CN106783593B - 应用于环形天线的Ge基异质固态等离子二极管的制备方法 - Google Patents

应用于环形天线的Ge基异质固态等离子二极管的制备方法 Download PDF

Info

Publication number
CN106783593B
CN106783593B CN201611183904.8A CN201611183904A CN106783593B CN 106783593 B CN106783593 B CN 106783593B CN 201611183904 A CN201611183904 A CN 201611183904A CN 106783593 B CN106783593 B CN 106783593B
Authority
CN
China
Prior art keywords
state plasma
layer
solid
type
type groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611183904.8A
Other languages
English (en)
Other versions
CN106783593A (zh
Inventor
尹晓雪
张亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing aoteng Electronic Technology Co., Ltd
Original Assignee
Jiaxing Aoheng Import And Export Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Aoheng Import And Export Co Ltd filed Critical Jiaxing Aoheng Import And Export Co Ltd
Priority to CN201611183904.8A priority Critical patent/CN106783593B/zh
Publication of CN106783593A publication Critical patent/CN106783593A/zh
Application granted granted Critical
Publication of CN106783593B publication Critical patent/CN106783593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

本发明涉及一种应用于环形天线的Ge基异质固态等离子二极管的制备方法,包括:选取某一晶向的GeOI衬底,并在所述GeOI衬底内设置隔离区;在所述GeOI衬底表面形成第二保护层;利用光刻工艺在所述第二保护层上形成第二隔离区图形;利用干法刻蚀工艺在所述第二隔离区图形的指定位置处刻蚀所述第二保护层及所述GeOI衬底以形成所述P型沟槽和所述N型沟槽;填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述GeOI衬底的顶层Ge内形成P型有源区和N型有源区;在所述GeOI衬底上形成引线,以完成所述Ge基异质固态等离子二极管的制备。本发明实施例利用深槽隔离技术及离子注入工艺能够制备并提供适用于形成固态等离子天线的高性能异质Ge基固态等离子二极管。

