CN106750550B - 一种阻燃弹性纳米纤维素气凝胶及其制备方法 - Google Patents

一种阻燃弹性纳米纤维素气凝胶及其制备方法 Download PDF

Info

Publication number
CN106750550B
CN106750550B CN201611166003.8A CN201611166003A CN106750550B CN 106750550 B CN106750550 B CN 106750550B CN 201611166003 A CN201611166003 A CN 201611166003A CN 106750550 B CN106750550 B CN 106750550B
Authority
CN
China
Prior art keywords
cellulose
preparation
nano
fire retardant
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611166003.8A
Other languages
English (en)
Other versions
CN106750550A (zh
Inventor
陈志林
郭丽敏
吕少一
黄景达
傅峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Wood Industry of Chinese Academy of Forestry
Original Assignee
Research Institute of Wood Industry of Chinese Academy of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Wood Industry of Chinese Academy of Forestry filed Critical Research Institute of Wood Industry of Chinese Academy of Forestry
Priority to CN201611166003.8A priority Critical patent/CN106750550B/zh
Publication of CN106750550A publication Critical patent/CN106750550A/zh
Application granted granted Critical
Publication of CN106750550B publication Critical patent/CN106750550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种阻燃弹性纳米纤维素气凝胶,使用纤维素的生物质原料,采用含有反应型有机化合物和多元羧酸这一阻燃体系来制备而成。本发明还公开了其制备方法。和传统的纳米纤维素气凝胶相比,本发明制备的气凝胶具有良好的阻燃性能,并具有良好的回弹性能,极大地提高该材料在保温隔热等领域的应用潜力及使用安全性。

Description

一种阻燃弹性纳米纤维素气凝胶及其制备方法
技术领域
本发明涉及纤维素基功能气凝胶材料领域,特别涉及一种阻燃弹性纳米纤维素气凝胶及其制备方法。
背景技术
纤维素来源广泛,可再生,目前国内外研究人员已开发出从不同生物质材料(如:木材、竹材、海藻等可再生资源)的细胞壁中大规模拆解出中微米、纳米尺度范围的纤维素的绿色化生产方法。由于纳米纤维素具有巨大的表面积和超强的水吸附能力,极少量的纳米纤维素可以吸附大量水分而呈胶体状,在制备气凝胶材料方面具有很大的优势。纳米纤维素气凝胶在具备传统气凝胶特性(低密度、高孔隙率等)的同时融入了自身的优异性能,如柔韧性、良好的生物相容性和可降解性,在重金属吸附、油水分离、药物释放、保温隔热等领域具有潜在的应用前景,以纳米纤维素为原料制备气凝胶已成为世界近几年的重点应用开发领域之一。
然而,天然纳米纤维素基气凝胶仍面临着许多挑战。由于纳米纤维素是一种亲水性的生物高分子,纳米纤维素气凝胶的内部结构主要靠氢键和物理纠缠连接,且密度低,孔隙率高,整体力学强度低(回弹性差);而且其表面存在的大量羟基使其在潮湿环境或水中容易吸水分,导致气凝胶多孔结构的坍塌。同时,由于纳米纤维素尺寸小,比表面积大,表面化学环境更活泼,相对其它生物质材料,更易燃烧,以此为基材制备的气凝胶材料同样具有热稳定性差、高度易燃的特点。以上这些不足导致其应用的通用性受到了限制,例如其在隔热保温领域的应用严重受限。
目前,国内外对纳米纤维素气凝胶型功能材料的研究很多,如疏水材料、油水分离材料、储能材料等,但纳米纤维素基阻燃功能材料研究的相对较少。
发明内容
本发明要解决现有的天然纳米纤维素气凝胶易燃、力学强度低、易变形、回弹性差的问题。
为实现上述目的,本发明的技术方案为:
一种阻燃弹性纳米纤维素气凝胶,使用纤维素的生物质原料,采用含有反应型有机化合物和多元羧酸这一阻燃体系来制备而成。
一种阻燃弹性纳米纤维素气凝胶的制备方法,包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得。
优选的,步骤(3)中,所述的交联剂及水溶性反应型有机磷阻燃剂的添加量分别占纳米纤维素干重的1~20%及10~50%。
优选的,步骤(2)中,所述的超纯水与极性有机溶剂体积比为90~99:10~1。
优选的,步骤(2)中,搅拌速度为1000r/min,搅拌时间为2h。
优选的,步骤(2)中,搅拌后,继续超声波分散1~2h。
优选的,步骤(3)中,搅拌后,继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用。
优选的,步骤(3)中的交联剂包括但不限于:柠檬酸(CA)、丁烷四羧酸(BTCA)。
优选的,步骤(3)中水溶性反应型有机磷阻燃剂包括但不限于:N-羟甲基二甲基胺磷酸基丙烯酰、2-羧乙基苯基次膦酸。
优选的,步骤(2)中极性溶剂包括但不限于:乙醇、叔丁醇。
有益效果:
本发明制备的纳米纤维素气凝胶不仅具有良好的阻燃性能和压缩回弹性能,且制备过程简单,原料来源广泛、成本低廉、绿色环保,极大地提高了该材料在保温隔热等领域的应用潜力及使用安全性。
本发明创新性的采用含有反应型有机化合物和多元羧酸这一阻燃体系来制备天然纳米纤维素阻燃气凝胶,其中采用的多元羧酸既可以作为交联剂,使纳米纤维素纤维间发生化学交联反应获得力学性能增强的气凝胶;同时可以作为纳米纤维素和阻燃剂之间的偶联剂,提高阻燃剂和纳米纤维素之间的化学结合。
本发明的阻燃纳米纤维素气凝胶与未经阻燃处理的纳米纤维素气凝胶相比,阻燃性能和热稳定性明显提高,比如氧指数值提高15%-34%,残碳量提高了200%-279%,且在空气中具有很好的自熄特性;同时具有良好的柔韧性和压缩回弹性,增加了其耐用性,这些会使纤维素气凝胶在隔热保温领域中将具有良好的实际应用价值。
本发明解决了天然纳米纤维素气凝胶易燃及力学强度低(回弹性差)的问题。本发明以多元羧酸为交联剂,以水溶性有机化合物为阻燃剂,经冷冻干燥得到纳米纤维素气凝胶,通过高温处理获得化学交联纳米纤维素阻燃气凝胶。和传统的纳米纤维素气凝胶相比,本发明制备的气凝胶具有良好的阻燃性能,并具有良好的回弹性能,极大地提高该材料在保温隔热等领域的应用潜力及使用安全性。
具体实施方式
实施例1:一种阻燃弹性纳米纤维素气凝胶的制备方法
取已制备好的纳米纤维素水悬浮液50g,向其中添加适量的超纯水和少量的有机溶剂(超纯水与有机溶剂体积比为90~99:10~1),在搅拌速度为1000r/min下搅拌2h,并继续超声波分散2h,获得质量浓度为0.50~1.50wt%的纳米纤细纤维素悬浮液;
取0.50~1.50wt%的纳米纤细纤维素50g,依次向其中添加1~10wt%的交联剂(丁烷四羧酸)和10~30wt%的阻燃剂(N-羟甲基二甲基磷酸基丙烯酰胺),在搅拌速度为1000r/min下搅拌1~2h,并继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用;
将均匀混合的纳米纤维素溶液装到铜管或方形铝箔模具中,后置于液氮浴(-197℃)中冷冻处理数分钟,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥72h,得到干燥的纳米纤维素气凝胶;接着将气凝胶置于150~170℃温度下交联固化,使纳米纤维素与交联剂及阻燃剂发生化学反应,最终得到具有良好阻燃性和回弹性的纳米纤维素气凝胶成品。
实施例2:一种阻燃弹性纳米纤维素气凝胶的制备方法
取定量原始纳米纤细纤维素悬浮液,添加超纯水和少量有机溶剂获得质量浓度为1.0~5.0wt%的纳米纤细纤维素悬浮液;
取1.0~5.0wt%的纳米纤细纤维素100g,依次向其中添加1~10wt%的交联剂(丁烷四羧酸)和20~50wt%的阻燃剂(2-羧乙基苯基次膦酸,C9H11O4P),在搅拌速度为1000r/min下搅拌1~2h,并继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用;
将均匀混合的纳米纤维素溶液装到圆形铜管或方形铝箔模具中,后置于液氮浴(-197℃)中冷冻处理1~10min,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥72h以上,得到干燥的纳米纤维素气凝胶;接着将气凝胶置于150~170℃温度下交联固化,使纳米纤维素与交联剂及阻燃剂发生化学反应,最终得到具有良好阻燃性和回弹性的纳米纤维素气凝胶成品。
实施例3:一种阻燃弹性纳米纤维素气凝胶的制备方法
取定量原始纳米纤细纤维素悬浮液,添加超纯水和少量有机溶剂获得质量浓度为1.0~5.0wt%的纳米纤细纤维素悬浮液;
取1.0~5.0wt%的纳米纤细纤维素100g,依次向其中添加1~20wt%的交联剂(柠檬酸)和20~50wt%的阻燃剂(N-羟甲基二甲基磷酸基丙烯酰胺),在搅拌速度为1000r/min下搅拌1~2h,并继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用;
将均匀混合的纳米纤维素溶液装到圆形铜管或方形铝箔模具中,后置于低温冰箱中(-39℃)中冷冻处理24h以上,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥72h以上,得到干燥的纳米纤维素气凝胶;接着将气凝胶置于150~180℃温度下交联固化,使纳米纤维素与交联剂及阻燃剂发生化学反应,最终得到具有良好阻燃性和回弹性的纳米纤维素气凝胶成品。
本发明实施例1-3制得的阻燃弹性气凝胶,氧指数LOI值22—30,在空气中难被点燃,离开火源后具有很好的自熄特性,一定载荷(100g)下压缩,卸去载荷后回弹率70%-95%;而传统纳米纤维素气凝胶,氧指数LOI值18.2,在空气中可被快速点燃并完全燃烧;一定载荷(100g)下压缩,卸去载荷后回弹率30%-45%。
实施例4:一种阻燃弹性纳米纤维素气凝胶的制备方法
包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得。
实施例5:一种阻燃弹性纳米纤维素气凝胶的制备方法
包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得;
步骤(3)中,所述的交联剂及水溶性反应型有机磷阻燃剂的添加量分别占纳米纤维素干重的1~20%及10~50%。
实施例6:一种阻燃弹性纳米纤维素气凝胶的制备方法
包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得;
步骤(3)中,所述的交联剂及水溶性反应型有机磷阻燃剂的添加量分别占纳米纤维素干重的1~20%及10~50%。
骤(2)中,所述的超纯水与极性有机溶剂体积比为90~99:10~1;
步骤(3)中的交联剂为柠檬酸(CA)。
步骤(3)中水溶性反应型有机磷阻燃剂为N-羟甲基二甲基胺磷酸基丙烯酰。
实施例7:一种阻燃弹性纳米纤维素气凝胶的制备方法
包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得;
步骤(2)中,所述的超纯水与极性有机溶剂体积比为90~99:10~1。
步骤(2)中,搅拌后,继续超声波分散1~2h。
步骤(3)中,搅拌后,继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用。
步骤(3)中的交联剂为丁烷四羧酸(BTCA)。
步骤(3)中水溶性反应型有机磷阻燃剂为2-羧乙基苯基次膦酸。
步骤(2)中极性溶剂为叔丁醇。
实施例8:一种阻燃弹性纳米纤维素气凝胶的制备方法
包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加的超纯水与和的极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液纤维素溶液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中(-197℃)冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得;
步骤(3)中,搅拌后,继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用。
步骤(3)中的交联剂为柠檬酸(CA)。
步骤(3)中水溶性反应型有机磷阻燃剂为2-羧乙基苯基次膦酸。

Claims (9)

1.一种阻燃弹性纳米纤维素气凝胶的制备方法,其特征在于:包括如下步骤:
(1)对含有纤维素的生物质原料进行酶解预处理和机械解纤处理,制备纳米纤细纤维素水悬浊液;
(2)向步骤(1)中制备的纳米纤细纤维素水悬浊液中添加超纯水与极性溶剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h,获得质量浓度为0.50~5.0wt%的纳米纤细纤维素悬浮液;
(3)分别向步骤(2)中制备的纳米纤细纤维素悬浮液中加入一定量的交联剂及水溶性反应型有机磷阻燃剂,在搅拌速度为100r/min~1000r/min下搅拌2h~12h;
(4)将均匀混合的步骤(3)得到的悬浮液封装到的模具中,后置于液氮浴中冷冻处理1~10min,或者-39℃冰箱中冷冻处理24~48h,进行凝固化,然后将冷冻成型的样品于-63℃下冷冻干燥1~3天,得到干燥的纳米纤维素气凝胶;
(5)将第(4)步所得干燥的纳米纤维气凝胶于150~170℃温度下交联固化1~20min,即得。
2.如权利要求1所述的制备方法,其特征在于:步骤(3)中,所述的交联剂及水溶性反应型有机磷阻燃剂的添加量分别占纳米纤维素干重的1~20%及10~50%。
3.如权利要求1所述的制备方法,其特征在于:步骤(2)中,所述的超纯水与极性有机溶剂体积比为90~99:10~1。
4.如权利要求1所述的制备方法,其特征在于:步骤(2)中,搅拌速度为1000r/min,搅拌时间为2h。
5.如权利要求1所述的制备方法,其特征在于:步骤(2)中,搅拌后,继续超声波分散1~2h。
6.如权利要求1所述的制备方法,其特征在于:步骤(3)中,搅拌后,继续超声波分散1~2h,得到均匀混合的纳米纤维素溶液,室温静置除去气泡后备用。
7.如权利要求1所述的制备方法,其特征在于:步骤(3)中的交联剂包括:柠檬酸(CA)、丁烷四羧酸(BTCA)。
8.如权利要求1所述的制备方法,其特征在于:步骤(3)中水溶性反应型有机磷阻燃剂包括:N-羟甲基二甲基磷酸基丙烯酰胺、2-羧乙基苯基次膦酸。
9.如权利要求1所述的制备方法,其特征在于:步骤(2)中极性溶剂包括:乙醇、叔丁醇。
CN201611166003.8A 2016-12-16 2016-12-16 一种阻燃弹性纳米纤维素气凝胶及其制备方法 Active CN106750550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611166003.8A CN106750550B (zh) 2016-12-16 2016-12-16 一种阻燃弹性纳米纤维素气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611166003.8A CN106750550B (zh) 2016-12-16 2016-12-16 一种阻燃弹性纳米纤维素气凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN106750550A CN106750550A (zh) 2017-05-31
CN106750550B true CN106750550B (zh) 2019-05-17

Family

ID=58892999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611166003.8A Active CN106750550B (zh) 2016-12-16 2016-12-16 一种阻燃弹性纳米纤维素气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN106750550B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503863A (zh) * 2018-03-20 2018-09-07 四川师范大学 多元生物质酸和壳聚糖复合气凝胶的制备方法
CN108930165A (zh) * 2018-09-03 2018-12-04 王韶华 一种胶原蛋白改性亲肤阻燃棉纤维织物的方法
CN109179372B (zh) * 2018-10-26 2020-07-28 华南理工大学 一种高性能生物纤维素碳气凝胶及其制备方法和应用
CN109464968A (zh) * 2018-12-06 2019-03-15 西华大学 一种高成炭气凝胶及其制备方法、应用
CN110183716B (zh) * 2019-05-13 2022-04-08 浙江工业大学 一种阻燃保温型纤维素基气凝胶的制备方法
CN115781844B (zh) * 2022-12-05 2023-10-20 德华兔宝宝装饰新材股份有限公司 一种高色牢度纳米改性装饰单板的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942354A (zh) * 2012-11-15 2013-02-27 航天特种材料及工艺技术研究所 一种透光型气凝胶制备方法
CN105837861A (zh) * 2016-04-03 2016-08-10 苏鑫 一种复合天然高分子凝胶类材料
CN106012107A (zh) * 2016-06-24 2016-10-12 东华大学 一种碳气凝胶纤维的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942354A (zh) * 2012-11-15 2013-02-27 航天特种材料及工艺技术研究所 一种透光型气凝胶制备方法
CN105837861A (zh) * 2016-04-03 2016-08-10 苏鑫 一种复合天然高分子凝胶类材料
CN106012107A (zh) * 2016-06-24 2016-10-12 东华大学 一种碳气凝胶纤维的制备方法

Also Published As

Publication number Publication date
CN106750550A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106750550B (zh) 一种阻燃弹性纳米纤维素气凝胶及其制备方法
CN104448397B (zh) 一种纤维素-二氧化硅复合气凝胶原位制备方法
CN109608685A (zh) 一种各向异性木基纳米纤维气凝胶及其制备方法
CN107722338A (zh) 一种纳米纤维素气凝胶的制备方法和纳米纤维素气凝胶
CN111057266B (zh) 一种芳纶纳米纤维/纳米纤维素气凝胶及其制备方法
CN104945004B (zh) 一种新型再生纤维素纤维‑气凝胶的复合材料及其制备方法
CN106009031B (zh) 一种提高纤维素气凝胶的力学强度的方法
CN109942882A (zh) 一种含磷本质阻燃纤维素基隔热材料及其制备方法
CN103302708B (zh) 一种新型疏水性木材的制备方法
CN110117000A (zh) 一种大块碳纳米纤维气凝胶及其制备方法
CN106432783A (zh) 一种纤维素/有机硅/多巴胺阻燃隔热气凝胶及其制备方法
CN113043405A (zh) 一种木基隔热阻燃材料及其制备方法
CN109777138B (zh) 采用木质纤维原料制备防火阻燃、超轻高强的纸浆泡沫的方法
CN110078048A (zh) 一种碳气凝胶天然气吸附剂及其制备方法和应用
CN114605696B (zh) 一种二氧化硅/芳纶纳米纤维多功能复合隔热气凝胶的制备方法
CN108298519A (zh) 一种利用硅溶胶增强型炭气凝胶的制备方法
CN113061287B (zh) 一种阻燃木基复合气凝胶的制备方法
CN113292761B (zh) 隔热阻燃复合气凝胶泡沫的制备方法
CN110157044A (zh) 一种天然纳米纤维素基复合隔热气凝胶及其制备方法
CN111875342B (zh) 纳米气凝胶建筑保温材料及其制备方法
CN110670392B (zh) 一种改性牛皮纸生产耐火板的加工工艺
CN115975251B (zh) 一种保温隔热纤维素气凝胶复合材料的制备方法
CN110407215A (zh) 一种气凝胶材料隔热复合板及其制备方法
CN113666711A (zh) 一种建筑用高强度保温复合板及其制备方法
CN113845672A (zh) 一种沙柳纤维素纳米纤维、气凝胶球及制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant