CN106732325B - 一种超高容量氧化镁吸附剂的制备方法 - Google Patents

一种超高容量氧化镁吸附剂的制备方法 Download PDF

Info

Publication number
CN106732325B
CN106732325B CN201611147020.7A CN201611147020A CN106732325B CN 106732325 B CN106732325 B CN 106732325B CN 201611147020 A CN201611147020 A CN 201611147020A CN 106732325 B CN106732325 B CN 106732325B
Authority
CN
China
Prior art keywords
solution
magnesium oxide
high capacity
ultra
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611147020.7A
Other languages
English (en)
Other versions
CN106732325A (zh
Inventor
张智平
郑亚君
白宗权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201611147020.7A priority Critical patent/CN106732325B/zh
Publication of CN106732325A publication Critical patent/CN106732325A/zh
Application granted granted Critical
Publication of CN106732325B publication Critical patent/CN106732325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种超高容量氧化镁吸附剂的制备方法,准确称取Mg(NO3)2·6H2O和Na2CO3分别溶解于去离子水,然后称取硅酸钠溶于上述Na2CO3溶液,分别调节两种溶液的pH值;然后将Mg(NO3)2溶液加热并在剧烈搅拌下,将Na2CO3溶液迅速加入到Mg(NO3)2溶液中并继续搅拌数秒,接着静置陈化得白色沉淀经过滤、洗涤干燥后可制备出MgCO3·xH2O,将其放入马弗炉中进行焙烧,最终得到超高容量氧化镁吸附剂;该方法具有操作简便、原料易得、无需加入任何有机添加剂、所得产物性能好等特征。

Description

一种超高容量氧化镁吸附剂的制备方法
技术领域
本发明属于无机化合物制备方法领域,特备涉及一种超高容量氧化镁吸附剂的制备方法。
技术背景
氧化镁由于独特的表面碱性、烧结性等特点,现今已在耐火材料、陶瓷、纺织、涂料、超导体、催化剂和吸附剂等诸多领域得到了广泛应用。基于氧化镁无毒、经济、环保等特点,近年来人们也将其用作污水中色素的吸附剂。通常,对色素吸附性能优越的氧化镁是通过调变氧化镁前驱体的合成工艺来实现。
现今,已有许多通过调变氧化镁前驱体的合成过程,制备出对色素具有独特吸附性能的氧化镁材料。Ai等通过Na2C2O4和MgSO4的共沉淀反应,然后通过高温焙烧的方式制备出比表面积为94m2g-1的MgO,发现其对水溶液中刚果红的吸附容量可达到689.7mg g-1(Nanoscale,2012,4,5401-5408)。Lian等在不加任何添加剂的条件下,经过Mg(CH3COO)2的水热过程合成出对甲基橙吸附容量为49–57mg g-1的针状和花状MgO颗粒(Chem.Asian J.,2012,7,2650-2655)。Wu等通过MgCl2、葡萄聚糖和(NH4)2CO3的气相扩散法制备出了花球状MgO,发现该材料对橙黄G和甲基橙的吸附容量分别可达42.4mg g-1和36.6mg g-1(Phys.Chem.Chem.Phys.,2011,13,5047-5052)。为了进一步提升MgO材料对色素的吸附容量,Tian等人将CO2通入MgO水溶液中经反应生成Mg(HCO3)2,然后在乙醇中陈化制备出多孔层状的MgO颗粒,研究表明该材料对水溶液中刚果红的吸附容量高达2409mg g-1(ACSAppl.Mater.Interfaces 2013,5,12411-12418)。Liu等通过Mg(NO3)2和油酸钠在甲醇、己烷溶剂中的水热反应,制备出薄层状的MgO,该材料对水溶液中刚果红的吸附溶液可达2650mgg-1(J.Mater.Res.,2015,30,1639-1647)。尽管如此,但是采用如上报道的简单制备方法如共沉淀法,所得MgO吸附性能较差,而吸附性能较好的MgO需采用繁琐的水热法进行制备或需加入金属有机试剂,不利于工业化大规模制备。
发明内容
为了克服上述色素吸附氧化镁的缺陷,本发明的目的在于提供一种超高容量氧化镁吸附剂的制备方法,以可溶性镁盐、碳酸盐和硅酸盐为原料,将其溶解放入反应釜中,在温度低于60℃的温度下反应,通过控制搅拌时间、反应温度、硅酸盐的加入量来控制前驱体的生成速率及形貌,所得前驱体经高温焙烧即可得到氧化镁产品;本发明的优点是氧化镁制备工艺简单、原料易得、无需加入任何有机试剂,制备出的氧化镁形貌可控、吸附色素容量高,可满足国内外污水处理领域色素去除的需求。
为实现上述目的,本发明的技术方案如下。
一种超高容量氧化镁吸附剂的制备方法,包括以下步骤:
准确称取0.01–0.10mol的Mg(NO3)2·6H2O和0.01–0.10mol的Na2CO3分别溶解于50mL和100mL的去离子水,然后称取0–0.30g硅酸钠溶于上述Na2CO3溶液,分别将上述两种溶液的pH值调节为5.5和8.0;然后将Mg(NO3)2溶液转移至250mL三颈圆底烧瓶中并加热至30–60℃,在剧烈搅拌下,将温度为30–60℃的Na2CO3溶液在4-5s内迅速加入到Mg(NO3)2溶液中并继续搅拌0.5–5.0min,接着在温度为30–60℃的条件下静置陈化1-3h,所得白色沉淀经过滤、洗涤、70℃干燥后得到MgCO3·xH2O,将其放入马弗炉中进行焙烧,焙烧的气氛可以是静态或流动的空气或氮气,焙烧的温度为400–650℃,最终得到超高容量氧化镁吸附剂。
相比于以往所报道方法,本发明公开的是采用共沉淀法来制备氧化镁,该方法反应条件温和、工艺简单、原料易得、无需加入任何有机添加剂;同时制备出的氧化镁比表面积大(164m2g-1),对水溶液中刚果红的吸附容量大于3100mg g-1,是迄今为止报道吸附最高容量的氧化镁材料。
附图说明
图1是本发明制备出针状MgO颗粒的SEM和XRD图:图1(A)是低放大倍数SEM图;图1(B)是代表性针状颗粒放大SEM图;图1(C)是所得产物的XRD图。
图2是本发明合成MgO的氮气物理吸附-脱附等温线和孔径分布:图2(A)是物理吸附-脱附等温线;图2(B)是孔径分布。
图3是水溶液中刚果红在本发明合成MgO上的吸附动力学曲线和去除率。
具体实施方式
下面通过具体实例说明本发明制备色素吸附高容量氧化镁的具体过程,但本发明并不限于下述的实例。
实施例1:
准确称取0.03mol的Mg(NO3)2·6H2O和0.03mol的Na2CO3分别溶解于50mL和100mL的去离子水,然后称取0.20g Na2SiO3溶于上述Na2CO3溶液,分别将上述两种溶液的pH值调节为5.5和8.0;然后将Mg(NO3)2溶液转移至250mL三颈圆底烧瓶中并加热至50℃,在剧烈搅拌下,将温度为50℃的Na2CO3溶液在4-5s内迅速加入到Mg(NO3)2溶液中并继续搅拌1.0min,接着在温度为50℃的条件下静置陈化1h,所得白色沉淀经过滤、洗涤、70℃干燥后得到MgCO3·xH2O,将其放入马弗炉中进行焙烧,焙烧的气氛是静态的空气,焙烧温度为500℃,最终得到超高容量氧化镁吸附剂。
此针状MgO(图1)的比表面积为164m2g-1(图2),对水溶液中刚果红的吸附容量大于3100mg g-1(图3)。
实施例2:
同实施例1制备方法,区别在于准确称取0.04mol的Mg(NO3)2·6H2O和0.04molNa2CO3,经高温焙烧可得对刚果红吸附容量为2900mg g-1的MgO。
实施例3:
同实施例1制备方法,区别在于在反应体系中加入0g Na2SiO3,经高温焙烧可得对刚果红吸附容量为2330mg g-1的MgO。
实施例4:
同实施例1制备方法,区别在于分别将Mg(NO3)2·6H2O和Na2CO3溶液的温度加热到40℃并进行反应,经高温焙烧可得对刚果红吸附容量为2600mgg-1的MgO。
实施例5:
同实施例1制备方法,区别在于将Mg(NO3)2·6H2O和Na2CO3的反应产物陈化2h,经高温焙烧可得对刚果红吸附容量为2800mg g-1的MgO。
实施例6:
同实施例1制备方法,区别在于将Mg(NO3)2·6H2O和Na2CO3的反应产物在550℃经高温焙烧可得对刚果红吸附容量为2900mg g-1的MgO。
实施例7:
同实施例1制备方法,区别在于将所得产物在高温氮气气氛下焙烧可得对刚果红吸附容量为3200mg g-1的MgO。

Claims (1)

1.一种超高容量氧化镁吸附剂的制备方法,其特征在于,包括以下步骤:
准确称取0.01–0.10mol的Mg(NO3)2·6H2O和0.01–0.10mol的Na2CO3分别溶解于50mL和100mL的去离子水,然后称取0.20–0.30g硅酸钠溶于上述Na2CO3溶液,分别将上述两种溶液的pH值调节为5.5和8.0;然后将Mg(NO3)2溶液转移至250mL三颈圆底烧瓶中并加热至30–60℃,在剧烈搅拌下,将温度为30–60℃的Na2CO3溶液在4-5s内迅速加入到Mg(NO3)2溶液中并继续搅拌0.5–5.0min,接着在温度为30–60℃的条件下静置陈化1-3h,所得白色沉淀经过滤、洗涤、70℃干燥后得到MgCO3·xH2O,将其放入马弗炉中进行焙烧,焙烧的气氛可以是静态或流动的空气或氮气,焙烧的温度为400–650℃,最终得到超高容量氧化镁吸附剂。
CN201611147020.7A 2016-12-13 2016-12-13 一种超高容量氧化镁吸附剂的制备方法 Expired - Fee Related CN106732325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611147020.7A CN106732325B (zh) 2016-12-13 2016-12-13 一种超高容量氧化镁吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611147020.7A CN106732325B (zh) 2016-12-13 2016-12-13 一种超高容量氧化镁吸附剂的制备方法

Publications (2)

Publication Number Publication Date
CN106732325A CN106732325A (zh) 2017-05-31
CN106732325B true CN106732325B (zh) 2019-02-26

Family

ID=58876541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611147020.7A Expired - Fee Related CN106732325B (zh) 2016-12-13 2016-12-13 一种超高容量氧化镁吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN106732325B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317129A (zh) * 2018-10-12 2019-02-12 西安石油大学 一种微米尺度高活性氧化镁光催化剂的制备方法
CN109985615B (zh) * 2019-04-12 2022-05-20 西安石油大学 一种高活性有机染料降级光催化剂锌镁复合氧化物的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209847A (zh) * 2006-12-27 2008-07-02 中国科学院大连化学物理研究所 一种单分散氧化镁微球的制备方法
WO2013100691A1 (ko) * 2011-12-28 2013-07-04 경북대학교 산학협력단 입상 산화물 흡착제 제조방법 및 이를 이용한 수처리 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209847A (zh) * 2006-12-27 2008-07-02 中国科学院大连化学物理研究所 一种单分散氧化镁微球的制备方法
WO2013100691A1 (ko) * 2011-12-28 2013-07-04 경북대학교 산학협력단 입상 산화물 흡착제 제조방법 및 이를 이용한 수처리 방법

Also Published As

Publication number Publication date
CN106732325A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN109046428A (zh) 一种介孔类石墨相氮化碳及其制备方法和应用
CN109437338A (zh) 一种类锯齿型镍钴铁类普鲁士蓝烧结氧化物纳米材料的制备方法
CN106732325B (zh) 一种超高容量氧化镁吸附剂的制备方法
CN101913651B (zh) 制备三斜相FeVO4微米粒子的水热法
CN109317180B (zh) 一种可工业化生产高性能光催化固氮g-C3N4/氧化物复合材料的制备方法
CN108212192A (zh) 一种光-芬顿催化剂及其制备方法
CN108325545A (zh) 一种磷酸氧钒催化剂、其制备方法及用途
CN101863499A (zh) 一种大孔-介孔氧化铝的制备方法
CN108355698A (zh) 一种o掺杂石墨相氮化碳纳米片粉末的制备方法
CN105645446B (zh) 碳酸化法制备拟薄水铝石的老化方法
CN107098353A (zh) 一种花刺状二氧化硅球及其制备方法
CN108246350A (zh) 一种包覆贵金属的介孔分子筛催化剂材料及其原位制备方法
CN107556329B (zh) 一种多孔金属有机框架材料及其制备方法
CN109354029A (zh) 一种由粉煤灰制备介孔氧化硅的方法
CN109133144A (zh) 一种单分散超小粒径二氧化铈纳米晶的制备方法
CN106882842A (zh) 一种介孔花瓣状ZnCo2O4纳米固体材料的制备方法
CN107282083A (zh) 一种硅锌掺杂的石墨相氮化碳纳米材料及其在光催化还原中的应用
CN107416899B (zh) 一种纳米线α-Bi2O3粉末材料的制备方法
CN107244679B (zh) 一种球形杂原子Ni-SAPO-34分子筛及其制备与应用
CN109354695A (zh) 一种配位调节制备片层状金属有机骨架材料的方法
CN107539953A (zh) 具备三维多孔单晶结构的金属氧化物纳米颗粒的制备方法
CN105565329B (zh) 一种大孔带电啤酒硅胶颗粒的制备方法
CN110227517B (zh) CuBi2O4/BiPO4p-n型异质结光催化剂、制备方法及其应用
CN106219567A (zh) 一种以高岭土为原料制备高比表面积纯硅mcm‑41分子筛的方法
CN108479761B (zh) 一种以酪蛋白为生物模板制备球形钙钛矿催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190226

Termination date: 20201213