Description

应用于环形天线的Ge基异质固态等离子二极管的制备方法
技术领域
本发明涉及半导体器件制造技术领域,特别涉及一种应用于环形天线的Ge基异质固态等离子二极管的制备方法。
背景技术
现如今,各种通信系统发展的重要方向之一是大容量、多功能、超宽带。通过提高系统容量、增加系统功能、扩展系统带宽。通过提高系统容量、增加系统功能、控制系统带宽,一方面可以满足日益膨胀的实际需求,另一方面也可以降低系统成本。而天线作为各种无线通信系统的前端,其性能对于通信系统整体功能具有重要的影响,因此也相应的对其提出了诸如多频、宽带、小型化等要求。随着无线通信系统的日益复杂化,单一的传统天线已经不能满足要求。而多天线设计虽然可以满足新一代无线通信系统对天线的搞要求,但是,天线数目的增多,会是设备成本、天线的空间布局等问题凸显出来。在这种情况下,可重构天线就具有非常明显的优势。它可在不改变天线的尺寸和结构的情况下在天线的方向图、工作频率、极化特性等方面实现重构,从而使一个天线能够实现多个天线的功能。
目前,市面上有一类频率可重构天线,其重要构成部件固态等离子二极管采用的材料均为体硅材料,此材料存在本征区载流子迁移率较低问题,影响固态等离子二极管本征区载流子浓度,进而影响其固态等离子体浓度;并且该结构的P区与N区大多采用注入工艺形成,此方法要求注入剂量和能量较大,对设备要求高,且与现有工艺不兼容;而采用扩散工艺,虽结深较深,但同时P区与N区的面积较大,集成度低,掺杂浓度不均匀,影响固态等离子二极管的电学性能,导致固态等离子体浓度和分布的可控性差。
因此,选择何种材料及工艺来制作一种合适材料的二极管串以应用于环形频率可重构天线,是亟待解决的问题。
发明内容
因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种应用于环形天线的Ge基异质固态等离子二极管的制备方法。
具体的,本发明实施例提供一种应用于环形天线的Ge基异质固态等离子二极管的制备方法,所述Ge基异质固态等离子二极管用于制作可重构环形天线,所述环形天线包括:半导体基片(1);介质板(2);第一固态等离子二极管环(3)、第二固态等离子二极管环(4)、第一直流偏置线(5)及第二直流偏置线(6),均设置于所述半导体基片(1)上;耦合式馈源(7),设置于所述介质板(2)上;所述第一固态等离子二极管环(3)、所述第二固态等离子二极管环(4)、所述第一直流偏置线(5)及所述第二直流偏置线(6)均采用半导体工艺制作在所述半导体基片(1)上;
所述制备方法包括步骤:
(a)选取某一晶向的GeOI衬底,并在所述GeOI衬底内设置隔离区;
(b)在所述GeOI衬底表面形成第二保护层;
(c)利用光刻工艺在所述第二保护层上形成第二隔离区图形;
(d)利用干法刻蚀工艺在所述第二隔离区图形的指定位置处刻蚀所述第二保护层及所述GeOI衬底以形成所述P型沟槽和所述N型沟槽;
(e)填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述GeOI衬底的顶层Ge内形成P型有源区和N型有源区;
(f)在所述GeOI衬底上形成引线,以完成所述Ge基异质固态等离子二极管的制备。
进一步地,在上述实施例的基础上,在GeOI衬底上淀积一层GaAs并设置隔离区,包括:
(a1)在所述GeOI衬底表面形成第一保护层;
(a2)利用光刻工艺在所述第一保护层上形成第一隔离区图形;
(a3)利用干法刻蚀工艺在所述第一隔离区图形的指定位置处刻蚀所述第一保护层及所述GeOI衬底以形成隔离槽,且所述隔离槽的深度大于等于所述GeOI衬底的顶层Ge的厚度;
(a4)填充所述隔离槽以形成所述Ge基固态等离子二极管的所述隔离区。
进一步地,在上述实施例的基础上,所述第一保护层包括第一SiO2层和第一SiN层;相应地,步骤(a1)包括:
(a11)在所述GeOI衬底表面生成SiO2材料以形成第一SiO2层;
(a12)在所述第一SiO2层表面生成SiN材料以形成第一SiN层。
进一步地,在上述实施例的基础上,所述第二保护层包括第二SiO2层和第二SiN层;相应地,步骤(b)包括:
(b1)在所述GeOI衬底表面生成SiO2材料以形成第二SiO2层;
(b2)在所述第二SiO2层表面生成SiN材料以形成第二SiN层。
进一步地,在上述实施例的基础上,步骤(e)包括:
(e1)氧化所述P型沟槽和所述N型沟槽以使所述P型沟槽和所述N型沟槽的内壁形成氧化层;
(e2)利用湿法刻蚀工艺刻蚀所述P型沟槽和所述N型沟槽内壁的氧化层以完成所述P型沟槽和所述N型沟槽内壁的平整化;
(e3)填充所述P型沟槽和所述N型沟槽。
进一步地,在上述实施例的基础上,步骤(e3)包括:
(e31)利用多晶AlAs填充P型沟槽和N型沟槽;
(e32)平整化处理GeOI衬底后,在GeOI衬底上形成多晶AlAs层;
(e33)光刻多晶AlAs层,并采用带胶离子注入的方法对P型沟槽和N型沟槽所在位置分别注入P型杂质和N型杂质以形成P型有源区和N型有源区且同时形成P型接触区和N型接触区;
(e34)去除光刻胶;
(e35)利用湿法刻蚀去除P型接触区和N型接触区以外的多晶AlAs层。
进一步地,在上述实施例的基础上,步骤(f)包括:
(f1)在所述GeOI衬底上生成SiO2材料;
(f2)利用退火工艺激活所述P型有源区及所述N型有源区中的杂质;
(f3)在所述P型接触区和所述N型接触区光刻引线孔以形成引线;
(f4)钝化处理并光刻PAD以形成所述Ge基异质固态等离子二极管。
进一步地,在上述实施例的基础上,所述第一固态等离子二极管环(3)包括第一固态等离子二极管串(8),所述第二固态等离子二极管环(4)包括第二固态等离子二极管串(9),且所述第一固态等离子二极管环(3)及所述第二固态等离子二极管环(4)的周长等于其所要接收信号的电磁波波长。
进一步地,在上述实施例的基础上,所述耦合式馈源(7)制作在所述介质板(2)上且其上表面为金属微带贴片(10),下表面为金属接地板(11)。
进一步地,在上述实施例的基础上,所述金属微带贴片(10)包括主枝节(12)、第一分枝节(13)及第二分枝节(14)。
进一步地,在上述实施例的基础上,所述主枝节(12)的宽度和所述介质板(2)的厚度由所述耦合式馈源(7)的50Ω阻抗匹配决定,所述第一分枝节(13)及所述第二分枝节(14)的长度和宽度分别由天线的阻抗匹配决定。
本发明提供的应用于环形天线的Ge基异质固态等离子二极管的制备方法具备如下优点:
(1)固态等离子二极管所使用的异质Ge基材料,由于其高迁移率和大载流子寿命的特性,能有效提高了固态等离子二极管的固态等离子体浓度;
(2)固态等离子二极管的P区与N区采用了基于刻蚀的深槽刻蚀的多晶硅镶嵌工艺,该工艺能够提供突变结pi与ni结,并且能够有效地提高pi结、ni结的结深,使固态等离子体的浓度和分布的实现很好的可控性;
(3)固态等离子二极管采用了一种基于刻蚀的深槽介质隔离工艺,有效地提高了器件的击穿电压,抑制了漏电流对器件性能的影响。
附图说明
下面将结合附图,对本发明的具体实施方式进行详细的说明。
图1为本发明实施例的一种可重构环形天线的结构示意图;
图2为本发明实施例的一种Ge基异质固态等离子二极管的制备方法流程图;
图3为本发明实施例提供的一种可重构环形天线的半导体基片结构示意图;
图4为本发明实施例提供的一种环形天线的介质板结构示意图;
图5是本发明实施例提供的一种Ge基异质固态等离子二极管的结构示意图;
图6是本发明实施例提供的一种Ge基异质固态等离子二极管串的结构示意图;
图7a-图7r为本发明实施例的另一种Ge基异质固态等离子二极管的制备方法示意图;
图8为本发明实施例的另一种Ge基异质固态等离子二极管的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
本发明提出了一种适用于形成固态等离子体可重构天线的Ge基异质固态等离子二极管的制备方法及器件。该Ge基异质固态等离子二极管是基于绝缘衬底上的锗(Germanium-On-Insulator,简称GeOI)形成横向固态等离子二极管,其在加直流偏压时,直流电流会在其表面形成自由载流子(电子和空穴)组成的固态等离子体,该等离子体具有类金属特性,即对电磁波具有反射作用,其反射特性与表面等离子体的微波传输特性、浓度及分布密切相关。
GeOI横向固态固态等离子二极管等离子可重构天线可以是由GeOI横向固态固态等离子二极管按阵列排列组合而成,利用外部控制阵列中的固态固态等离子二极管选择性导通,使该阵列形成动态固态等离子体条纹、具备天线的功能,对特定电磁波具有发射和接收功能,并且该天线可通过阵列中固态固态等离子二极管的选择性导通,改变固态等离子体条纹形状及分布,从而实现天线的重构,在国防通讯与雷达技术方面具有重要的应用前景。
以下,将对本发明制备的GeOI基固态固态等离子二极管的工艺流程作进一步详细描述。在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。
实施例一
本发明实施例提供一种应用于环形天线的Ge基异质固态等离子二极管的制备方法,所述Ge基异质固态等离子二极管用于制作可重构环形天线。请参考图1,图1为本发明实施例的一种可重构环形天线的结构示意图;所述环形天线包括:半导体基片(1);介质板(2);第一固态等离子二极管环(3)、第二固态等离子二极管环(4)、第一直流偏置线(5)及第二直流偏置线(6),均设置于所述半导体基片(1)上;耦合式馈源(7),设置于所述介质板(2)上;
请参考图2,图2为本发明实施例的一种Ge基异质固态等离子二极管的制备方法流程图。所述制备方法包括步骤:
(a)选取某一晶向的GeOI衬底,在GeOI衬底上设置隔离区;
其中,对于步骤(a),采用GeOI衬底的原因在于,对于固态等离子天线由于其需要良好的微波特性,而固态固态等离子二极管为了满足这个需求,需要具备良好的隔离特性和载流子即固态等离子体的限定能力,而GeOI衬底由于其具有能够与隔离槽方便的形成PIN隔离区域、二氧化硅(SiO2)也能够将载流子即固态等离子体限定在顶层硅中,所以优选采用GeOI作为固态固态等离子二极管的衬底。且锗材料的载流子迁移率比较大,故可在I区内形成较高的等离子体浓度,提高器件的性能。
(b)在所述GeOI衬底表面形成第二保护层;
(c)利用光刻工艺在所述第二保护层上形成第二隔离区图形;
(d)利用干法刻蚀工艺在所述第二隔离区图形的指定位置处刻蚀所述第二保护层及所述GeOI衬底以形成所述P型沟槽和所述N型沟槽;
(e)填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述GeOI衬底的顶层Ge内形成P型有源区和N型有源区;
(f)在所述GeOI衬底上形成引线,以完成所述Ge基异质固态等离子二极管的制备。
进一步地,在上述实施例的基础上,请参考图3,图3为本发明实施例提供的一种可重构环形天线的半导体基片结构示意图。所述第一固态等离子二极管环(3)包括第一固态等离子二极管串(8),所述第二固态等离子二极管环(4)包括第二固态等离子二极管串(9),且所述第一固态等离子二极管环(3)及所述第二固态等离子二极管环(4)的周长等于其所要接收信号的电磁波波长,并且,在所述第一固态等离子二极管串(8)及所述第二固态等离子二极管串(9)两端设置有第一直流偏置线(5)及第二直流偏置线(6)。
进一步地,在上述实施例的基础上,请参考图4,图4为本发明实施例提供的一种环形天线的介质板结构示意图;所述耦合式馈源(7)制作在所述介质板(2)上且其上表面为金属微带贴片(10),下表面为金属接地板(11),所述金属微带贴片(10)包括主枝节(12)、第一分枝节(13)及第二分枝节(14)。
主枝节(12)宽度和介质板(2)厚度由馈源的阻抗匹配决定,另外耦合到内外环的能量越大,则主枝节(12)宽度越大。第一分枝节(13)及第二分枝节(14)长度和宽度由天线的阻抗匹配决定,可通过第一分枝节(13)及第二分枝节(14)长度和宽度变化调节天线的驻波。半导体基片和介质板之间的距离由天线的增益决定。
请参考图5和图6。图5是本发明实施例提供的一种Ge基异质固态等离子二极管的结构示意图;图6是本发明实施例提供的一种Ge基异质固态等离子二极管串的结构示意图;如图6示,每个固态等离子二极管串中包括多个固态等离子二极管,且这些固态等离子二极管串行连接。该固态等离子二极管由P+区27、N+区26和本征区22组成,第一金属接触区23位于P+区27处,第二金属接触区24位于N+区26处,处于固态等离子二极管串的一端的固态等离子二极管的金属接触区23连接至直流偏置的正极,处于固态等离子二极管串的另一端的固态等离子二极管的金属接触区24,通过施加直流电压可使整个固态等离子二极管串中所有固态等离子二极管处于正向导通状态。当利用固态等离子二极管正向偏置激发固态等离子体时,可用于天线的电磁辐射。而固态等离子二极管不加偏置关闭时,则呈现半导体介质状态,可解决天线间的互耦问题,更利于可重构天线的设计。
进一步地,在上述实施例的基础上,在GeOI衬底上淀积一层GaAs并设置隔离区,包括:
(a1)在所述GeOI衬底表面形成第一保护层;
具体地,第一保护层包括第一二氧化硅(SiO2)层和第一氮化硅(SiN)层;则第一保护层的形成包括:在GeOI衬底表面生成二氧化硅(SiO2)以形成第一二氧化硅(SiO2)层;在第一二氧化硅(SiO2)层表面生成氮化硅(SiN)以形成第一氮化硅(SiN)层。这样做的好处在于,利用二氧化硅(SiO2)的疏松特性,将氮化硅(SiN)的应力隔离,使其不能传导进顶层Ge,保证了顶层Ge性能的稳定;基于氮化硅(SiN)与Ge在干法刻蚀时的高选择比,利用氮化硅(SiN)作为干法刻蚀的掩蔽膜,易于工艺实现。当然,可以理解的是,保护层的层数以及保护层的材料此处不做限制,只要能够形成保护层即可。
(a2)利用光刻工艺在所述第一保护层上形成第一隔离区图形;
(a3)利用干法刻蚀工艺在所述第一隔离区图形的指定位置处刻蚀所述第一保护层及所述GeOI衬底以形成隔离槽,且所述隔离槽的深度大于等于所述GeOI衬底的顶层Ge的厚度;
(a4)填充所述隔离槽以形成所述Ge基固态等离子二极管的所述隔离区。
进一步地,在上述实施例的基础上,所述第一保护层包括第一SiO2层和第一SiN层;相应地,步骤(a1)包括:
在所述GeOI衬底表面生成SiO2材料以形成第一SiO2层;并且,在第一SiO2层表面生成SiN材料以形成第一SiN层。这样做的好处在于,利用二氧化硅(SiO2)的疏松特性,将氮化硅(SiN)的应力隔离,使其不能传导进顶层SiGe,保证了顶层SiGe性能的稳定;基于氮化硅(SiN)与SiGe在干法刻蚀时的高选择比,利用氮化硅(SiN)作为干法刻蚀的掩蔽膜,易于工艺实现。当然,可以理解的是,保护层的层数以及保护层的材料此处不做限制,只要能够形成保护层即可。
进一步地,在上述实施例的基础上,步骤(b)包括:
(b1)在所述GeOI衬底表面生成SiO2材料以形成第二SiO2层;
(b2)在所述第二SiO2层表面生成SiN材料以形成第二SiN层。
进一步地,在上述实施例的基础上,步骤(e)包括:
(e1)氧化所述P型沟槽和所述N型沟槽以使所述P型沟槽和所述N型沟槽的内壁形成氧化层;
(e2)利用湿法刻蚀工艺刻蚀所述P型沟槽和所述N型沟槽内壁的氧化层以完成所述P型沟槽和所述N型沟槽内壁的平整化;
(e3)填充所述P型沟槽和所述N型沟槽。
其中,P型沟槽和N型沟槽的深度大于第二保护层厚度且小于第二保护层与衬底顶层Ge厚度之和。优选地,该P型沟槽和N型沟槽的底部距GeOI衬底的顶层Ge底部的距离为0.5微米~30微米,形成一般认为的深槽,这样在形成P型和N型有源区时可以形成杂质分布均匀、且高掺杂浓度的P、N区和和陡峭的Pi与Ni结,以利于提高i区等离子体浓度。
进一步地,在上述实施例的基础上,步骤(e3)包括:
(e31)利用多晶AlAs填充P型沟槽和N型沟槽;
(e32)平整化处理GeOI衬底后,在GeOI衬底上形成多晶AlAs层;
具体地,平整化处理可以采用如下步骤:氧化P型沟槽和N型沟槽以使P型沟槽和N型沟槽的内壁形成氧化层;利用湿法刻蚀工艺刻蚀P型沟槽和N型沟槽内壁的氧化层以完成P型沟槽和N型沟槽内壁的平整化。这样做的好处在于:可以防止沟槽侧壁的突起形成电场集中区域,造成Pi和Ni结击穿。
(e33)光刻多晶AlAs层,并采用带胶离子注入的方法对P型沟槽和N型沟槽所在位置分别注入P型杂质和N型杂质以形成P型有源区和N型有源区且同时形成P型接触区和N型接触区;
(e34)去除光刻胶;
(e35)利用湿法刻蚀去除P型接触区和N型接触区以外的多晶AlAs层。
其中,形成第一有源区的目的在于:在沟槽的侧壁形成一层均匀的重掺杂区域,该区域即为Pi和Ni结中的重掺杂区,而第一有源区的形成具有如下几个好处,以槽中填入多晶硅作为电极为例说明,第一、避免了多晶硅与SiGe之间的异质结与Pi和Ni结重合,导致的性能的不确定性;第二、可以利用多晶硅中杂质的扩散速度比较快的特性,进一步向P和N区扩散,进一步提高P和N区的掺杂浓度;第三、这样做防止了在多晶硅工艺过程中,多晶硅生长的不均性造成的多晶硅与槽壁之间形成空洞,该空洞会造成多晶硅与侧壁的接触不好,影响器件性能。
进一步地,在上述实施例的基础上,步骤(f)包括:
(f1)在所述GeOI衬底上生成SiO2材料;
(f2)利用退火工艺激活所述P型有源区及所述N型有源区中的杂质;
(f3)在所述P型接触区和所述N型接触区光刻引线孔以形成引线;
(f4)钝化处理并光刻PAD以形成所述Ge基异质固态等离子二极管。
实施例二
请参见图7a-图7r,图7a-图7r为本发明实施例的一种Ge基异质固态等离子二极管的制备方法示意图,在上述实施例一的基础上,以制备沟道长度为22nm(固态等离子区域长度为100微米)的GeOI基固态固态等离子二极管为例进行详细说明,具体步骤如下:
步骤1,衬底材料制备步骤:
(1a)如图7a所示,选取(100)晶向,掺杂类型为p型,掺杂浓度为1014cm-3的GeOI衬底片101,顶层Ge的厚度为50μm;
(1b)如图7b所示,采用化学气相沉积(Chemical vapor deposition,简称CVD)的方法,在GeOI衬底上淀积一层40nm厚度的第一SiO2层201;
(1c)采用化学气相淀积的方法,在衬底上淀积一层2μm厚度的第一Si3N4/SiN层202;
步骤2,隔离制备步骤:
(2a)如图7c所示,通过光刻工艺在上述保护层上形成隔离区,湿法刻蚀隔离区第一Si3N4/SiN层202,形成隔离区图形;采用干法刻蚀,在隔离区形成宽5μm,深为50μm的深隔离槽301;
(2b)如图7d所示,采用CVD的方法,淀积SiO2 401将该深隔离槽填满;
(2c)如图7e所示,采用化学机械抛光(Chemical Mechanical Polishing,简称CMP)方法,去除表面第一Si3N4/SiN层202和第一SiO2层201,使GeOI衬底表面平整;
步骤3,P、N区深槽制备步骤:
(3a)如图7f所示,采用CVD方法,在衬底上连续淀积延二层材料,第一层为300nm厚度的第二SiO2层601,第二层为500nm厚度的第二Si3N4/SiN层602;
(3b)如图7g所示,光刻P、N区深槽,湿法刻蚀P、N区第二Si3N4/SiN层602和第二SiO2层601,形成P、N区图形;采用干法刻蚀,在P、N区形成宽4μm,深5μm的深槽701,P、N区槽的长度根据在所制备的天线中的应用情况而确定;
(3c)如图7h所示,在850℃下,高温处理10分钟,氧化槽内壁形成氧化层801,以使P、N区槽内壁平整;
(3d)如图7i所示,利用湿法刻蚀工艺去除P、N区槽内壁的氧化层801。
步骤4,P、N接触区制备步骤:
(4a)如图7j所示,采用MOCVD(有机金属化学气相沉积),在P、N区槽中淀积多晶AlAs1001,并将沟槽填满;
(4b)如图7k所示,采用CMP,去除表面多晶AlAs1001与第二Si3N4/SiN层602,使表面平整;
(4c)如图7l所示,采用CVD的方法,在表面淀积一层多晶AlAs1201,厚度为200~500nm;
(4d)如图7m所示,光刻P区有源区,采用带胶离子注入方法进行p+注入,使P区有源区掺杂浓度达到0.5×1020cm-3,去除光刻胶,形成P接触1301;
(4e)光刻N区有源区,采用带胶离子注入方法进行n+注入,使N区有源区掺杂浓度为0.5×1020cm-3,去除光刻胶,形成N接触1302;
(4f)如图7n所示,采用湿法刻蚀,刻蚀掉P、N接触区以外的多晶AlAs1201,形成P、N接触区;
(4g)如图7o所示,采用CVD的方法,在表面淀积SiO2 1501,厚度为800nm;
(4h)在1000℃,退火1分钟,使离子注入的杂质激活、并且推进AlAs中杂质;
步骤5,构成固态等离子二极管步骤:
(5a)如图7p所示,在P、N接触区光刻引线孔1601;
(5b)如图7q所示,衬底表面溅射金属,在750℃合金形成金属硅化物1701,并刻蚀掉表面的金属;
(5c)衬底表面溅射金属,光刻引线;
(5d)如图7r所示,淀积Si3N4/SiN形成钝化层1801,光刻PAD,形成固态等离子二极管,作为制备固态等离子天线材料。
本实施例中,上述各种工艺参数均为举例说明,依据本领域技术人员的常规手段所做的变换均为本申请之保护范围。
实施例三
请参照图8,图8为本发明实施例的Ge基异质固态等离子二极管的器件结构示意图。该Ge基异质固态等离子二极管采用上述如图1所示的制备方法制成,具体地,该Ge基固态等离子二极管在GeOI衬底301上制备形成,且固态等离子二极管的P区304、N区305以及横向位于该P区304和该N区305之间的I区均位于该GeOI衬底的顶层Ge302内。其中,该固态等离子二极管可以采用STI深槽隔离,即该P区304和该N区305外侧各设置有一隔离槽303,且该隔离槽303的深度大于等于该顶层Ge302的厚度。
综上所述,本文中应用了具体个例对本发明固态固态等离子二极管及其制备方法的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。
本发明提供的Ge基异质固态等离子二极管的制备方法具备如下优点:
(1)固态等离子二极管所使用的锗材料,由于其高迁移率和大载流子寿命的特性,能有效提高固态等离子二极管的固态等离子体浓度;
(2)固态等离子二极管采用异质结结构,由于I区为锗,其载流子迁移率高且禁带宽度比较窄,在P、N区填充多晶AlAs从而形成异质结结构,AlAs材料的禁带宽度大于锗,故可产生高的注入比,提高器件性能;
(3)固态等离子二极管采用异质结结构,并且I区的锗和P、N区的多晶AlAs的晶格失配比较低,故在异质结界面处的缺陷很少,从而提高了器件的性能;
(4)固态等离子二极管采用了一种基于刻蚀的深槽介质隔离工艺,有效地提高了器件的击穿电压,抑制了漏电流对器件性能的影响。

Claims (9)

1.一种应用于环形天线的Ge基异质固态等离子二极管的制备方法,其特征在于,所述异质Ge基固态等离子二极管用于制作固态等离子环形天线,所述环形天线包括:
半导体基片(1);
介质板(2);
第一固态等离子二极管环(3)、第二固态等离子二极管环(4)、第一直流偏置线(5)及第二直流偏置线(6),均设置于所述半导体基片(1)上;
耦合式馈源(7),设置于所述介质板(2)上;
所述第一固态等离子二极管环(3)、所述第二固态等离子二极管环(4)、所述第一直流偏置线(5)及所述第二直流偏置线(6)均采用半导体工艺制作在所述半导体基片(1)上;其中,所述Ge基异质固态等离子二极管的制备方法包括如下步骤:
(a)选取某一晶向的GeOI衬底,并在所述GeOI衬底内设置隔离区;所述隔离区由隔离槽填充而成,所述隔离槽的深度大于等于所述GeOI衬底的顶层Ge的厚度;
(b)在所述GeOI衬底表面形成第二保护层;
(c)利用光刻工艺在所述第二保护层上形成第二隔离区图形;
(d)利用干法刻蚀工艺在所述第二隔离区图形的指定位置处刻蚀所述第二保护层及所述GeOI衬底以形成P型沟槽和N型沟槽;
(e)填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述GeOI衬底的顶层Ge内形成P型有源区和N型有源区;其中,填充所述P型沟槽和所述N型沟槽包括:
(e1)氧化所述P型沟槽和所述N型沟槽以使所述P型沟槽和所述N型沟槽的内壁形成氧化层;
(e2)利用湿法刻蚀工艺刻蚀所述P型沟槽和所述N型沟槽内壁的氧化层以完成所述P型沟槽和所述N型沟槽内壁的平整化;
(e3)填充所述P型沟槽和所述N型沟槽;
其中,P型沟槽和N型沟槽的深度大于第二保护层厚度且小于第二保护层与衬底顶层Ge厚度之和;
(f)在所述GeOI衬底上形成引线,以完成所述Ge基异质固态等离子二极管的制备。
2.如权利要求1所述的制备方法,其特征在于,在GeOI衬底内设置隔离区,包括:
(a1)在所述GeOI衬底表面形成第一保护层;
(a2)利用光刻工艺在所述第一保护层上形成第一隔离区图形;
(a3)利用干法刻蚀工艺在所述第一隔离区图形的指定位置处刻蚀所述第一保护层及所述GeOI衬底以形成隔离槽,且所述隔离槽的深度大于等于所述GeOI衬底的顶层Ge的厚度;
(a4)填充所述隔离槽以形成所述Ge基固态等离子二极管的所述隔离区。
3.如权利要求2所述的制备方法,其特征在于,所述第一保护层包括第一SiO2层和第一SiN层;相应地,步骤(a1)包括:
(a11)在所述GeOI衬底表面生成SiO2材料以形成第一SiO2层;
(a12)在所述第一SiO2层表面生成SiN材料以形成第一SiN层。
4.如权利要求1所述的制备方法,其特征在于,所述第二保护层包括第二SiO2层和第二SiN层;相应地,步骤(b)包括:
(b1)在所述GeOI衬底表面生成SiO2材料以形成第二SiO2层;
(b2)在所述第二SiO2层表面生成SiN材料以形成第二SiN层。
5.如权利要求1所述的制备方法,其特征在于,步骤(e3)包括:
(e31)利用多晶AlAs填充P型沟槽和N型沟槽;
(e32)平整化处理GeOI衬底后,在GeOI衬底上形成多晶AlAs层;
(e33)光刻多晶AlAs层,并采用带胶离子注入的方法对P型沟槽和N型沟槽所在位置分别注入P型杂质和N型杂质以形成P型有源区和N型有源区且同时形成P型接触区和N型接触区;
(e34)去除光刻胶;
(e35)利用湿法刻蚀去除P型接触区和N型接触区以外的多晶AlAs层。
6.如权利要求1所述的制备方法,其特征在于,步骤(f)包括:
(f1)在所述GeOI衬底上生成SiO2材料;
(f2)利用退火工艺激活所述P型有源区及所述N型有源区中的杂质;
(f3)在所述P型接触区和所述N型接触区光刻引线孔以形成引线;
(f4)钝化处理并光刻PAD以形成所述Ge基异质固态等离子二极管。
7.如权利要求1所述的制备方法,其特征在于,所述第一固态等离子二极管环(3)包括第一固态等离子二极管串(8),所述第二固态等离子二极管环(4)包括第二固态等离子二极管串(9),且所述第一固态等离子二极管环(3)及所述第二固态等离子二极管环(4)的周长等于其所要接收信号的电磁波波长。
8.如权利要求1所述的制备方法,其特征在于,所述耦合式馈源(7)制作在所述介质板(2)上且其上表面为金属微带贴片(10),下表面为金属接地板(11)。
9.如权利要求8所述的制备方法,其特征在于,所述金属微带贴片(10)包括主枝节(12)、第一分枝节(13)及第二分枝节(14)。
CN201611183904.8A 2016-12-20 2016-12-20 应用于环形天线的Ge基异质固态等离子二极管的制备方法 Active CN106783593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611183904.8A CN106783593B (zh) 2016-12-20 2016-12-20 应用于环形天线的Ge基异质固态等离子二极管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611183904.8A CN106783593B (zh) 2016-12-20 2016-12-20 应用于环形天线的Ge基异质固态等离子二极管的制备方法

Publications (2)

Publication Number Publication Date
CN106783593A CN106783593A (zh) 2017-05-31
CN106783593B true CN106783593B (zh) 2021-01-12

Family

ID=58895974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611183904.8A Active CN106783593B (zh) 2016-12-20 2016-12-20 应用于环形天线的Ge基异质固态等离子二极管的制备方法

Country Status (1)

Country Link
CN (1) CN106783593B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005003B (zh) * 2019-12-09 2021-07-06 北京师范大学 一种替代激光直接成型技术的天线制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714591A (zh) * 2009-11-10 2010-05-26 大连理工大学 一种硅光电二极管的制作方法
CN102842595A (zh) * 2011-06-20 2012-12-26 中国科学院微电子研究所 半导体器件及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714591A (zh) * 2009-11-10 2010-05-26 大连理工大学 一种硅光电二极管的制作方法
CN102842595A (zh) * 2011-06-20 2012-12-26 中国科学院微电子研究所 半导体器件及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Silicon-Based Reconfigurable Antennas—Concepts, Analysis, Implementation, and Feasibility";Aly E. Fathy;《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》;20030630;正文第Ⅰ-Ⅲ部分,图 1-4、12 *
"小型平面天线的多频段及宽频带研究";2010年第02期;《中国优秀硕士学位论文全文数据库 信息科技辑》;20100228;第4.2.1节,图4.3 *

Also Published As

Publication number Publication date
CN106783593A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106784019B (zh) 一种Ge基固态等离子体PiN二极管及其制备方法
CN106783593B (zh) 应用于环形天线的Ge基异质固态等离子二极管的制备方法
CN106783600B (zh) 一种固态等离子体PiN二极管及其制备方法
WO2018113452A1 (zh) 多层全息天线中AlAs-Ge-AlAs结构基等离子pin二极管的制造方法
CN112993045B (zh) 异质GeSn基固态等离子体PiN二极管的制备方法及其器件
CN106783595B (zh) 一种用于环形天线的GaAs/Ge/GaAs异质SPiN二极管的制备方法
US10367247B2 (en) Preparation method for GaAs/Ge/GaAs heterogeneous sprintronic (SPiN) diode for loop antenna
US10177141B2 (en) Preparation method for heterogeneous SiGe based plasma P-I-N diode string for sleeve antenna
CN106783604B (zh) AlAs-Ge-AlAs结构的基固态等离子体PiN二极管及其制备方法
CN106847693B (zh) 应用于可重构环形天线的GaAs固态等离子pin二极管制备方法
CN106847692B (zh) 用于多层全息天线的GaAs基横向等离子pin二极管的制备方法
WO2018113454A1 (zh) 用于套筒天线的异质SiGe基等离子pin二极管串的制备方法
US10304824B2 (en) Manufacturing method for AlAs—Ge—AlAs structure based plasma p-i-n diode in multilayered holographic antenna
CN106847899B (zh) 用于可重构偶极子天线的GaAs/Ge/GaAs SPiN二极管串的制备方法
CN106653867B (zh) 基于台状有源区的固态等离子体PiN二极管及其制备方法
CN106847680B (zh) 基于GaAs的频率可重构套筒偶极子天线的制备方法
WO2018113542A1 (zh) 可重构环形天线中基于台状有源区pin二极管串的制备方法
CN113013258B (zh) SiGe-GeSn-SiGe异质结构高注入比PiN二极管阵列的制备方法及其器件
CN106784020B (zh) 异质SiGe基固态等离子体PiN二极管的制备方法及其器件
CN112993043B (zh) 一种Si-GeSn-Si异质GeSn基固态等离子体PiN二极管及制备方法
CN112993049B (zh) AlSb-GeSn-AlSb异质结构固态等离子体PiN二极管的制备方法及其器件
CN112992676B (zh) 一种AlAs-GeSn-AlAs结构的高注入比异质PiN二极管的制备方法及其器件
CN106783599B (zh) 制作偶极子天线的异质Ge基等离子pin二极管的制备方法
CN106783602B (zh) SiGe-Si-SiGe异质Ge基固态等离子体PiN二极管的制备方法及其器件
CN106783603B (zh) 应用于套筒天线的异质Ge基等离子pin二极管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201202

Address after: B07-01-21, 7th floor, block B, No. 705, Asia Pacific Road, Daqiao Town, Nanhu District, Jiaxing City, Zhejiang Province

Applicant after: Jiaxing Aoheng import and Export Co., Ltd

Address before: 710065 No. 86 Leading Times Square (Block B), No. 2, Building No. 1, Unit 22, Room 12202, No. 51, High-tech Road, Xi'an High-tech Zone, Shaanxi Province

Applicant before: Xi'an Cresun Innovation Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: B07-01-21, 7th floor, block B, No. 705, Asia Pacific Road, Daqiao Town, Nanhu District, Jiaxing City, Zhejiang Province

Patentee after: Jiaxing aoteng Electronic Technology Co., Ltd

Address before: B07-01-21, 7th floor, block B, No. 705, Asia Pacific Road, Daqiao Town, Nanhu District, Jiaxing City, Zhejiang Province

Patentee before: Jiaxing Aoheng import and Export Co., Ltd

CP01 Change in the name or title of a patent holder