CN106783215A - 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用 - Google Patents

一种石墨烯/二硫化钼复合纤维电极的制备方法及应用 Download PDF

Info

Publication number
CN106783215A
CN106783215A CN201611205139.5A CN201611205139A CN106783215A CN 106783215 A CN106783215 A CN 106783215A CN 201611205139 A CN201611205139 A CN 201611205139A CN 106783215 A CN106783215 A CN 106783215A
Authority
CN
China
Prior art keywords
graphene
molybdenum bisuphide
composite fibre
bisuphide composite
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611205139.5A
Other languages
English (en)
Other versions
CN106783215B (zh
Inventor
王兵杰
武青青
吴景霞
袁璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningguo Longsheng Flexible Energy Storage Materials Technology Co Ltd
Original Assignee
Ningguo Longsheng Flexible Energy Storage Materials Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningguo Longsheng Flexible Energy Storage Materials Technology Co Ltd filed Critical Ningguo Longsheng Flexible Energy Storage Materials Technology Co Ltd
Priority to CN201611205139.5A priority Critical patent/CN106783215B/zh
Publication of CN106783215A publication Critical patent/CN106783215A/zh
Application granted granted Critical
Publication of CN106783215B publication Critical patent/CN106783215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种石墨烯/二硫化钼复合纤维电极的制备方法及应用,涉及柔性储能及可穿戴器件技术领域,利用氧化石墨烯水溶液和硫钼酸铵水溶液制备前驱体溶液,并经中空管反应器反应制得含水的石墨烯/二硫化钼复合纤维,最后经失水收缩得到干燥的石墨烯/二硫化钼复合纤维电极。本发明所制石墨烯/二硫化钼复合纳米纤维具有纳米插层结构,可以有效地将石墨烯的高电导率和二硫化钼的高容量相结合起来,显著提高纤维状储能器件的容量,在柔性储能领域有很好的应用前景。

Description

一种石墨烯/二硫化钼复合纤维电极的制备方法及应用
技术领域:
本发明涉及柔性储能及可穿戴器件技术领域,具体涉及一种石墨烯/二硫化钼复合纤维电极的制备方法及应用。
背景技术:
新型纤维状储能器件,包括纤维超级电容器和纤维状锂离子电池,作为柔性储能器件的重要组成部分,对可穿戴设备的发展有着重要的影响。与传统的平面或者块状储能器件相比,纤维状储能器件可以实现弯曲、拉伸甚至三维扭曲等较大变形,并且易于集成,能通过成熟的纺织技术,形成具有良好柔性和高通透性的储能织物,能够有效满足可穿戴设备的发展需要。虽然纤维状储能器件受到了学术界和工业界的广泛关注,也取得了重要进展,但目前制备的纤维状储能器件的性能尚无法满足实际生产需要,而其性能提高的关键是可控合成具有更高电化学性能的纤维电极。
石墨烯与二硫化钼作为近几年出现的二维层状纳米材料,显示出了很高的电化学性能和力学性能,可以广泛作为超级电容器和锂离子电池的电极活性材料。利用石墨烯构筑纤维的技术,已经有研究人员进行了报道,并且也有研究人员通过溶液纺丝或者干法纺丝将赝电容活性物质添加到石墨烯纤维电极中,从而试图提高纤维电极的电化学储能性能。但已有的石墨烯复合纤维电极制备技术制备方法较为复杂,最重要的是纤维中活性物质含量的提高会严重降低纤维电极的机械强度。因此,开发简单快速制备高活性物质含量的纤维电极是提高纤维状储能器件容量的重要思路。
发明内容:
本发明所要解决的技术问题在于提供一种制备简便、能显著提高纤维状储能器件容量的石墨烯/二硫化钼复合纤维电极的制备方法及应用。
本发明所要解决的技术问题采用以下的技术方案来实现:
一种石墨烯/二硫化钼复合纤维电极的制备方法,具体步骤如下:
(1)利用化学氧化剥离石墨法制备得到氧化石墨烯水溶液;
(2)将聚乙烯吡咯烷酮溶解到水溶液中,然后加入硫钼酸铵,混合液超声0.5-3h、搅拌6-24h得到硫钼酸铵水溶液;
(3)将步骤(1)得到的氧化石墨烯水溶液与步骤(2)得到的硫钼酸铵水溶液按照一定比例进行混合,搅拌2-12h得到混合均匀的前驱体溶液,并通过加热搅拌挥发的方法对前驱体溶液进行浓缩;
(4)将步骤(3)得到的前驱体溶液注入到内径0.1-5mm的中空管反应器中,并将中空管反应器两端封口,加热中空管反应器使其在160-280℃反应2-14h,得到含水的石墨烯/二硫化钼复合纤维;
(5)将步骤(4)得到的含水石墨烯/二硫化钼复合纤维在20-80℃干燥3-24h,含水石墨烯/二硫化钼复合纤维失水收缩,得到干燥的石墨烯/二硫化钼复合纤维电极。
所述步骤(1)中氧化石墨烯水溶液的浓度为1-20mg/mL,pH值为3-11;氧化石墨烯的片层大小为200nm-50μm,层数为1-100层。
所述步骤(2)中聚乙烯吡咯烷酮的分子量为10000-1000000,聚乙烯吡咯烷酮溶于水的浓度为0.1-1.0mg/ml;硫钼酸铵的浓度为0.5-5mg/ml。
所述步骤(3)中氧化石墨烯水溶液与硫钼酸铵水溶液的体积比为1-5:1-5;前驱体溶液经过加热浓缩后,溶液体积是原前驱体溶液体积的10-90%。
所述步骤(4)中中空管反应器的材质包括聚四氟乙烯中空管、聚酰亚胺中空管、聚碳酸酯中空管、玻璃中空管、二氧化硅中空管、石英中空管、不锈钢中空管、铜中空管。
所述步骤(4)中石墨烯/二硫化钼复合纤维中二硫化钼的质量分数为0.1-50wt%;石墨烯/二硫化钼复合纤维的直径为10-400μm。
所述石墨烯/二硫化钼复合纤维在制备纤维状超级电容器中的应用,选取两根石墨烯/二硫化钼复合纤维作为纤维电极,分别在纤维表面涂覆一层聚合物凝胶电解质,将两根纤维电极平行排列或缠绕后,即制得纤维状的超级电容器。
所述石墨烯/二硫化钼复合纤维在制备纤维状锂离子电池中的应用,选取石墨烯/二硫化钼复合纤维作为锂离子电池正极与锂丝负极配对,正负极中间放置锂离子电池隔膜,然后将其密封在热缩管中,最后将锂离子电池电解质注入到热缩管中,即制得纤维状锂离子电池。
本发明的有益效果是:
(1)本发明石墨烯/二硫化钼复合纳米纤维具有纳米插层结构,可以有效地将石墨烯的高电导率和二硫化钼的高容量相结合起来,显著提高纤维状储能器件的容量,在柔性储能领域有很好的应用前景;
(2)本发明复合纤维电极中二硫化钼含量达到33wt%时,用其制备的纤维状超级电容器在0.1A/cm-3的电流下,比容量可以达到364F/cm-3;用其制备的纤维状锂离子电池的能量密度达到1220mAh/g;
(3)本发明基于石墨烯/二硫化钼复合纤维电极的纤维状超级电容器和锂离子电池是柔性可编织的。
附图说明:
图1为石墨烯/二硫化钼复合纤维的制备过程示意图;
图2为石墨烯/二硫化钼复合纤维的结构示意图;
图3为石墨烯/二硫化钼复合纤维截面的透射电镜照片(a-c)及石墨烯表面生长不同质量分数二硫化钼杂化结构的透射电镜照片;
图4为石墨烯纤维及石墨烯/二硫化钼复合纤维截面的扫描电镜照片(a,b)及石墨烯/二硫化钼复合纤维的密度和力学强度随复合纤维中二硫化钼质量分数的变化(c,d)。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
石墨烯/二硫化钼复合纤维电极的制备:
首先利用化学氧化剥离法制备得到2g/L氧化石墨烯水溶液5L。称取2.5g聚乙烯吡咯烷酮(分子量为20000),加入到5L水中并搅拌溶解1h。随后在水溶液中加入10g硫钼酸铵,超声处理1h后再搅拌5h,得到硫钼酸铵水溶液。将5L氧化石墨烯水溶液与5L硫钼酸铵水溶液混合并搅拌2h得到均匀的前驱体溶液共10L。在80℃搅拌加热将10L前驱体溶液浓缩至2.5L,随后将前驱体溶液注入到直径0.5mm的聚四氟乙烯中空管中,并将中空管反应器两端封住。将封好的聚四氟乙烯管在220℃下加热反应6h,得到含水的石墨烯/二硫化钼复合纤维。最后将复合纤维在空气中40℃干燥12h得到石墨烯/二硫化钼复合纤维电极。
纤维状超级电容器制备:
将两根石墨烯/二硫化钼复合纤维电极表面涂覆一层磷酸/聚乙烯醇凝胶电解质,随后将两根纤维平行排列或卷绕成纤维状超级电容器。
纤维状锂离子电池的制备:
石墨烯/二硫化钼复合纤维被用作正极材料与锂丝负极配对。正负极间放置聚乙烯电池隔膜,将正负极平行排列或卷绕后密封于热缩管中,最后加入六氟磷酸锂电解液后将热缩管两端密封即得到纤维状锂离子电池。纤维状锂离子电池的组装过程是在无水无氧环境中进行的。
实施例2
石墨烯/二硫化钼复合纤维电极的制备:
首先利用化学氧化剥离法制备得到1g/L氧化石墨烯水溶液5L。称取3g的聚乙烯吡咯烷酮(分子量为40000),加入到5L水中并搅拌溶解1h。随后在水溶液中加入20g硫钼酸铵,超声处理1h后再搅拌5h,得到硫钼酸铵水溶液。将5L氧化石墨烯水溶液与5L硫钼酸铵水溶液混合并搅拌2h得到均匀的前驱体溶液共10L。在80℃搅拌加热将10L前驱体溶液浓缩至5L,随后将前驱体溶液注入到直径1.0mm的聚四氟乙烯中空管中,并将中空管反应器两端封住。将封好的聚四氟乙烯管在200℃下加热反应8h,得到含水的石墨烯/二硫化钼复合纤维。最后将纤维在空气中60℃干燥12h得到石墨烯/二硫化钼复合纤维电极。
纤维状超级电容器的制备:将两根石墨烯/二硫化钼复合纤维电极表面涂覆一层硫酸/聚乙烯醇凝胶电解质,随后将两根纤维平行排列或卷绕成纤维状超级电容器。
纤维状锂离子电池的制备:
石墨烯/二硫化钼复合纤维被用作正极材料与锂丝负极配对。正负极间放置聚丙烯电池隔膜,将正负极平行排列或卷绕后密封于热缩管中,最后加入六氟磷酸锂电解液后将热缩管两端密封得到纤维状锂离子电池。纤维状锂离子电池的组装过程是在无水无氧环境中进行的。
实施例3
石墨烯/二硫化钼复合纤维电极的制备:
首先利用化学氧化剥离法制备得到4g/L氧化石墨烯水溶液5L。称取1g的聚乙烯吡咯烷酮(分子量为50000),加入到5L水中并搅拌溶解1h。随后在水溶液中加入5g硫钼酸铵,超声处理1h后再搅拌5h,得到硫钼酸铵的水溶液。将5L氧化石墨烯水溶液与5L硫钼酸铵水溶液混合并搅拌2h得到均匀的前驱体溶液共10L。在90℃搅拌加热将10L前驱体溶液浓缩至4L,随后将前驱体溶液注入到直径0.2mm的聚四氟乙烯中空管中,并将中空管反应器两端封住。将封好的聚四氟乙烯管在240℃下加热反应12h,得到含水的石墨烯/二硫化钼复合纤维。最后将纤维在空气中80℃干燥12h得到石墨烯/二硫化钼复合纤维电极。
纤维状超级电容器和纤维状锂离子电池的制备。将两根石墨烯/二硫化钼复合纤维电极表面涂覆一层氢氧化钾/聚乙烯醇凝胶电解质,随后将两根纤维平行排列或卷绕成纤维状超级电容器。对于纤维状锂离子电池的制备,石墨烯/二硫化钼复合纤维被用作正极材料与锂丝负极配对。正负极间放置无纺布电池隔膜,将正负极平行排列或卷绕后密封于热缩管中,最后加入六氟磷酸锂电解液后将热缩管两端密封得到纤维状锂离子电池。纤维状锂离子电池的组装过程是在无水无氧环境中进行的。
如图2所示,本发明步骤(4)在水热反应过程中氧化石墨烯被热还原成石墨烯,同时由于石墨烯具有高的表面能,二硫化钼纳米片易于生长在石墨烯片层的外表面,然后石墨烯片层再组装成纤维,形成了特殊的纳米插层结构。
图3a-c显示了二硫化钼质量含量为17.04wt%的石墨烯/二硫化钼复合纤维的横截面透射电镜(TEM)照片。从图中可以看出二硫化钼片层均匀的分布于石墨烯片层中间,石墨烯片层不仅可以作为载体提供二硫化钼的附生生长,同时石墨烯片层结构还可以提供导电网络并阻止二硫化钼的团聚,高分辨TEM显示二硫化钼片层的间距约为0.62nm(图3c)。
如图3d-f所示,二硫化钼片层在石墨烯片层表面附生生长,而且随着二硫化钼含量的增加可以看到石墨烯表面的二硫化钼也变的越来越多。如图3d中插图所示的选区电子衍射图样显示多晶二硫化钼在单晶石墨烯表面附生生长。
本发明制备的石墨烯/二硫化钼复合纤维电极具有独特的纳米插层结构,与纯石墨烯纤维相比(图4a),石墨烯/二硫化钼复合纤维的结构更为紧密(图4b),具体表现为复合纤维的堆积密度随着二硫化钼含量的增加而上升(图4c),从而最终提高复合纤维的力学性能。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于,具体步骤如下:
(1)利用化学氧化剥离石墨法制备得到氧化石墨烯水溶液;
(2)将聚乙烯吡咯烷酮溶解到水溶液中,然后加入硫钼酸铵,混合液超声0.5-3h、搅拌6-24h得到硫钼酸铵水溶液;
(3)将步骤(1)得到的氧化石墨烯水溶液与步骤(2)得到的硫钼酸铵水溶液按照一定比例进行混合,搅拌2-12h得到混合均匀的前驱体溶液,并通过加热搅拌挥发的方法对前驱体溶液进行浓缩;
(4)将步骤(3)得到的前驱体溶液注入到内径0.1-5mm的中空管反应器中,并将中空管反应器两端封口,加热中空管反应器使其在160-280℃反应2-14h,得到含水的石墨烯/二硫化钼复合纤维;
(5)将步骤(4)得到的含水石墨烯/二硫化钼复合纤维在20-80℃干燥3-24h,含水石墨烯/二硫化钼复合纤维失水收缩,得到干燥的石墨烯/二硫化钼复合纤维电极。
2.根据权利要求1所述的石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于:所述步骤(1)中氧化石墨烯水溶液的浓度为1-20mg/mL,pH值为3-11;氧化石墨烯的片层大小为200nm-50μm,层数为1-100层。
3.根据权利要求1所述的石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于:所述步骤(2)中聚乙烯吡咯烷酮的分子量为10000-1000000,聚乙烯吡咯烷酮溶于水的浓度为0.1-1.0mg/ml;硫钼酸铵的浓度为0.5-5mg/ml。
4.根据权利要求1所述的石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于:所述步骤(3)中氧化石墨烯水溶液与硫钼酸铵水溶液的体积比为1-5:1-5;前驱体溶液经过加热浓缩后,溶液体积是原前驱体溶液体积的10-90%。
5.根据权利要求1所述的石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于:所述步骤(4)中中空管反应器的材质包括聚四氟乙烯中空管、聚酰亚胺中空管、聚碳酸酯中空管、玻璃中空管、二氧化硅中空管、石英中空管、不锈钢中空管、铜中空管。
6.根据权利要求1所述的石墨烯/二硫化钼复合纤维电极的制备方法,其特征在于:所述步骤(4)中石墨烯/二硫化钼复合纤维中二硫化钼的质量分数为0.1-50wt%;石墨烯/二硫化钼复合纤维的直径为10-400μm。
7.如权利要求1所述石墨烯/二硫化钼复合纤维在制备纤维状超级电容器中的应用,其特征在于:选取两根石墨烯/二硫化钼复合纤维作为纤维电极,分别在纤维表面涂覆一层聚合物凝胶电解质,将两根纤维电极平行排列或缠绕后,即制得纤维状的超级电容器。
8.如权利要求1所述石墨烯/二硫化钼复合纤维在制备纤维状锂离子电池中的应用,其特征在于:选取石墨烯/二硫化钼复合纤维作为锂离子电池正极与锂丝负极配对,正负极中间放置锂离子电池隔膜,然后将其密封在热缩管中,最后将锂离子电池电解质注入到热缩管中,即制得纤维状锂离子电池。
CN201611205139.5A 2016-12-23 2016-12-23 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用 Active CN106783215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611205139.5A CN106783215B (zh) 2016-12-23 2016-12-23 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611205139.5A CN106783215B (zh) 2016-12-23 2016-12-23 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN106783215A true CN106783215A (zh) 2017-05-31
CN106783215B CN106783215B (zh) 2019-02-12

Family

ID=58918889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611205139.5A Active CN106783215B (zh) 2016-12-23 2016-12-23 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106783215B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766782A (zh) * 2018-06-13 2018-11-06 常熟理工学院 一种纤维/石墨烯/硫化钼柔性电极材料的制备方法
CN111276694A (zh) * 2020-01-30 2020-06-12 吉林师范大学 一种聚酰亚胺衍生碳/二硫化钼负极材料的制备方法及其在钾离子电池中的应用
CN111446423A (zh) * 2020-04-24 2020-07-24 深圳市海盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN114121497B (zh) * 2021-11-12 2023-08-22 东莞理工学院 一种双碳耦合MoO2电极材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000887A (zh) * 2012-11-06 2013-03-27 苏州懿源宏达知识产权代理有限公司 一种离子电池石墨硫化钼纳米复合负极材料的制备方法
CN104036971A (zh) * 2014-05-29 2014-09-10 浙江大学 一种石墨烯/碳纳米管复合纤维基超级电容器的制备方法
CN105047927A (zh) * 2015-08-21 2015-11-11 复旦大学 一种基于取向碳纳米管/二硫化钼复合纤维及其制备方法和应用
CN105088416A (zh) * 2015-07-10 2015-11-25 中国工程物理研究院化工材料研究所 石墨烯基空心纤维及其制备方法
US20160181596A1 (en) * 2013-08-05 2016-06-23 Kansas State University Research Foundation ROBUST MoS2/GRAPHENE COMPOSITE ELECTRODES FOR NA+ BATTERY APPLICATIONS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000887A (zh) * 2012-11-06 2013-03-27 苏州懿源宏达知识产权代理有限公司 一种离子电池石墨硫化钼纳米复合负极材料的制备方法
US20160181596A1 (en) * 2013-08-05 2016-06-23 Kansas State University Research Foundation ROBUST MoS2/GRAPHENE COMPOSITE ELECTRODES FOR NA+ BATTERY APPLICATIONS
CN104036971A (zh) * 2014-05-29 2014-09-10 浙江大学 一种石墨烯/碳纳米管复合纤维基超级电容器的制备方法
CN105088416A (zh) * 2015-07-10 2015-11-25 中国工程物理研究院化工材料研究所 石墨烯基空心纤维及其制备方法
CN105047927A (zh) * 2015-08-21 2015-11-11 复旦大学 一种基于取向碳纳米管/二硫化钼复合纤维及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766782A (zh) * 2018-06-13 2018-11-06 常熟理工学院 一种纤维/石墨烯/硫化钼柔性电极材料的制备方法
CN111276694A (zh) * 2020-01-30 2020-06-12 吉林师范大学 一种聚酰亚胺衍生碳/二硫化钼负极材料的制备方法及其在钾离子电池中的应用
CN111446423A (zh) * 2020-04-24 2020-07-24 深圳市海盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN111446423B (zh) * 2020-04-24 2022-02-22 贵州嘉盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN114121497B (zh) * 2021-11-12 2023-08-22 东莞理工学院 一种双碳耦合MoO2电极材料及其制备方法与应用

Also Published As

Publication number Publication date
CN106783215B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances and challenges of electrode materials for flexible supercapacitors
Lv et al. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes
Hu et al. Silicon-conductive nanopaper for Li-ion batteries
CN107919233B (zh) 一种高电压柔性固态超级电容器及其制备方法
CN106783215B (zh) 一种石墨烯/二硫化钼复合纤维电极的制备方法及应用
CN102619128B (zh) 含石墨烯的多功能复合纸及其制备方法和应用
CN106340395A (zh) 一种纤维状复合电极材料及其制备方法
CN104790067A (zh) 纳米导电高分子/石墨烯复合纤维及其制备方法和应用
CN108878808A (zh) 一种静电纺丝与水热法结合制备柔性MoS2/CNFs钠离子电池负极材料的方法及产品
CN106450245B (zh) 一种柔性可充放电锂硫电池正极材料及其制备方法
Ji et al. All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte
CN110459755A (zh) 一种硫/聚吡咯/石墨烯/碳纳米管复合薄膜、制备方法及其应用
CN109244459A (zh) 一种共掺杂柔性钠离子电池正极材料及其制备方法
CN104701517A (zh) 一种锂离子电池用nh4v3o8正极材料制备方法
CN104916453A (zh) 一种同轴石墨烯纤维超级电容器及其制备方法
CN109659521A (zh) 一种高性能钠离子电池五氧化二钒/石墨烯复合正极材料的制备方法
CN110391398A (zh) 黑磷/还原氧化石墨烯复合电极及其制备方法以及包括该复合电极的柔性锂离子电池
Yuan et al. Preparation of cellulose-based carbon nanofibers/NiCo2S4 composites for high-performance all-solid-state symmetric supercapacitors
Liu et al. LiV3O8 nanowires with excellent stability for aqueous rechargeable lithium batteries
Cao et al. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries
CN109607521A (zh) 一种掺杂石墨烯材料及其制备方法和应用
CN104466110A (zh) 一种高性能锂离子电池负极材料的制备方法
Zhang et al. Turning industrial waste-flax noil into regenerated cellulose fiber electrodes for eco-friendly supercapacitors
Liu et al. Preparation of high-performance graphene materials by adjusting internal micro-channels using a combined electrospray/electrospinning technique
CN110526299A (zh) 一种核壳结构Fe2O3@PPy复合材料的制备方法及其在超级电容器中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant