CN106782968B - 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法 - Google Patents

一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法 Download PDF

Info

Publication number
CN106782968B
CN106782968B CN201710025763.5A CN201710025763A CN106782968B CN 106782968 B CN106782968 B CN 106782968B CN 201710025763 A CN201710025763 A CN 201710025763A CN 106782968 B CN106782968 B CN 106782968B
Authority
CN
China
Prior art keywords
hydride
alloy
preparation
refrigerating material
magnetic refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710025763.5A
Other languages
English (en)
Other versions
CN106782968A (zh
Inventor
田娜
杨南南
游才印
马丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710025763.5A priority Critical patent/CN106782968B/zh
Publication of CN106782968A publication Critical patent/CN106782968A/zh
Application granted granted Critical
Publication of CN106782968B publication Critical patent/CN106782968B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,选择分解温度低于La(Fe,Si)13合金分解温度的固态氢化物,将其与La(Fe,Si)13合金分别进行球磨破碎细化;将细化的两种粉末混匀,并加压成型为块体材料;对成型的块体材料进行真空封管,然后置于加热炉中进行热处理,热处理温度处于固态氢化物分解温度和La(Fe,Si)13合金分解温度之间,即得。本发明方法实现了固态渗氢,能成功提高La(Fe,Si)13的居里温度,同时还能保持巨磁热效应,相比气体渗氢,操作简单且安全隐患低。

Description

一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法
技术领域
本发明属于磁制冷材料技术领域,具体涉及一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法。
背景技术
相比于传统的气体压缩制冷技术,磁制冷技术具有环保、高效及节能等特点,在当今环境问题日益严重的背景下,磁制冷技术的应用需求更加迫切,磁制冷技术在低温领域已经得到广泛应用。磁制冷技术的关键为磁制冷材料,其中La(Fe,Si)13因具有巨磁热效应,原料便宜等特点得到研究人员的关注,但其自身的居里温度偏低、力学性能差等,限制了其实际应用。
针对La(Fe,Si)13居里温度偏低的缺点,研究人员主要采用元素掺杂、元素替代、气体渗氢等处理方法对其进行改善,其中效果显著的是气体渗氢法,通过这种方法能使H原子进入La(Fe,Si)13晶格间隙,改变了Fe-Fe键距离,影响了Fe-Fe交换作用,将La(Fe,Si)13的居里温度提高到了室温附近,同时还能保持巨磁热效应,说明渗氢对对磁制冷技术在室温附近的应用有积极作用。但由于气体渗氢同时受到温度和压力两个因素的共同作用,操作相对复杂且存在一定安全隐患,因此有必要发明一种安全简单的渗氢方法。
发明内容
本发明的目的是提供一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,解决了现有气体渗氢操作复杂的问题。
本发明所采用的技术方案是,一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,包括以下步骤:
步骤1,选择分解温度低于La(Fe,Si)13合金分解温度的固态氢化物,将其与La(Fe,Si)13合金分别进行球磨破碎细化;
步骤2,将细化的两种粉末混匀,并加压成型为块体材料;
步骤3,将成型的块体材料进行真空封管;
步骤4,将块体材料置于加热炉中进行热处理,热处理温度处于固态氢化物分解温度和La(Fe,Si)13合金分解温度之间,得到所述La(Fe,Si)13Hx氢化物磁制冷材料。
本发明的特点还在于:
优选地,本发明的La(Fe,Si)13合金为LaFe11.65Si1.35合金或LaFe11.5Si1.5合金,固态氢化物为金属氢化物YH2
进一步,步骤2中固态氢化物质量占混合粉末总质量的5%~20%。
进一步,步骤1中对固态氢化物进行球磨时,加入C粉共同进行球磨,C 粉质量占固态氢化物和C粉总质量的0.5~1%。
进一步,步骤1中球磨破碎细化至固态氢化物和La(Fe,Si)13合金的颗粒尺寸均保持在30μm~110μm。
进一步,步骤2中加压成型的压强不低于500MPa下,保压不少于1min。
进一步,步骤4中热处理温度为813~873K。
进一步,步骤4中热处理的保温时间为10-20min。
本发明的制备方法利用了固态氢化物在一定温度分解的特性,将固态氢化物和磁制冷材料在一定温度进行热处理制备La(Fe,Si)13Hx,从而实现固态渗氢。添加的固态氢化物在高于其分解温度对其进行热处理的过程中会放出H 原子,提供间隙H原子;同时未分解的部分或是分解剩余的部分在冷压成型的情况下,存在改善其力学性能的可能。换言之,破碎颗粒减少磁滞热滞,固体渗氢法达到减少磁滞热滞,提高居里温度的同时改善抗压强度的效果。另外,气体渗氢法是温度和氢压的共同作用,而固体渗氢法仅是温度的单独作用,其在提高相同的居里温度,固体渗氢法的样品稳定性更好。
本发明的有益效果是,本发明实现固态渗氢仅是温度的单独作用,能成功提高La(Fe,Si)13的居里温度,同时还能保持巨磁热效应,相比气体渗氢,操作简单且安全隐患低,这对促进磁制冷技术在高温区的应用有重要意义。
附图说明
图1是本发明制备的La(Fe,Si)13+YH2的XRD图谱。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明,但本发明并不限于这些实施方式。
本发明的La(Fe,Si)13Hx(x>0)氢化物磁制冷材料的制备方法如下:
步骤1,选择La(Fe,Si)13合金和固态氢化物,本发明的La(Fe,Si)13合金是 Fe、Si按一定配比变化的系列磁制冷合金,固态氢化物的选择遵循其分解温度低于La(Fe,Si)13相的开始分解温度973K的原则,其可以为金属氢化物,如 YH2或其他满足条件的金属氢化物。
步骤2,对选择的La(Fe,Si)13合金和固态氢化物分别进行球磨破碎细化,使二者颗粒尺寸均保持在30μm~110μm。
步骤3,将细化的两种粉末按固态氢化物质量占比5%~20%的比例混匀,加压不低于500MPa冷压成型,保压不少于1min。
步骤4,将成型的块体材料进行真空封管,真空度为不低于3×10-2Pa。
步骤5,将块体材料置于加热炉中进行热处理,热处理温度处于固态氢化物分解温度和La(Fe,Si)13合金分解温度之间,保温时间为10-20min,得到本发明的La(Fe,Si)13Hx氢化物磁制冷材料。
下面以具体实施例进行详细说明。
实施例1
材料:LaFe11.65Si1.35合金,分解温度为783K的金属氢化物YH2
采用球磨法对LaFe11.65Si1.35合金和金属氢化物YH2进行破碎细化,使二者颗粒尺寸保持在30μm~110μm。将细化的LaFe11.65Si1.35合金粉末和金属氢化物YH2粉末按9:1(YH2占比10%)的比例混匀,加压500MPa成型,保压 1min。将成型的块体材料进行真空封管,真空度为3×10-3Pa。最后将封管后的块体材料置于加热炉里,在813K下进行热处理,保温20min,得到 LaFe11.65Si1.35Hx贮氢合金。
实施例2
材料:LaFe11.65Si1.35合金,分解温度为783K的金属氢化物YH2,C粉。
采用球磨法对LaFe11.65Si1.35合金进行球磨,使其颗粒尺寸保持在 30μm~110μm。对金属氢化物YH2和C粉的混合粉末(C粉质量占YH2+C混合粉质量的0.9%)进行球磨,使其颗粒尺寸保持在30μm~110μm,加入C粉的原因是其能够降低YH2的分解温度,降低后续加氢能耗。以LaFe11.65Si1.35合金粉末和混合粉末中YH2的质量比为9:1(YH2占比10%)的比例,将合金粉末和YH2、C粉的混合粉末混匀,再加压600MPa成型,保压2min。将成型的块体材料进行真空封管,真空度不低于3×10-2Pa。最后将封管后的块体材料置于加热炉里,在813K下进行热处理,保温20min,得到LaFe11.65Si1.35Hx
实施例3
材料:LaFe11.65Si1.35合金,分解温度为783K的金属氢化物YH2,C粉。
采用球磨法对LaFe11.65Si1.35合金进行球磨,使其颗粒尺寸保持在 30μm~110μm。对金属氢化物YH2和C粉的混合粉末(C粉质量占YH2+C混合粉质量的0.9%)进行球磨,使其颗粒尺寸保持在30μm~110μm,加入C粉的原因是其能够降低YH2的分解温度,降低后续加氢能耗。以LaFe11.65Si1.35合金粉末和混合粉末中YH2的质量比为6:1(YH2占比14%)的比例,将合金粉末和YH2、C粉的混合粉末混匀,再加压600MPa成型,保压2min。将成型的块体材料进行真空封管,真空度为不低于3×10-2Pa。最后将封管后的块体材料置于加热炉里,在813K下进行热处理,保温20min,得到LaFe11.65Si1.35Hx
实施例4
材料:LaFe11.5Si1.5合金,分解温度为783K的金属氢化物YH2
采用球磨法对LaFe11.5Si1.5合金和金属氢化物YH2进行破碎细化,使二者颗粒尺寸保持在30μm~110μm。将细化的LaFe11.5Si1.5合金粉末和金属氢化物 YH2粉末按4:1(YH2占比20%)的比例混匀,加压800MPa成型,保压1min。将成型的块体材料进行真空封管,真空度为3×10-3Pa。最后将封管后的块体材料置于加热炉里,在900K下进行热处理,保温10min,得到LaFe11.5Si1.5Hx贮氢合金。
实施例5
材料:LaFe11.5Si1.5合金,分解温度为783K的金属氢化物YH2
采用球磨法对LaFe11.5Si1.5合金和金属氢化物YH2进行破碎细化,使二者颗粒尺寸保持在30μm~110μm。将细化的LaFe11.5Si1.5合金粉末和金属氢化物 YH2粉末按19:1(YH2占比5%)的比例混匀,加压1100MPa成型,保压1min。将成型的块体材料进行真空封管,真空度为3×10-3Pa。最后将封管后的块体材料置于加热炉里,在920K下进行热处理,保温10min,得到LaFe11.5Si1.5Hx贮氢合金。
以LaFe11.65Si1.35Hx为例,对本发明制备的La(Fe,Si)13Hx氢化物磁制冷材料进行X射线衍射分析实验,结果如图1所示,可以明显看到1:13相衍射峰会向左偏移,由布拉格方程2dsinθ=nλ可知晶格常数增大,氢化物YH2分解后H 原子进入LaFe11.65Si1.35晶格间隙,引起晶格膨胀,说明H原子成功的进入 La(Fe,Si)13晶格间隙。
为了证明本发明制备的La(Fe,Si)13Hx氢化物磁制冷材料的居里温度得到了改善,以实施例1作为实验组,通过引入金属氢化物YH2实现在La(Fe,Si)13合金中渗氢的目的,并以未加氢的La(Fe,Si)13合金(LFS)作为对比例,比较二者的居里温度(Tc)和磁热性能。同时比较实施例1分别在813K、843K、 873K下进行热处理的磁制冷材料居里温度和磁热性能的变化。结果见表1。
表1La(Fe,Si)13+YH2合金居里温度和磁热性能
由表1可知,与LaFe11.65Si1.35合金相比,实施例1固态渗氢法制备的 La(Fe,Si)13Hx氢化物的居里温度提高了30K左右,磁滞减小。说明了氢的渗入有利于提高磁制冷材料的居里温度同时不牺牲其制冷性能。同时,由不同热处理温度下本发明La(Fe,Si)13Hx氢化物的性能变化可知,固态渗氢法中热处理温度为843K时,性能改善最理想。
以实施例2作为实验组,通过引入金属氢化物YH2和C粉,实现在 La(Fe,Si)13合金中渗氢的目的,并以未加氢的La(Fe,Si)13合金(LFS)作为对比例,比较二者的居里温度(Tc)和磁热性能。同时比较实施例2分别在813K、 843K、873K下进行热处理的磁制冷材料居里温度和磁热性能的变化。结果见表2。
表2La(Fe,Si)13+YH2-C(9:1)合金居里温度和磁热性能
由表2可知,与La(Fe,Si)13合金相比,实施例2固态渗氢法制备的 La(Fe,Si)13Hx氢化物的居里温度提高了70K左右,磁滞明显下降,说明了C 的掺杂促进了氢化物YH2的分解对提高磁制冷材料的居里温度作用更加明显。同时,由不同热处理温度下本发明La(Fe,Si)13Hx氢化物的性能变化可知,固态渗氢法中热处理温度为873K时,性能改善最理想。
以实施例3作为实验组,通过调整YH2和C粉的比例为6:1,实现在 La(Fe,Si)13合金中渗氢的目的,并以未加氢的La(Fe,Si)13合金(LFS)作为对比例,比较二者的居里温度(Tc)和磁热性能。同时比较实施例3不同温度热处理后磁制冷材料居里温度和磁热性能的变化。结果见表3。
表3La(Fe,Si)13+YH2-C(6:1)合金居里温度和磁热性能
由表3可知,与La(Fe,Si)13合金相比,实施例3固态渗氢法制备的 La(Fe,Si)13Hx氢化物的居里温度提高了100K左右,磁滞明显下降,说明了C 的掺杂量的增多促进了氢化物YH2的分解对提高磁制冷材料的居里温度作用更加明显。同时,由不同热处理温度下本发明La(Fe,Si)13Hx氢化物的性能变化可知,固态渗氢法中热处理温度为873K时,性能改善最理想。
可见,本发明实现了固态渗氢,能成功提高La(Fe,Si)13的居里温度,同时还能保持巨磁热效应,相比气体渗氢,操作简单且安全隐患低。

Claims (8)

1.一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,包括以下步骤:
步骤1,选择分解温度低于La(Fe,Si)13合金分解温度的固态氢化物,将其与La(Fe,Si)13合金分别进行球磨破碎细化;
步骤2,将细化的两种粉末混匀,并加压成型为块体材料;
步骤3,将成型的块体材料进行真空封管;
步骤4,将块体材料置于加热炉中进行热处理,热处理温度处于固态氢化物分解温度和La(Fe,Si)13合金分解温度之间,得到所述La(Fe,Si)13Hx氢化物磁制冷材料。
2.根据权利要求1所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤1所述La(Fe,Si)13合金为LaFe11.65Si1.35合金或LaFe11.5Si1.5合金,所述固态氢化物为金属氢化物YH2
3.根据权利要求1所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤2所述固态氢化物质量占混合粉末总质量的5%~20%。
4.根据权利要求2所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤1所述固态氢化物进行球磨时,加入C粉共同进行球磨,C粉质量占固态氢化物和C粉总质量的0.5~1%。
5.根据权利要求2所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤1所述球磨破碎细化至固态氢化物和La(Fe,Si)13合金的颗粒尺寸均保持在30μm~110μm。
6.根据权利要求2所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤2所述加压成型的压强不低于500MPa,保压不少于1min。
7.根据权利要求2所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤4所述热处理温度为813~873K。
8.根据权利要求2所述的La(Fe,Si)13Hx氢化物磁制冷材料的制备方法,其特征在于,步骤4所述热处理的保温时间为10-20min。
CN201710025763.5A 2017-01-13 2017-01-13 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法 Expired - Fee Related CN106782968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710025763.5A CN106782968B (zh) 2017-01-13 2017-01-13 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710025763.5A CN106782968B (zh) 2017-01-13 2017-01-13 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法

Publications (2)

Publication Number Publication Date
CN106782968A CN106782968A (zh) 2017-05-31
CN106782968B true CN106782968B (zh) 2018-08-03

Family

ID=58945442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710025763.5A Expired - Fee Related CN106782968B (zh) 2017-01-13 2017-01-13 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法

Country Status (1)

Country Link
CN (1) CN106782968B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841293B (zh) * 2017-09-27 2020-07-24 西安理工大学 一种La(Fe,Si)13Hx氢化物磁制冷材料制备和成型一体化的方法
CN114700491B (zh) * 2022-03-29 2023-08-18 华南理工大学 一种基于高温SPS粉末自粘结技术的La-Fe-Si基磁制冷块体材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967572B2 (ja) * 2001-09-21 2007-08-29 株式会社東芝 磁気冷凍材料
CN105621356A (zh) * 2014-10-28 2016-06-01 赵前永 一种金属胺类储氢材料及其制备方法
CN105584989B (zh) * 2016-03-02 2018-01-02 浙江大学 一种非晶镁铝基复合储氢材料及其制备方法

Also Published As

Publication number Publication date
CN106782968A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN104711443B (zh) 一种石墨烯/铜复合材料及其制备方法
CN104550940B (zh) 一种软磁铁氧体包覆金属磁性粉末的方法及其软磁复合材料制备方法
CN104313380B (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN102071346B (zh) 致密、小晶粒尺寸纳米晶WC-Co硬质合金块体材料的制备方法
CN104700961A (zh) 一种石墨烯/银复合材料及其制备方法
CN110331325B (zh) 一种纳米氧化铝增强铜基复合材料及其制备方法
CN109576545B (zh) 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法
CN112222419B (zh) 一种调控形核和生长过程制备纳米钼粉的方法及应用
KR20150051215A (ko) 도전성 마이에나이트형 화합물 분말의 제조방법
CN103924111B (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
CN102251132B (zh) 一种机械化学反应法制备钴基ods合金的方法
CN106782968B (zh) 一种La(Fe,Si)13Hx氢化物磁制冷材料的制备方法
CN109837442B (zh) 金属元素Ti/Cr与硬质相WC原位共掺杂的纳米晶钨铜基复合材料的制备方法
CN110819842A (zh) 基于还原氧化石墨烯和铜复合材料的成型件制备方法
CN104651703A (zh) 一种制备氧化物弥散强化铁基合金的方法
CN109576529B (zh) 高性能弥散铜合金及其制备方法
CN101786163B (zh) 高性能室温磁致冷纳米块体材料的制备方法
Ismail et al. Catalytic effect of SrTiO3 on the dehydrogenation properties of LiAlH4
CN105400982A (zh) 通过氢化钛来制备石墨烯增强钛基纳米复合材料的方法
CN111057899B (zh) 一种石墨烯/碳化硅增强铜基复合材料及其制备方法
Cui et al. Enhanced electromagnetic wave absorption of Fe3O4@ C derived from spindle-like MOF
CN111041318A (zh) 一种钨铜合金及其制备方法
CN109518037A (zh) 一种SPS制备的Ti-18Mo-xSi合金材料及其制备方法
CN103303880A (zh) 真空炉法制备高氮氮化钒生产工艺
CN102690977B (zh) 一种溶液法制备γ′相强化钴基ODS合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180803

Termination date: 20210113

CF01 Termination of patent right due to non-payment of annual fee