,构建精确的天线阵列模型,针对目标阵列方向图使用混合粒子群算法进行天线阵列方向图快速优化,最终实现波束展宽、低副瓣和相控阵扫描等波束赋形。阵列综合考虑实际应用中会遇到的电磁互耦效应,可以有效避免阵列天线系统在幅相加权时出现因耦合而引起的误差,解决传统阵列天线方向图综合方法寻优精度低的问题。
本发明还可有其他多种实施例,在不背离本发明精神极其实质的情况下,本领域人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (4)

1.一种考虑互耦效应的随机阵列天线方向图综合方法,其特征在于,包括以下步骤:
(1)根据系统应用指标确定矩形天线阵列的阵元数目、阵元间距及单元天线材料,利用全波电磁仿真软件,建立M×N的二维矩形阵列天线模型,进行全波电磁仿真并导出全部天线单元的有源单元方向图;
(2)根据阵列方向图的指标要求,确定混合粒子群算法的优化目标函数;
(3)随机生成NP个粒子作为初始种群;种群的位置表示天线阵列幅相加权值分布,粒子速度值表示天线阵列幅相加权值的变化方向和大小;
(4)基于天线的有源单元方向图和混合粒子群算法产生的幅相加权值,生成天线阵列的远场方向图;根据步骤(2)的优化目标函数计算粒子相对应的适应度,并确定个体适应度的极值Pi k和群体适应度的极值
Figure FDA0003461943130000011
(5)在每次迭代过程中,粒子通过个体极值Pi k和群体极值
Figure FDA0003461943130000012
更新自身的速度和位置,即
Figure FDA0003461943130000013
Figure FDA0003461943130000014
其中,w为惯性权重;i=1,2,...,NP;k为当前迭代次数;
Figure FDA0003461943130000015
为粒子位置;Vi k为粒子速度;c1和c2为加速度因子;r1和r2是分布于[0,1]区间的随机数;
惯性权重w根据下式进行动态变化:
Figure FDA0003461943130000016
其中,wstart为初始惯性权重;wend为迭代至最大次数时的惯性权重;k为当前迭代次数;kmax为最大迭代次数;
然后,粒子自身进行变异操作,采用保留优秀个体策略,对变异后新粒子适应度更优的个体进行保留;通过迭代在全局范围内搜索最佳的幅相加权值;
(6)根据最优幅相加权结果生成最终的天线阵列综合方向图,验证是否满足系统指标,若不满足指标要求则返回步骤(2),重新修改优化目标函数。
2.根据权利要求1所述的一种考虑互耦效应的随机阵列天线方向图综合方法,其特征在于,步骤(1)中,所述全波电磁仿真软件采用HFSS,端口激励源的设置及仿真结果的导出通过HFSS-MATLAB-API方式实现,以实现MATLAB和HFSS的联合仿真。
3.根据权利要求2所述的一种考虑互耦效应的随机阵列天线方向图综合方法,其特征在于,步骤(1)中,每个单元天线的有源单元方向图包括两个垂直极化方向(rEtheta,rEphi)上的幅值和相位方向图。
4.根据权利要求3所述的一种考虑互耦效应的随机阵列天线方向图综合方法,其特征在于,步骤(4)中,天线阵列的远场方向图表示为:
Figure FDA0003461943130000021
Figure FDA0003461943130000022
Figure FDA0003461943130000023
其中,M和N分别对应X方向和Y方向上的阵元数量;k为波矢;Im,n为幅度加权值,φm,n为圆极化旋转馈电相位及相位加权值;
Figure FDA0003461943130000024
Figure FDA0003461943130000025
包括有源单元方向图的幅度和相位;xm为X方向上阵元位置,yn为Y方向阵元位置;θ00分别为俯仰扫描角及方位扫描角;
将公式(6)计算得到的合成幅值方向图代入公式(7),得到功率方向图:
Figure FDA0003461943130000031
CN202210019891.XA 2022-01-10 2022-01-10 一种考虑互耦效应的随机阵列天线方向图综合方法 Pending CN114386271A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210019891.XA CN114386271A (zh) 2022-01-10 2022-01-10 一种考虑互耦效应的随机阵列天线方向图综合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210019891.XA CN114386271A (zh) 2022-01-10 2022-01-10 一种考虑互耦效应的随机阵列天线方向图综合方法

Publications (1)

Publication Number Publication Date
CN114386271A true CN114386271A (zh) 2022-04-22

Family

ID=81200435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210019891.XA Pending CN114386271A (zh) 2022-01-10 2022-01-10 一种考虑互耦效应的随机阵列天线方向图综合方法

Country Status (1)

Country Link
CN (1) CN114386271A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116720287A (zh) * 2023-08-10 2023-09-08 安徽大学 一种基于多馈源的天线单元方向图数值综合方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116720287A (zh) * 2023-08-10 2023-09-08 安徽大学 一种基于多馈源的天线单元方向图数值综合方法及系统
CN116720287B (zh) * 2023-08-10 2023-10-31 安徽大学 一种基于多馈源的天线单元方向图数值综合方法及系统

Similar Documents

Publication Publication Date Title
CN108417999B (zh) 多模相控阵天线和用于加宽其波束的方法
Xu et al. Pattern synthesis of conformal antenna array by the hybrid genetic algorithm
Su et al. Shaping optimization of double reflector antenna based on manifold mapping
CN114386270A (zh) 基于改进型遗传算法的多目标优化阵列方向图综合方法
CN113708077A (zh) 一种基于幅度和相位调制的波束赋形超表面结构及方法
Xu et al. Grating lobe suppression of non-uniform arrays based on position gradient and sigmoid function
CN110600879A (zh) 一种全向圆极化涡旋电磁波的产生方法
CN108736158B (zh) 一种对地超低副瓣设计方法
CN114386271A (zh) 一种考虑互耦效应的随机阵列天线方向图综合方法
Mohammed Rectangular grid antennas with various boundary square-rings array
CN113252998B (zh) 相控阵天线和、差波束信号电平的平坦度优化方法
CN112016662B (zh) 基于混合差分进化算法与加权总体最小二乘法的阵列方向图综合法
CN113489523A (zh) 基于分离校准迭代fft的唯相位多波束方向图综合方法
Mandrić et al. Optimization of the spherical antenna arrays
Li et al. Unequally spaced linear antenna arrays synthesis based on genetic algorithm
CN111291493B (zh) 一种用于机载预警共形阵俯仰探测波束赋形的设计方法
Zhai et al. PSO algorithm combined with parallel higher-order MoM to compensate the influence of radome on antennas
Zhao et al. Hybrid alternate projection algorithm and its application for practical conformal array pattern synthesis
Rahmani et al. Optimum design of conformal array antenna with a shaped radiation pattern and wideband feeding network
CN112926261B (zh) 一种相控阵列天线副瓣快速计算方法及降副瓣方法
CN114297863B (zh) 基于多项式零点组合的线阵低副瓣双波束泰勒综合方法
Zhang et al. Design of a spherical conformal phased array antenna based on the truncated icosahedron
CN113203897B (zh) 一种任意二维天线阵列的旁瓣抑制与波束形成方法
Gu et al. A Hybrid Method for Conformal Antenna Array Pattern Synthesis
CN117852371A (zh) 高效的共形阵列天线方向图综合方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination