CN106885797A - 一种基于高活性位点的定向表面增强拉曼光谱检测方法 - Google Patents

一种基于高活性位点的定向表面增强拉曼光谱检测方法 Download PDF

Info

Publication number
CN106885797A
CN106885797A CN201710157771.5A CN201710157771A CN106885797A CN 106885797 A CN106885797 A CN 106885797A CN 201710157771 A CN201710157771 A CN 201710157771A CN 106885797 A CN106885797 A CN 106885797A
Authority
CN
China
Prior art keywords
sers
solution
sodium chloride
colloidal sol
determinand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710157771.5A
Other languages
English (en)
Other versions
CN106885797B (zh
Inventor
杨良保
于博荣
毛妹
孟娟
陈诚
曹晓敏
唐祥虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Fei'er Kordsa Technology Co Ltd
Original Assignee
Anhui Fei'er Kordsa Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Fei'er Kordsa Technology Co Ltd filed Critical Anhui Fei'er Kordsa Technology Co Ltd
Priority to CN201710157771.5A priority Critical patent/CN106885797B/zh
Publication of CN106885797A publication Critical patent/CN106885797A/zh
Application granted granted Critical
Publication of CN106885797B publication Critical patent/CN106885797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于高活性位点的定向表面增强拉曼光谱检测方法,包括选择一清洁的硅片或玻璃片作为SERS检测基片备用;合成具有SERS活性、粒径为10~60 nm的银纳米溶胶,离心后按照1:100~1:400进行浓缩;将待测物溶解成溶液;将氯化钠溶液、待测物溶液,以及浓缩的银纳米溶胶依次滴加在经步骤(1)处理后的衬底上混合;置于恒温恒湿的条件下干燥成膜;利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测。本发明是在干态下进行的检测,拉曼激光更容易聚焦且不易受到空气流动等的干扰;氯化钠晶体在光学显微镜下可视,因而可有效锁定检测范围;并且样本可以重复多次检测。

Description

一种基于高活性位点的定向表面增强拉曼光谱检测方法
技术领域
本发明涉及一种表面增强拉曼光谱(SERS)检测技术,具体涉及一种基于高活性位点的定向表面增强拉曼光谱检测方法。
背景技术
表面增强拉曼散射(Surface-Enhanced Raman Scattering, SERS)技术结合了拉曼光谱固有的特征,即能够提供分子的详细结构信息,同时由于纳米结构光学信号的放大,SERS可提供超高的检测灵敏度,甚至是单分子水平的检测。此外,SERS检测条件温和,操作简单、无需样品前处理、可实现实时原位快速检测。因此,SERS技术已经发展成为一种广泛应用于各个领域的分析检测手段。目前影响该技术检测效果的因素大致主要包括以下几个方面:(1)产生电磁场增强的SERS 活性基底,(2)待测物的分子结构,(3)待测物和SERS基底表面的亲和力。
柠檬酸钠还原法制备的银溶胶因其制备工艺简单且电磁场增强效果好,现已成为一种很常见的SERS基底材料。然而由柠檬酸钠还原法制备的银溶胶纳米颗粒的表面都会覆盖有柠檬酸根离子及其中间产物,若是待测物的SERS信号很弱,那么这些官能团的存在就会严重影响检测结果。为了减少影响,目前有研究采用极低浓度的卤素离子浸泡银溶胶,以达到清洁基底的目的;并且报道显示,卤素离子的存在可使银溶胶产生团簇,从而增强检测效果。但是上述方法通常都是在液态下进行的检测,不但焦点容易因外界环境发生晃动,而且检测体系不稳定,一个样品不能多次重复被测试。
发明内容
本发明要解决的技术问题是克服现有技术中的不足之处,提供一种操作简便、灵敏度高的基于高活性位点的定向表面增强拉曼光谱检测方法,在光学可视的条件下定向采集谱图以获取高灵敏的待测物信号。可对毒品、爆炸物、农药残留、添加剂等进行检测。
为解决本发明的技术问题,所采用的技术方案为:利用高浓度氯化钠实现的高活性位点定向表面增强拉曼光谱检测方法。
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的硅片或玻璃片作为SERS检测基片备用;
(2)合成具有SERS活性、粒径为10~60 nm的银纳米溶胶,离心后按照1:100~1:400进行浓缩;
(3)将待测物溶解成溶液;
(4)将氯化钠溶液、待测物溶液,以及浓缩的银纳米溶胶依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测。
进一步方案,所述步骤(1)中硅片或玻璃片先经超纯水洗涤,再经双氧水:浓硫酸=1:3的混合溶液浸泡,然后用大量的超纯水超声洗涤,最后氮气或氩气吹干所得。
进一步方案,所述步骤(2)中银纳米溶胶的合成方法为:在氮气氛围中把柠檬酸钠溶液加入到蒸馏水中,在煮沸条件下加入硝酸银溶液,冷却得到银纳米溶胶。
进一步方案,所述步骤(4)中氯化钠溶液的浓度为0.1~0.5 mol/L;所述氯化钠溶液、待测物溶液、浓缩的银纳米溶胶的体积比为2:2:1。
进一步方案,所述步骤(5)中恒温恒湿的条件为24℃、RH= 50%。
进一步方案,所述步骤(6)中的拉曼光谱仪的激发光波长为531~1064 nm,所采集光谱图的范围包括距离氯化钠晶体边缘1~5μm处。
所述待测物包括毒品、爆炸物、农药残留物、添加剂。
本发明利用高浓度氯化钠实现的高活性位点定向表面增强拉曼光谱检测方法,其科学原理分析为:
1、加入氯化钠溶液中的氯离子与银纳米颗粒表面会形成Ag-Cl键,从而替换掉银溶胶纳米颗粒表面之前被覆盖的柠檬酸根离子及其中间产物,从而削弱基底峰的干扰。
2、相对较高浓度盐溶液的存在必然会引起银溶胶的聚集,从而会产生很多团簇,拥有更多的SERS“热点”。
3、过量的氯化钠在干燥过程中会出现结晶现象,并且晶体可以在光学显微镜视野下看清楚;另外,由于毛细力的作用,晶体边缘的检测效果明显优于其他区域。
所以本发明的有益效果在于:
(1)本发明所利用的氯化钠浓度有一个很宽泛的适合浓度范围,降低了实际检测的要求。
(2)本发明是在干态下进行的检测,拉曼激光更容易聚焦且不易受到空气流动等的干扰;氯化钠晶体在光学显微镜下可视,因而可有效锁定检测范围;并且样本可以重复多次检测。
(3)本发明的操作过程简单,仅需3 min左右。适用于多种物质的高灵敏度检测。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是对比例1的拉曼谱图。
图2是对比例2的拉曼谱图。
图3是实施例1对不同浓度海洛因的SERS检测谱图。
图4是实施例2、对比例3分别对10ppm甲基苯丙胺的SERS检测谱图。
图5是实施例3、对比例4分别对10ppm可卡因的SERS检测谱图。
具体实施方式
以下结合实施例对本发明作进一步的描述,但本发明不局限于下述实施例。
以下各实施例中的清洁的硅片或玻璃片先经超纯水洗涤,再经双氧水:浓硫酸=1:3的混合溶液浸泡,然后用大量的超纯水超声洗涤,最后氮气吹干所得。
银纳米溶胶的合成方法为:在氮气氛围中把柠檬酸钠溶液加入到蒸馏水中,在煮沸条件下加入硝酸银溶液,冷却得到银纳米溶胶。
实施例1
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的硅片作为SERS检测衬底备用;
(2)合成粒径为50 nm有具有SERS活性的银纳米溶胶离心后,并按照1:200进行浓缩;
(3)将待测物海洛因溶解成溶液;
(4)将浓度为0.25mol/L氯化钠溶液2μL、待测物海洛因溶液2μL,以及浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为633nm,在距离氯化钠晶体边缘4μm处采集光谱。
对不同浓度海洛因的SERS检测谱图如图3所示,从图3中可看出,其特征峰比较明显,且随着海洛因浓度的下降,SERS特征峰强度逐渐减弱,该方法对海洛因的检测限可以达到1 ppm。
对比例1:
采用现有技术中的柠檬酸钠法合成银纳米溶胶,对其进行拉曼光谱检测,其拉曼谱图如图1所示,基底峰突出。
对比例2:
(1)选择一清洁的硅片作为SERS检测基片备用;
(2)合成粒径为50 nm有具有SERS活性的银纳米溶胶离心后,并按照1:200进行浓缩;
(3)将浓度为0.25mol/L氯化钠溶液2μL、超纯水2uL、浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(4)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(5)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为633nm,在距离氯化钠晶体边缘4μm处采集光谱。
其拉曼谱图如图2所示,滴加有氯化钠的银纳米溶胶基底峰变弱,且没有明显的特征峰。
实施例2
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的硅片作为SERS检测基片备用;
(2)合成粒径为40 nm的具有SERS活性的银纳米溶胶离心后,并按照1:100进行浓缩;
(3)将待测物苯丙胺溶解成溶液;
(4)将浓度为0.5 mol/L氯化钠溶液2μL、待测物苯丙胺溶液2μL,以及浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为531nm,在距离氯化钠晶体边缘3μm处采集光谱。
对比例3:采用实施例2的方法,其区别仅在于步骤(4)中没有滴加浓度为0.5 mol/L氯化钠溶液2μL。
利用实施例2和对比例3的检测方法分别对10ppm甲基苯丙胺的检测结果如图4中a、b所示,对比a、b可知,本发明实施例2的高活性位点SERS检测方法对甲基苯丙胺的检测具有更高的灵敏度。
实施例3
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的玻璃片作为SERS检测基片备用;
(2)合成粒径为50 nm的具有SERS活性的银纳米溶胶离心后,并按照1:150进行浓缩;
(3)将待测物可卡因溶解成溶液;
(4)将浓度为0.2mol/L氯化钠溶液2μL、待测物可卡因溶液2μL,以及浓缩的银纳米溶胶按1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为785 nm,在距离氯化钠晶体边缘1μm处采集光谱。
对比例4:采用实施例2的方法,其区别仅在于步骤(4)中没有滴加浓度为0.2 mol/L氯化钠溶液2μL。
利用实施例3和对比例4的检测方法分别对10ppm可卡因的检测结果如图5中a、b所示,对比a、b可知,本发明实施例3的高活性位点SERS检测方法对可卡因的检测具有更高的灵敏度。
实施例4
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的玻璃片作为SERS检测基片备用;
(2)合成粒径为60 nm有具有SERS活性的银纳米溶胶离心后,并按照1:300进行浓缩;
(3)将待测物福美双溶解成溶液;
(4)将浓度为0.1mol/L氯化钠溶液2μL、待测物福美双溶液2μL,以及浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为532nm,在距离氯化钠晶体边缘3μm处采集光谱。
实施例5
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的玻璃片作为SERS检测基片备用;
(2)合成粒径为40 nm有具有SERS活性的银纳米溶胶离心后,并按照1:200进行浓缩;
(3)将待测物结晶紫溶解成溶液;
(4)将浓度为0.2mol/L氯化钠溶液2μL、待测物结晶紫溶液2μL,以及浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为633nm,在距离氯化钠晶体边缘5μm处采集光谱。
实施例6
一种基于高活性位点的定向表面增强拉曼光谱检测方法,其包括以下步骤:
(1)选择一清洁的硅片作为SERS检测基片备用;
(2)合成粒径为50 nm有具有SERS活性的银纳米溶胶离心后,并按照1:200进行浓缩;
(3)将待测物三硝基甲苯溶解成溶液;
(4)将浓度为0.3mol/L氯化钠溶液2μL、待测物三硝基甲苯溶液2μL,以及浓缩的银纳米溶胶1μL依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于24℃、RH= 50%恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测;拉曼光谱仪的激发光波长为785nm,在距离氯化钠晶体边缘1μm处采集光谱。
以上是本发明较佳实施例而已,并非是对本发明的技术范围作任何限制。故凡是依据本发明的技术实质对以上实施例所做的任何细微修改、等同变化与修饰,均属于本发明所保护的范围内。

Claims (7)

1.一种基于高活性位点的定向表面增强拉曼光谱检测方法,其特征在于:包括以下步骤:
(1)选择一清洁的硅片或玻璃片作为SERS检测基片备用;
(2)合成具有SERS活性、粒径为10~60 nm的银纳米溶胶,离心后按照1:100~1:400进行浓缩;
(3)将待测物溶解成溶液;
(4)将氯化钠溶液、待测物溶液,以及浓缩的银纳米溶胶依次滴加在经步骤(1)处理后的衬底上混合;
(5)置于恒温恒湿的条件下干燥成膜;
(6)利用显微共聚焦拉曼光谱仪对衬底上的膜层样品进行SERS检测。
2.根据权利要求 1 所述的检测方法,其特征在于:所述步骤(1)中硅片或玻璃片先经超纯水洗涤,再经双氧水:浓硫酸=1:3的混合溶液浸泡,然后用大量的超纯水超声洗涤,最后氮气或氩气吹干所得。
3.根据权利要求 1 所述的检测方法,其特征在于:所述步骤(2)中银纳米溶胶的合成方法为:在氮气氛围中把柠檬酸钠溶液加入到蒸馏水中,在煮沸条件下加入硝酸银溶液,冷却得到银纳米溶胶。
4.根据权利要求 1 所述的检测方法,其特征在于:所述步骤(4)中氯化钠溶液的浓度为0.1~0.5 mol/L;所述氯化钠溶液、待测物溶液、浓缩的银纳米溶胶的体积比为2:2:1。
5.根据权利要求 1 所述的检测方法,其特征在于:所述步骤(5)中恒温恒湿的条件为24℃、RH= 50%。
6.根据权利要求 1 所述的检测方法,其特征在于:所述步骤(6)中的拉曼光谱仪的激发光波长为531~1064 nm,所采集光谱图的范围包括距离氯化钠晶体边缘1~5μm处。
7.根据权利要求1所述的检测方法,其特征在于:所述待测物包括毒品、爆炸物、农药残留物、添加剂。
CN201710157771.5A 2017-03-16 2017-03-16 一种基于高活性位点的定向表面增强拉曼光谱检测方法 Active CN106885797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710157771.5A CN106885797B (zh) 2017-03-16 2017-03-16 一种基于高活性位点的定向表面增强拉曼光谱检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710157771.5A CN106885797B (zh) 2017-03-16 2017-03-16 一种基于高活性位点的定向表面增强拉曼光谱检测方法

Publications (2)

Publication Number Publication Date
CN106885797A true CN106885797A (zh) 2017-06-23
CN106885797B CN106885797B (zh) 2019-06-25

Family

ID=59182468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710157771.5A Active CN106885797B (zh) 2017-03-16 2017-03-16 一种基于高活性位点的定向表面增强拉曼光谱检测方法

Country Status (1)

Country Link
CN (1) CN106885797B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941608A (zh) * 2018-08-23 2018-12-07 安徽中科赛飞尔科技有限公司 一种壳层厚度可调控的银/金空腔纳米棒构筑方法及其应用
CN110879221A (zh) * 2019-11-06 2020-03-13 广州供电局有限公司 硅基银纳米表面增强基底及其制备方法
CN112630151A (zh) * 2020-12-18 2021-04-09 成都子之源绿能科技有限公司 Sers衬底及制备方法和采用sers测量农残的方法
CN112730371A (zh) * 2020-11-26 2021-04-30 中国科学院合肥物质科学研究院 表面增强拉曼散射复合基底检测氰化物的样品前处理方法
CN113075193A (zh) * 2021-03-19 2021-07-06 中国科学院苏州生物医学工程技术研究所 基于拉曼光谱的多药耐药抑制剂筛选方法
CN113567418A (zh) * 2021-08-06 2021-10-29 海南微氪生物科技股份有限公司 一种融合光谱技术的病原性微生物检测方法
CN114166817A (zh) * 2021-11-22 2022-03-11 国网福建省电力有限公司 一种快速定性定量分析痕量氯离子的方法
CN114858777A (zh) * 2022-04-25 2022-08-05 哈尔滨医科大学 一种基于表面增强拉曼光谱技术无标签检测细菌的方法及其应用
CN115452799A (zh) * 2022-04-25 2022-12-09 哈尔滨医科大学 一种利用表面增强拉曼光谱技术无标签监测药物的方法及其应用
CN115753730A (zh) * 2022-11-17 2023-03-07 成都理工大学 一种多环境下痕量爆炸物探测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219137B1 (en) * 1998-12-03 2001-04-17 Lockheed Martin Energy Research Corporation Nanoprobe for surface-enhanced Raman spectroscopy in medical diagnostic and drug screening
WO2002054936A2 (en) * 2000-12-24 2002-07-18 Kohn, Kenneth, I. A method for detecting biomarkers
CN101216429A (zh) * 2008-01-07 2008-07-09 首都师范大学 一种sers生物探针及其制备方法
CN102127542A (zh) * 2010-12-27 2011-07-20 江南大学 一种具有表面增强拉曼活性的自组装材料的制备方法
CN102175664A (zh) * 2011-02-17 2011-09-07 福建师范大学 一种血液rna表面增强拉曼光谱检测方法
CN103364390A (zh) * 2012-04-10 2013-10-23 国家纳米科学中心 一种表面增强拉曼基底及其制备方法和应用
CN103472051A (zh) * 2013-09-20 2013-12-25 华东交通大学 一种水果农药残留的表面增强拉曼光谱检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219137B1 (en) * 1998-12-03 2001-04-17 Lockheed Martin Energy Research Corporation Nanoprobe for surface-enhanced Raman spectroscopy in medical diagnostic and drug screening
WO2002054936A2 (en) * 2000-12-24 2002-07-18 Kohn, Kenneth, I. A method for detecting biomarkers
CN101216429A (zh) * 2008-01-07 2008-07-09 首都师范大学 一种sers生物探针及其制备方法
CN102127542A (zh) * 2010-12-27 2011-07-20 江南大学 一种具有表面增强拉曼活性的自组装材料的制备方法
CN102175664A (zh) * 2011-02-17 2011-09-07 福建师范大学 一种血液rna表面增强拉曼光谱检测方法
CN103364390A (zh) * 2012-04-10 2013-10-23 国家纳米科学中心 一种表面增强拉曼基底及其制备方法和应用
CN103472051A (zh) * 2013-09-20 2013-12-25 华东交通大学 一种水果农药残留的表面增强拉曼光谱检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾宝申 等: "表面增强拉曼光谱活性基底的制备及其应用研究", 《食品安全质量检测学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941608A (zh) * 2018-08-23 2018-12-07 安徽中科赛飞尔科技有限公司 一种壳层厚度可调控的银/金空腔纳米棒构筑方法及其应用
CN110879221A (zh) * 2019-11-06 2020-03-13 广州供电局有限公司 硅基银纳米表面增强基底及其制备方法
CN112730371A (zh) * 2020-11-26 2021-04-30 中国科学院合肥物质科学研究院 表面增强拉曼散射复合基底检测氰化物的样品前处理方法
CN112730371B (zh) * 2020-11-26 2023-10-03 中国科学院合肥物质科学研究院 表面增强拉曼散射复合基底检测氰化物的样品前处理方法
CN112630151A (zh) * 2020-12-18 2021-04-09 成都子之源绿能科技有限公司 Sers衬底及制备方法和采用sers测量农残的方法
CN113075193A (zh) * 2021-03-19 2021-07-06 中国科学院苏州生物医学工程技术研究所 基于拉曼光谱的多药耐药抑制剂筛选方法
CN113567418A (zh) * 2021-08-06 2021-10-29 海南微氪生物科技股份有限公司 一种融合光谱技术的病原性微生物检测方法
CN114166817A (zh) * 2021-11-22 2022-03-11 国网福建省电力有限公司 一种快速定性定量分析痕量氯离子的方法
CN114858777A (zh) * 2022-04-25 2022-08-05 哈尔滨医科大学 一种基于表面增强拉曼光谱技术无标签检测细菌的方法及其应用
CN115452799A (zh) * 2022-04-25 2022-12-09 哈尔滨医科大学 一种利用表面增强拉曼光谱技术无标签监测药物的方法及其应用
CN115452799B (zh) * 2022-04-25 2023-08-18 哈尔滨医科大学 一种利用表面增强拉曼光谱技术无标签监测药物的方法及其应用
CN115753730A (zh) * 2022-11-17 2023-03-07 成都理工大学 一种多环境下痕量爆炸物探测装置

Also Published As

Publication number Publication date
CN106885797B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN106885797A (zh) 一种基于高活性位点的定向表面增强拉曼光谱检测方法
CN101832933B (zh) 用壳层隔绝纳米粒子增强拉曼光谱的方法
Kim et al. Isocyanide and biotin-derivatized Ag nanoparticles: an efficient molecular sensing mediator via surface-enhanced Raman spectroscopy
CN106970065B (zh) 一种Ag修饰的ZnO纳米棒基底的自清洁传感器及制备方法和用途
CN112499581A (zh) 一种表面增强拉曼散射衬底的制备方法
CN112098391B (zh) 表面增强拉曼光谱基底的制备方法及表面增强拉曼检测方法
Kim et al. Amine-rich carbon nanodots as a fluorescence probe for methamphetamine precursors
CN102706856A (zh) 一种增强拉曼纳米粒子及其制备方法
Vo-Dinh et al. Recent advances in surface-enhanced Raman spectrometry for chemical analysis
CN106010512B (zh) 一种用于Hg2+检测的SiO2/Au纳米复合材料及其制备方法
Akhgari et al. A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin
CN113499743A (zh) 一种纳米微球七聚体及其制备方法、应用
She et al. In situ synthesis of silver nanoparticles on dialdehyde cellulose as reliable SERS substrate
Chen et al. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives
CN110530842A (zh) Fe3O4@SiO2/Au NPs颗粒的制备方法及其应用
CN106645085A (zh) 基于超支化纳米结构的表面增强拉曼生物分子检测方法
CN109060768A (zh) 一种基于表面增强拉曼光谱痕量检测赤藓红浓度的方法
CN110108697B (zh) 表面增强拉曼散射微纳芯片及其制备方法、应用和拉曼光谱测试系统
KR101613779B1 (ko) 그래핀 산화물로 기능화된 플라즈모닉 탐침체를 가지는 국부적 표면 플라즈몬 공명(lspr) 센서와 그 제조 방법 및 해당 센서를 이용한 방향족 휘발성 유기 화합물 검출 방법 및 장치
CN107703118A (zh) 唾液诊断传感器、制备方法及其在检测丙型肝炎中的应用
CN106947018B (zh) 一种高性能和高度可控的核壳型印迹传感器及制备方法和用途
CN113500190B (zh) 聚多巴胺荧光纳米点包裹的金纳米棒及其制备和检测方法
CN112683877B (zh) 一种基于银棱锥状纳米颗粒表面增强拉曼基底及其制备方法
CN103735271A (zh) 利用暗场显微镜同时进行指纹识别与分析物检测的方法
KR101695335B1 (ko) 코어-쉘 나노입자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant